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Preface

On behalf of the Steering Committee and the Programme Committee of the
PATAT (Practice and Theory of Automated Timetabling) series of conferences,
we would like to welcome you to the sixth conference here in Brno. The PATAT
conferences, which are held every two years, bring together researchers and
practitioners in all aspects of computer-aided timetable generation. This in-
cludes university timetabling, school timetabling, personnel rostering, trans-
portation timetabling, sports scheduling and other areas of the subject. The
programme of this year’s conference features seventy presentations which repre-
sent the state-of-the-art in automated timetabling: there are 4 plenary papers,
17 full papers, 41 extended abstracts, and 8 system demonstrations. We are
particularly pleased to welcome system demonstrations which are introduced
at PATAT this year for the first time.

As was the case in previous years, a post-conference volume of selected and
revised papers is to be published in the Springer Lecture Notes in Computer
Science series. This volume will be rigorously refereed by our Programme Com-
mittee. The plenary papers and the 17 full papers will automatically go into
the reviewing process for this volume but authors will (if they so wish) have the
opportunity to revise their papers in the light of feedback from the conference.
The authors of the 41 extended abstracts and the 8 system demonstrations are
invited to extend their articles and to submit a full paper for publication in
this book.

We would like to express our gratitude to the large number of people who
have contributed to the organization of the conference. The Steering Commit-
tee ensures the ongoing success of the series and the Programme Committee
works very hard to referee conference submissions. We are, of course, very
grateful to all authors and delegates. We would particularly like to thank the
Faculty of Informatics at Masaryk University for hosting the conference. Spe-
cial thanks should go to Adam Rambousek for his support and for granting us
the permission to use his conference management system. We would also like to
express our gratitude to Jakub Marecek and Tomas Cerny for their assistance
with type-setting, and to Lenka Bartoskova, Dagmar Janouskové, Iva Krejéi
and Petra Kfivankova for their administrative help. Particular thanks should
also go to Emma-Jayne Dann for her administrative support. Last but not
least, we would like to thank the conference sponsors: ORTEC bv, eventMAP
Ltd. and CELCAT, and the Ministry of Education, Youth and Sports of the
Czech Republic for their support under research intent No. 0021622419.

We are very happy to welcome you to Brno. We hope you enjoy your
stay here and that you get a chance to explore the city and the surrounding
area during your visit. We wish you an informative, useful, and interesting
conference. Enjoy it!

July 2006 Edmund K. Burke
Hana Rudova
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Physician Scheduling in Emergency Rooms

Michel Gendreau':2, Jacques Ferland!? Bernard Gendron'?, Noureddine Hail®,
Brigitte Jaumard!=, Sophie Lapierre!*, Gilles Pesant!*#, and Patrick Soriano!-?

! Interuniversity Centre for Research on Enterprise Networks,
Logistics and Transportation (CIRRELT)
Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, Canada, H3C 3J7
michelg@crt.umontreal.ca
2 Département d’informatique et de recherche opérationnelle, Université de Montréal
3 Concordia Institute for Information Systems Engineering, Concordia University
4 Département de mathématiques et génie industriel
Ecole Polytechnique de Montréal
5 Service d’enseignement des méthodes quantitatives de gestion, HEC Montréal

Abstract. We discuss the problem of constructing physician schedules
in emergency rooms. Starting from practical instances encountered in
six different hospitals of the Montreal (Canada) area, we first we pro-
pose generic forms for the constraints encountered in this context. We
then review several possible solution techniques that can be applied to
physician scheduling problems, namely tabu search, column generation,
mathematical programming and constraint programming, and examine
their suitability for application depending on the specifics of the situa-
tion at hand. We conclude by discussing the problems encountered when
trying to perform computational comparisons of solution techniques on
the basis of implementations in different practical settings.

1 Introduction

Constructing schedules (rosters) is not an easy task to accomplish in settings
where work must be performed 24 hours per day and 7 days a week, such as
in police and fire departements, or in emergency rooms of hospitals. The prob-
lem that one is faced with is to generate “good schedules” that satisfy many
complicated rules, including ergonomic rules as defined by Knaunth [20,19]. As
mentioned by Carter and Lapierre [11], ergonomic constraints are very impor-
tant in order to manage the circadian rhythm of the staff and it is critical to
take them into account when building schedules.

In this paper, we focus on the problem of the scheduling of physicians in
emergency rooms (ER) in health care institutions where work is continuous. It
is known that ER are a very stressful place for physicians, but it is also great
challenge for them to work in such a place. According to Lloyd et al. [23], 24.5% of
physicians in Canadian ER are not satisfied with their jobs. Consequently, mak-
ing a “good” schedule for physicians in ER is very important. A good schedule
for a physician is a schedule that satisfies a large number of the requests he or

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 2-14. ISBN 80-210-3726-1.



Physician Scheduling in Emergency Rooms 3

she may have regarding different issues: total amount of work to be performed,
specific timing of shifts, sequencing of shifts, etc.

As already mentioned, building such schedules is quite difficult and it may
take up to several weeks for a human expert to generate an acceptable solu-
tion [3]. In order to reduce time and efforts, an automated approach is therefore
imperative.

Besides the biological and psychological effects involved in the scheduling of
physicians, one must also pay careful attention to the fairness of the schedules
among physicians. This important aspect is unfortunately very difficult to ad-
dress because there are usually many individual requests and several of them
turn out to be conflicting.

In this paper, we give an overview of the typical constraints that may be
encountered in physician scheduling by building on the lessons learned from five
practical cases encountered in hospitals of the Montreal (Canada) area: Jewish
General Hospital (JGH), Charles-Lemoyne Hospital (CLH), Santa-Cabrini Hos-
pital (SCH), Sacré-Coeur Hospital (SaCH), and Céte-Des-Neiges Hospital (CNH).
An important purpose of the paper is to formalize the specific constraints of these
five settings into “generic constraints” that could be used to describe problems
in other practical contexts. We also review major approaches for solving the
problem: mathematical programming, tabu search, constraint programming and
column generation.

The remainder of this paper is organized as follows. In Section 2, we define
more precisely the problem of scheduling physicians in ER and review the rele-
vant literature. In Section 3, we propose the generic constraints that capture the
essence of the various constraints encountered in the five physician scheduling
case studies. Section 4 is devoted to solution approaches. Finally, we conclude
in Section 5.

2 Problem Definition and Literature Review

In the health care area, there are two important types of scheduling problems
that involve medical staff: nurse scheduling problems and physician schedul-
ing problems. In the first category of problems, nurses work under collective
agreement while in the second category, there are no such rules for physicians.
Moreover, in the nurse staff problem, one has to maximize their individual satis-
faction and minimize the cost of salaries, whereas in the physician staff problem,
one only cares about the maximization of their individual satisfaction. Despite
these differences between nurse and physician problems, their mathematical for-
mulation are not quite different. Indeed, according to Gendreau et al. [26], a pure
mathematical approach given by Berrada et al. in [5, 4, 34] for the nurse schedul-
ing problem can successfully be applied to the physician scheduling problem.
The physician scheduling problem can be described as the preparation of
a rostering for physicians for a given planning period, such that every shift of
every day must be assigned to exactly one physician. To achieve this goal, we
have to deal with some rules that are divided into two categories : compulsory (or
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hard) rules and flexible (or soft) ones. These rules are often in conflict with one
another, therefore some of them have to be violated in order to have a complete
schedule for all physicians. Carter and Lapierre [11] note in their investigation
that some flexible rules in some hospitals might be compulsory in others and vice
versa. This classification depends in general on the preferences of the hospital
and on the physicians’ flexibility.

The set of shifts that must be covered is specified for each day of the week.
In many situations, the weekend shifts are quite different from week days shifts.
In general, we have three kinds of shifts: days , evenings, and nights. A week
usually begins on Monday, by the first day shift and ends Sunday with the last
night shift. The planning period can be quite long (up to 6 month) or fairly
short (between 2 and 4 weeks). The physicians who work in emergency rooms
are divided into two categories: full-time doctors and part-time doctors. A full-
time doctor works an average of 28 hours per week, part-time physician works
on average between 8 and 16 hours.

The physician scheduling problem can be summarized as follows: given a set
of doctors, a set of shifts and a planning period, one seeks to find fair schedules
for all physicians in order to maximize their individual satisfaction.

As we have mentioned above, this problem has not received very much at-
tention. There are, however, some software packages that have been used suc-
cessfully in this context [11]:

— Tangier Emergency Physician Scheduling Software, by Peake Software labo-
ratories [30];

Epsked, by ByteBloc Medical Software [9];

— Docs for Windows, by Acme Express [1];

— Physician Scheduler 4.0, by Sana-Med.

These software packages have been sold to emergency departements in thousands
of copies, but the research community did not benefit from the fundamental work
that led to these products. The only academic works that we are aware of are
some works on cyclic rostering [8,21] and some on acyclic rostering [2, 3,8, 10, 11,
14,26, 31]. The solution methods developed in these references will be examined
more closely in Section 4.

3 Physician Scheduling Problem Constraints

In this section, we propose generic forms for the constraints encountered in the
five case studies mentioned in the introduction. As we have already mentioned,
in the physician scheduling problem, we have to find a roster for every physician
such that a large number of constraints are satisfied. Some constraints are applied
for every physician and others only for some physicians. There are two types of
constraints: hard and soft. A constraint is called hard if it must be satisfied; it is
called soft if it can be violated. In this study, we have classified the constraints
of the physician scheduling problem into four categories:

1. Supply and Demand Constraints
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2. Workload Constraints
3. Fairness Constraints
4. Ergonomic Constraints

The first category of constraints deals with the availabilities of the physicians
and the requirements of the emergency rooms that must be opened every day and
24 hours a day. The second category deals with the workload (number of hours
or number of shifts) that is assigned to physicians during a week, a given period
or the whole planning period. The third category controls the distribution of
different kinds of shifts during the whole planning period. The fourth category
of constraints covers various rules ensuring a certain level of quality for the
schedules produced.

3.1 Supply and Demand Constraints

Two kinds of constraints are encountered in all physician scheduling problems.
First, a sufficient number and variety of shifts must be staffed throughout the
scheduling horizon in order to guarantee minimum coverage. Second, a given
physician, according to his seniority, full/part time status, outside responsibili-
ties, and planned vacations, is not available at all times.

Constraint 1 (Demand) During the overvall planning period, every shift must
be performed by exactly one physician.

Whereas in other contexts such as nurse scheduling, the number of staff members
covering a shift must lie in a certain interval, for physician scheduling this number
is almost always exactly one. This constraint is considered a hard constraint
and it is encountered in all the hospitals listed in the Introduction. Carter and
Lapierre[11] identify three variants of this situation, but we restrict our attention
here to the two main ones.

1. Uniform case: the required number of physicians is the same for every day
in a week, i.e., we have the same number of shifts for every weekday, even
for Saturday and Sunday.

2. Non-uniform case: the required number of physicians is the same for ev-
ery weekday expect for Saturday and Sunday. In this case, the number of
physicians required on Saturday is the same as on Sunday.

Constraint 2 (Availability) During the planning period, all the requests of
every physician should be satisfied. There are four types of requests:

1. Preassignments,

2. Forbidden assignments,
3. Vacations,

4. Preferences or aversions.

Each one of these types of requests is considered a hard constraint except for
the last one, which is a soft version of the first two. That last type occurs for
example in the context of religious practices at JGH: some physicians want to
be off for the evening and the night shifts on Friday [8].
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3.2 Workload Constraints

This category of constraints deals with the workload (number of hours or number
of shifts) that is assigned to physicians during a week, a month or the whole
planning period.

Constraint 3 (Limits on workload) During a given period, a physician should
be assigned an amount of work that lies within a specified interval.

Ezample 1. In the SaCH case study, a physician who is supposed to work 28
hours a week could accept to work up to 32 hours.

Ezxample 2. At JGH, at most four shifts are assigned to a physician on any given
week.

This constraint is common to all the hospitals we considered. It is often speci-
fied over disjoint subsets of the planning period, either because of the terms of
a contract or to encourage a uniform workload. Sometimes a target workload
with the interval may be given: it can be viewed as a soft constraint. Another
constraint encouraging uniform workloads is the following.

Constraint 4 (Limits on the number of shifts of the same type) During
a given period (e.g., a month), the number of shifts of the same type that are
assigned to a physician cannot exceed a certain value.

Ezxample 3. At SacH, no physician should work more than three night shifts in
a four-week period.

3.3 Fairness Constraints

This category of constraints ensures the fair distribution of different types of
shifts among physicians with the same experience.

Constraint 5 (Distribution of Types of Shifts) During the planning period,
shifts of the same type (e.g., evening, night, weekend) should be distributed fairly
among physicians with the same level of experience.

Example 4. At SaCH, all physicians with more than four years of experience
have to work the same number of night shifts during the planning period of six
months.

Example 5. Again at SaCH, physicians should not work more than five weekend
shifts in a four-week period. In this hospital, a working weekend can include up
to three shifts.



Physician Scheduling in Emergency Rooms 7

3.4 Ergonomic Constraints

This is the largest and the most heterogeneous category of constraints. Various
rules ensure a certain level of quality for the schedules produced and may be
specified either globally for the staff or only for certain individuals. In his work
on ergonomics, Knauth [20,19] has shown the impact of work schedules on the
circadian rhythm of workers. He proposed several rules, which we summarize
below:

— minimizing permanent night shifts;

— reducing the number of successive night shifts to a maximum of two or three;

— avoiding short intervals of time off (less than 11 hours) between two consec-
utive shifts;

— shift systems including work on weekends should provide some free weekends
with at least two consecutive days off;

— long work sequences followed by four to seven days of mini-vacations should
be avoided;

— forward rotations (day shifts followed by evening shifts followed by night
shifts) are preferred;

— individual schedules with few changes over time are preferred;

— shift lengths should be adjusted according to task intensity;

— shorter night shifts should be considered;

— a very early start time for the morning shift should be avoided;

— preference should be given to flexible working time arrangements among
workers.

The constraints below address some of these ergonomic concerns.

Constraint 6 (Length of work sequences) The number of identical shifts
(or of shifts of the same type) in a sequence of consecutive days must lie within
a given interval.

Ezample 6. In the work of Carter and Lapierre [11], there must be at least two
and at most four consecutive identical shifts.

Ezample 7. At SaCH, the interval is [1, 4] for shifts in general.

Ezample 8. In each of the hospitals studied, the number of consecutive night
shifts lies between one and three.

Example 9. AT SaCH, a physician requires at least 14 days between two night
shifts belonging to different work sequences. This can be recast as a constraint
on the length of sequences of non-night shifts.

Constraint 7 (Patterns of Shifts) Over a given number of consecutive days,
a set of patterns of shifts describes what a physician is allowed to do or not to
do.
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Example 10. There must be a minimum number of hours of rest between two
consecutive shifts. Consequently, certain patterns of shifts over two consecutive
days are forbidden.

Example 11. At SaCH, a set of restrictive patterns govern weekend work. For
instance, a physician working the 8 AM regular shift on Saturday must also cover
the 10 AM trauma shift on Sunday; working the 4 PM regular shift on Friday
requires working the 4 PM trauma shift on Saturday and the 4 PM regular shift
on Sunday as well.

Example 12. A physician should work at most one night shift in every sequence
of three consecutive work shifts.

Example 13. A physician should not work a non-homogeneous sequence of four
consecutive work shifts.

Constraint 8 (Patterns of Sequences of Shifts) This is similar to the pre-
vious constraint, except that patterns are expressed not over a fixred number of
consecutive days, but rather over a fized number of sequences of consecutive work
shifts.

Example 1. At JGH, every two consecutive sequences of work shifts should
satisfy the forward rotation principle.

Constraint 9 (Patterns of Sequences of a Given Length) Patterns are ez-
pressed over both the type and the length of sequences.

This has the flavour of the previous constraint and of the first ergonomic con-
straint.

Example 15. After coming back from a vacation, no physician should work a
night shift for the first two days.

Ezxample 16. At SaCH, there must at least three days off after a sequence of
three night shifts.

Table 1 presents a summary of these generic constraints.

4 Four Optimization Techniques for the Physician
Scheduling Problem

In this section, we present general descriptions of four solution techniques for
the physician scheduling problem. These methods are completely different from
one another, as we shall see later:

1. Mathematical programming
2. Column generation

3. Tabu search

4. Constraint programming
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Table 1. Generic constraints in the five hospitals studied

Constraints CNH CLH JGH SaCH SCH
Demand X X X X X
Availability X X X X X
Limits on workload X X X X X
Limits on shifts of the same type X X X X
Distribution of types of shifts X X X X X
Length of work sequences X X X X X
Pattern of shifts X X X X X
Pattern of sequences of shifts X X
Pattern of sequences of given length X

4.1 Mathematical Programming

Beaulieu et al. [3] have proposed a mixed 0-1 programming formulation of the
physician scheduling problem where the objective function is the sum of penalties
associated to some constraints, called deviation constraints. This formulation
was also used by Forget[14] in the context of Santa-Cabrini Hospital (SCH).
In these case studies, constraints are classified in three categories: ergonomic
constraints, distribution constraints and deviation constraints. After obtaining
the mathematical formulation of problem under study, Beaulieu et al. [3] first
considered using branch-and-bound on this formulation to find a solution, but
this approach had to be dropped, unfortunately, due to the huge dimension (large
number of variables and constraints) of some instances. The solution technique
that was applied is a heuristic approach based on a partial branch-and-bound,
instead of a complete branch-and-bound, which requires more computational
time. Moreover, branch-and-bound was not applied to the original formulation,
but to a modified one. Indeed, as mentioned by Beaulieu et al., it was quickly
realized that there was no feasible solution to the original formulation. This was
due to the presence of some ergonomic constraints that were conflicting and led
to an infeasible problem. The solution technique proposed by the authors is to
solve the model with a subset of constraints which contains all hard constraints
and some soft constraints that are not in conflict with each other. Afterwards,
they modified some of the soft constraints and introduced them one by one in
an iterative process, which can be summarized as follows [3]:

— Identify the rules that are violated in the current schedule.

— Add the corresponding constraints to the model.

— Use the branch-and-bound method to identify a new schedule, which hope-
fully improves over the previous one(e.g., satisfies more rules).

This process is repeated until the branch-and-bound cannot find any feasible
schedule.
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4.2 Column generation

The column generation technique [12, 25] is an exact method that relies on the de-
composition principles of mathematical programming; it is usually used to solve
large and complex problems, such as the cutting stock problem. This method was
successfully applied to solve the nurse scheduling problem and a software called
IRIS was produced [22]. In the column generation method, each new column is
generated by solving an auxiliary problem (or subproblem). For instance, in the
cutting stock problem, a knapsack problem is solved to find a new cutting pattern
for rolls. In the nurse scheduling problem, a new column is obtained by solving a
shortest path problem with ressource constraints on a directed graph [32]. The
ressources correspond to the following constraints:

— The constraint dealing with the workload of every nurse for a given period
(e.g., 2 weeks);

— The constraint that controls the vacation periods of every nurse;

— The constraint that deals with the succession of shifts of the same type;

— The constraint that is associated with the distribution of weekends.

The formulation of the master problem for the nurse scheduling problem includes
the hard constraint that gives the required number of nurses for every shift of
every day. Moreover, the objective function is given by the sum of penalty costs
associated with the contraints not explicitely taken into account in either the
auxiliary problem or the master problem.

This solution technique can be applied to the physician scheduling problem
after some minor modifications. First, one can use the same auxiliary problem
as for the nurse scheduling problem. Indeed, the constraints that define the
ressources are also present in the physician scheduling problem. Second, the
constraint dealing with the requirements (number of nurses per shift), which is
used in the master problem for the nurse scheduling problem, is also present
in the physician scheduling problem (one physician for every shift). One then
simply has to modify the formulation of the objective function and define in it
penalty costs for the remainder of the constraints that one wishes to consider.

4.3 Tabu Search

Tabu search is one of the most effective solution techniques for solving hard com-
binatorial problems. Originally proposed by Glover [18], it has been succesfully
applied to a wide variety of application contexts, such as vehicle routing [16],
machine scheduling [28], maximum clique problem [17], quadratic assignement
problem [27,29]. This method has also been applied to the nurse scheduling
problem|[7,13], as well as the physician scheduling problem. In the case of physi-
cian staff, the solution technique was used to generate two kinds of schedules:
cyclic schedules [21] and acyclic schedules [8].

Generally speaking, tabu search is a local search (LS) technique, i.e., an itera-
tive search procedure that, starting from an initial feasible solution, progressively
improves it by applying a series of local modifications. The key ingredient of any
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LS technique is the set of modifications (or moves) that it considers: the richer
this set, the better the solutions that one can expect to obtain, but also the slower
the method. While classical LS methods stop when they encounter a local opti-
mum w.r.t. to the modifications they allow, tabu search continues moving to the
best non-improving solution it can find. Cycling is prevented through the use
of short-term memory structures called tabu lists (see [15] for a comprehensive
introduction to the topic).

Buzon’s tabu search method for acyclic schedules [8] is in fact an extension
and a generalization of previous work by Labbé [21]. In this approach, a solution
S corresponds to a set of schedules: one for each physician. The solutions exam-
ined by the search have the property that they satisfy the demand constraints,
i.e., all shifts are covered, but other constraints may be violated. The cost ¢(.5) of
solution S is the sum of the costs of all schedules in S. If there are n physicians,
then the cost of a solution S is 22:1 cost(Schedule,), where cost(Schedule,)
is the cost of the schedule for physician p. The cost of a physician schedule is
also the sum of all penalties that are associated with the unsatisfied constraints.
There is exactly one penalty for each constraint. For example, suppose that
physician p wants to work only 2 unbroken weekends. If the schedule associated
with this physician in the current solution contains 3 unbroken weekends and 1
broken weekend, then the penalty associated with the weekend constraint would
be (3-2).Pypw + 1.Pgw, where Py pw (respectively Pgyy) is a certain value as-
sociated with one extra unbroken (respectively broken) weekend. Proper values
for these penalty weights are not easy to determine; unfortunately, the quality
of the solution that one can expect to find is quite sensitive to them [8].

Buzon’s method considers several different types of modifications to solu-
tions (neighborhoods) of increasing complexity. The simplest one involves sim-
ply re-assigning a shift on one day to a physician currently off on that day.
More complex neighborhoods involve swapping portions of schedules between
two physicians. See [8]for further details.

4.4 Constraint programming

Constraint programming is a solution technique that is more and more applied
to various optimization and combinatorial problems. Its application to complex
problems like work schedules [24] is possible for each problem in which the set of
values (domain) of every variable is finite. The domain of each variable is saved
and updated during the progression of calculations by using the constraints
that involve this variable and others whose domain has been modified. These
constraints take part in the elimination of all the inconsistent values of a variable
from its domain; this is done by using some techniques called filtering algorithms.
This means that all infeasible solutions are removed and only feasible solutions
are effectively considered.

This method was applied for the physician scheduling problem by Cangini [10],
Rousseau et al. [26], Trilling [31] and Bourdais et al. [6]. The work of Rousseau
et al. [26] is about using constraint programming to define a general algorithm
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that takes into account two types of generic constraints: pattern and distribu-
tion constraints. We will not give more details about this general method, the
interested reader is referred to [26].

This algorithm was successfully applied to two hospitals: SCH and CNH. The
physician scheduling problem that is solved in [26] is formulated as follows:

Minimize f(W)

subject to Wys € Ags
Distribution constraints
Pattern constraints

The set Ag4s contains the physicians who can work shift s of day d. The variable
Wgs represents the physician who will be on duty on shift s of day d. As for the
methods presented earlier in this section, the formulation of objective function
f is the most difficult part of the solution scheme. In this case, f(WW) represents
the “cost” associated to the schedules that are generated for all physicians (one
schedule for each physician). The cost of the schedule for a given physician p is
the sum of the penalties associated with each constraint.

5 Conclusion

The physician scheduling problem is a challenging one. While we have proposed a
series of generic constraints to describe it, it must be understood that the specific
constraints that are in force in any given case study may vary wildly. This makes
it difficult to come up with solution methods that can be used in a wide range
of practical settings. It also greatly complicates the task of coming up with
fair comparisons of different methods, since they may have been developed for
settings that are quite different in nature. We have indeed attempted to compare
the four approaches described in the previous section and found out that just
creating a set of benchmark instances that would allow such a comparison was
in itself a very challenging task. We hope to be able to report on this comparison
at a later date.
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Abstract. As an academic in the School of Computer Scienc@ueen’s
University, a visiting researcher to the Automasatheduling, Opimisation and
Planning (ASAP) group within the School of CompuBsience and IT at the
University of Nottingham and Managing Director ofeetMAP Limited, a
university technological spin out company, the autbk in a unique position to
provide comments on both the practice and theorginoétabling (automated
and otherwise) within the university sector. Thedg of the relationship and
interaction between the work carried out in thedacaic literature and the
requirements of university administrators is edsérif ideas generated by
research are to benefit every day users. Conveiiséycrucial the needs of the
timetabling community influence the direction tak®nresearch if high quality
practical solutions are to be produced. A main cbje of the work presented
here is to provide up-to-date information which Iwehable researchers to
further investigate the area of timetabling reslean relation to the generation
of robust and flexible techniques which can copéhwomplexities experienced
during implementation in ‘real world’ scenarios.urthermore, although not
discussed here in detall, it is essential, fromommercial perspective, that
these developed leading edge techniques are imategoand used within
general applicable timetabling tools. The aimhi$ paper is to motivate the
discussion required tdridge this timetabling gap by bringing timetabling
research and educational requirements closer tegeth

1 Introduction and Context

EventMAP Limited was formed in 2002 to exploit thersuercial potential of the
educational timetabling research carried out by t#hetomated Scheduling,
Optimisation and Planning (ASAP) group at the Ursitg of Nottingham and the
Knowledge and Data Engineering (KDE) Group within tBehool of Computer
Science at the Queen’s University of Belfast. Tmenpany is based in Belfast within
the Institute of Electronics, Communications andinfation Technology (ECIT) at
Queen’s University. The Institute, which officialhpened in May 2005, represents
new £40M world class centre with a unique focus bbme skies, strategic and

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 15-35. ISBN 80-210-3726-1.
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industrial research projects. The Centre bringettogr internationally renowned
research groups specializing in key areas of adddiE, digital and communications
technology. A key feature of the Centre’s overalinit is the “spinning out” of
industrial based companies exploiting advancemmatie in research.

The decision to form a company followed identifioatiof the market need for a
high quality research led software solution to sbbeduling difficulties experienced
within the educational sector. The focus of eventMARited is to develop, market
and sell examination, course scheduling and spaaeagement and planning
software into the worldwide higher and further estian sector. The preface to the
Selected Papers Volume from the Gent PATAT confergficstated that “The goal
of developing interactive and adaptive systems Il on human expertise and a
the same time provide the computational power tchehigh-quality solutions
continues to be one of the key challenges thaeatlyr faces the timetabling researcl
community” This goal is very much shared by evenMitimited whose approach is
to incorporate knowledge of the extreme complewitytimetabling problems with
commercial skills and practical experience with twerall aim of developing and
building upon the most recent research in Artifidiatelligence and Operational
Research technologies.

The Company aims to develop and implement new palamethodologies and
associated algorithmic techniques to enhance thei@o of educational timetabling
problems across a wide range of real world scepard this early stage of the
company’s existence, consultancy has been provishet systems implemented ir
Europe, Australia, New Zealand and America. The tfaat work has taken place or
a global scale at such an early stage in the coygaistory is both promising and
challenging from a company growth point of view.

In the recent international review of OperationaksBarch in the UK
(commissioned by the Engineering and Physical SeeResearch Council), a majo
identified weakness in the current approach to &tgeral Research is described a
follows, “a gap still remains between the output of a successful research project and
what is needed for direct use by industry” [1]. In general, the area of educationg
timetabling is one such area. The Company has aartamt role to play with respect
to this ‘gap’ as it is in a unique position to igtate leading edge research techniqu
with the requirements of the user base in the proniof timetabling solutions. One
of the primary overall aims of current efforts wiitithe Company is to implement
software which acts as an enterprise recourse jpigriool as well as a managemer
information service, informing on strategic waysward for the need for, use of anc
allocation of resources within an institution. r#ajor aspect of the adopted strateg
for achieving this is to highlight the importanpasts of institutional requirements tc
researchers in the field while continually updataigorithmic techniques within the
software, thus enabling solutions to be produce@hvare both workable and of a
high quality. The intention of this paper is todson the initial part of the strategy
by reporting on the needs of educational instigirom a practical point of view in
terms of two of the main areas which the companpuslved with i.e. examination
and course timetabling. In each area, a numbehallenges are detailed which art
based on experience of working in the area frorh botacademic and practical viev
point. It is stressed that these challenges céytaim not represent all of the issue
that require work from researchers, rather theyesgnt a selection of key theme
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which will help bridge the gap and move the areadfcational timetabling to a new
level both in research and practical terms.

2 Examination Timetabling

The examination timetabling problem, studied in nwoue papers in the PATAT
conference series [2,4,5,6,7], is characterizedabset of students taking a set ¢
exams over a specified time period within the ceintef various constraints. The
quality of the timetable is normally measured aguaction of best spread of
examinations per student though some notable d@rosptlo occur [8,9]. Various
algorithms have been used with their effectivertesiag measured in relation to ¢
standard set of benchmark data. An up-to-date weigeprovided in [10]. In addition
to the PATAT Conference series, many papers have lpeblished on specific
techniques along with reporting of various survgly®,12]. It is worth noting that
research in this area has been instrumental icdhénued development of the field
of search methodologies and, in particular, metasies. Although it is not intended
to provide a general commentary on the approactiestad to date it is possible tc
argue that the nature of the gap between reseactipractice has not been aided b
the simplicity of the current datasets e.g. thé lafcsubstantial bench mark data witt
sufficient room, constraint and solution modellisgta. It is expected that the releas
of six new datasets [13] along with a dedicated veelvice to the research
community via the web site at http://www.cs.notiué~rxg/data.htm will go a long
way to remedying this situation. This service walso act as a repository ol
information relating to techniques and solutionsegated and will enable researchel
to easily and accurately test and compare appreache

From a Company perspective, the latest versiont'sfflagship examination
product, Optimg,, was released in January of this year. An eavision of the
software was presented at the PATAT conference instama, 2000 [2]. The
additional functionality made available throughsthiew version will be discussed a
the conference during a software presentation [Myeneral, the aim of improving
Optimeam is to make the system as intelligent and intuitage possible, providing
maximum information to the institutional adminigtnig allowing informed strategic
and managerial decisions to be made. This has &a#aved through the inclusion
of the user in all stages of the ‘examination miaigl process. It is important to note
that although not described in detail here, the@"f@@tween the needs of the user ar
the provision of software is also being tackled himt the company by the
development of a close working relationship witlengs Feedback from this proces
which is relevant to researchers includes modelspects of the information,
algorithmic and solution development, all of whidpresent significant challenges
for the research community. The following discussisrconcentrated around this
reported examination modelling process.

2.1Building the I nstitutional M odel
The development of examination timetables withintitngons is a multi phase
procedure that is dependent on varying criterizagh stage. Firstly, a structure has 1
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be decided on before exams and students are adsiggethe length and format of
the time period together with the ‘diet’ of roomdieh are to be made available
Secondly, data on exams and associated constizéves to be added before the
student information is considered. The stage andegegf automation is highly
dependent on the procedures adopted within thgutish. This multi-stage process
is referred to here as building the ‘institutiomabdel’. This process encompasse
two main aspects i.e. information and solution nlote

211 Information Modelling

Information modelling can be divided into data amhstraint modelling. The base
examination data from which a workable solutioadéhieved is composed of studer
enrolment, exam and space data. In addition, thetaaction of an overall solution is
phased due to the information environment withiniclwhthe examination process
takes place. In practice, a solution is ofteniraih based on a percentage of tr
actual data due to incomplete and inaccurate data the student administration
systems. Ultimately the algorithms applied muserdfiore construct solutions
working with a degree of uncertainty. The inadeigsof the data set up therefor:
represent the first challenge to the timetablinguewnity. It is suggested that there
are two possible approaches to solving this prohlemeither solutions are sough
with associated repair mechanisms or robust opiiis techniques are used whicl
produce solutions that are ‘good’ for an agreedyeaof input values. Under this
scenario, a solution would be sought that remadasible for all potential input data
values. Although some work is evident in the litera in relation to the first of these
approach in relation to educational timetabling, [16], little attention has been paic
to the second.

Constraint modelling involves setting up a rangecuoferia which effectively
describes the boundaries within which a solutioousth be constructed. Constraint:
used in institutions have been reported in 1996.[1%ince then, in the UK in
particular, there has been a steady increase ipleaity regarding this issue with the
implementation of increasingly flexible modular ce& structures by many
universities. The central production and coordovatdf the associated examinatiol
timetable has become increasingly difficult with ma@xamination offerings having
to be timetabled in such a manner so as to oftetesits maximum spread throughot
the session while ensuring space usage is maximisedaddition, many new
constraints have been added to the overall proliteraccommodate all types of
special needs of students. An example of this wepsrted in the Times Higher in
March of 2006 where students from a Muslim backgtbuwequire Fridays free of
examinations [18]. This and other additional safhstraints further complicate the
modelling process and the scope of potential smisti It is essential these art
documented and incorporated into the modeling m®ces, for example, at our
leading implementation site, 9% of students in2884/05 academic year had specii
needs with regards to their examination requiremenfhe second challenge it
therefore to redefine the problem in terms of réddentified changes. This can be
achieved by getting access and reporting on pedaicamples of constraints and th
processes involved. The PATAT conference serieslamdlose link with eventMAP
limited is of particular relevance here as prattisaues as well as datasets can |
added to the research base on a continual basisthémn important aspect of
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constraint modelling is the structure of the exation session i.e. session modelling
Two features of this are detailed below.

In establishing an institutional model for the exaeion process, one of the
major issues for many institutions is the poterntiddxing of a constraint which has
hitherto been considered ‘hard’ i.e. the imposifigertain time periods within the
day structure. For example, a day may be split tnto periods of three hours in
length, one beginning at 9am and the other beginain2pm. Analysis of various
solutions produced by eventMAP has shown thatithihe single biggest factor in
relation to poor usage of time and space and hemeajor contributory factor to poor
overall solutions. This is chosen here as it is>aekent example of a hard constrain
which needs to be changes to move the examinaioetabling forward from a
practical point of view. Before leaving the esisiinéd ‘period based’ approach to on
side, it is essential to understand the requiresigend the extent of ‘non period
based timetabling. The period based nature of thielgm needs to be investigated t
establish a model where examinations can be sobgduiring any part of the definec
day. This issue is related to recent work withpees to a redefinition of the nurse
scheduling problem [49] where metaheuristic techesgwhich have been used t
manage this time interval coverage have producedbtst results so far on the
presented data. Due to the similarity of the nurestering and examination
timetabling problems it is considered appropriateattthese techniques are
investigated. The concept of ‘time interval' wasradtuced, where instead of
formulating the staff requirements as the numbepatonnel needed per shift typ:
for each day of the planning period, time interveguirements allowed for the
representation of the personnel requirements peind@rms of start and end times o
personnel attendance. As with the nurse schedebagnple, an updated formulatior
would enable the provision of a greater numberiroétslots and would reduce the
amount of unproductive time currently in existence.

It is clear that institutions involved in the preseof carrying out the initial stage
of the institutional modelling process often ddofiadly. That is to say, they base the
timetable on new data but attempt to superimpaiseoth existing models of how the
examination sessions should progress. For exanglegxisting model for a
particular institution may be a certain number efipds over a designated time
period with a certain number of rooms. This, in farteast, is related to inadequat
methods which allow users to understand how salatiare being created. Foi
example, space considerations are often an aftegtitonith the primary aim being
the actual creation of a timetable. No help is raféal to the users in directing then
towards a solution which is ‘right’ for the Institon. Before going on to the
important issue of solution modelling in the neassion it is important to note thal
the investigation of similarity of data to previodatasets from the same or indee
other institutions is important if efficient andfeaftive models are to be found.
Continuing on from recent work [21,22] on similgrimeasurements betweer
datasets, novel techniques need to be investigatedstablish how changes ir
individual data sets from year to year effect th&ure of the examination set up an
ultimately the algorithmic methods applied.
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212  Solution Modelling

Solution modelling is concerned with the construretof a solution in terms of what
is deemed important to the institution. Currentfige majority of the work in

evaluating a solution is based on the productioraddingle solution from each
execution of the algorithm whose value is measimea@ single objective weighted
sum of soft constraints. There are some exceptiongyh, for example, in paper [9],
the quality of a constructed timetable is consideneterms of the average penalty pe
student and the highest penalty imposed on anysardent. Although research ha:
been carried out in modelling the problem as a irsulieria/objective problem [54,
55] this work has not yet been implemented into enegalised tool. The
responsibility is currently on the user to modeé throblem accurately at the
constraint modelling phase and subsequently ‘ledve’the algorithm to produce the
‘best solution’. This has the effect of the useslifeg ‘frozen’ out of the solution

construction phase and gives the impression tigighhe best solution based on th
constraint set up process. Of course, this isttmtcase with many solutions being
possible which ‘best’ fit the constraints set upgiete et al [19] carried out work ir
which individual constraints were given preferematesarious stages of the proces:
This is similar to how the process of solution camngion is carried out in a number
of institutions with, for example, the effectiverasf a solution being measured as tt
‘number of students with two examinations in a daly’is clear that the user require:
a number of solutions to be presented with thesdifices explained intuitively, thus
allowing the user to decide on what solution is thest’ to meet the institutions
needs. Itis suggested here that this could bieasth by a combination of technique:
incorporating pareto optimization and fuzzy teclhieis| e.g. the user chooses tt
characteristics of the solutions they would likesee from a number of fuzzy sets
This could possibly be translated into a choice fioncfor discriminating between
the non dominated pareto solutions generated byuli mbjective algorithmic

technique. Itis stressed that this is only ongsfide approach which could be used 1
address this important issue. More work is requoachow the quality of solutions
are measured. The challenge for researchers isrdivésion of a solution where the
user understands the trade offs between the ofigijectives.

Once a solution is being generated, it is normahdawe a construction phase
followed be an improvement phase. In both casesethave been many heuristic
techniques applied (see [11]). Recent work hagvshmromise in relation to using a
combination of heuristics in relation to the init@nstruction [20]. Results on the
benchmark datasets have got increasingly better ineyears as more and mor
metaheuristic techniques have been applied and idespacific knowledge has beer
increasingly incorporated into the approaches 11J0,0ne criticism of this approach
is that the developed techniques have become éipedi@n relation to the benchmark
datasets at the possible cost of generality ichnigues which can produce ‘good
results when applied across a wide range of orworld scenarios. Recently, ir
terms of metaheuristics, it has been shown thatgihg the neighborhood structure
has been effective. It is felt that Hyperheurstapproach (heuristics to choos
heuristics) [56] undoubtedly offers promise as thisthodology is based on raising
the level of generality by aiming to automaticalpply the correct heuristic or
metaheuristic at the correct stage of the problerthht in the construction or indeec
the improvement phase. Currently, Optime enablestithetabling algorithm to be
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varied depending on the user algorithmic modelfingcess. These observations ai
the result of a close working relationship withefigrincipal users in the UK and they
currently represent the basis of further reseat@j. [ Currently the combinations of
algorithmic structures available are Saturation reeg(Heuristic Method) [25],
Adaptive [26] and Great Deluge during an additiomaprovement cycle [27]. The
algorithm set up thus enables the user to haveaamter the time spent on various
aspects of its operation. This is a first stepwolving the user at a higher level of the
algorithmic modelling of the problem and is in respe to the observation tha
various algorithmic set ups perform better on défe datasets. It is important tc
understand why various metaheuristic and combinaifometaheuristics work better
in particular situations. One challenge to theeagsh community is therefore to
explore how new search methodologies can undengilévelopment of more widely
applicable timetabling systems. Indeed this is ohthe main motivating factors for
the current level of interest in hyperheuristiosash [74].

3 Coursetimetabling

The University course scheduling problem is conagmith groups or classes of
students following a particular defined pathwayourse which has associated even
that require the allocation of time and resourdescent definitions of the course
timetabling problem can be found in [12,29]. Astwithe university examination
problem, a solution requires a number of hard avftl ®nstraints to be satisfied.
Similarly, the central production and coordinatmfithe course timetable is essentie
as more modules and associated events have tmétliled in such a manner as t
firstly, offer students maximum flexibility of choe, secondly, to provide flexibility
for staff and, thirdly, to ensure that teachingcgpas used effectively. Universities,
struggling with rising student numbers, have insiegly relied upon the automation
of this task to produce efficient timetables whgzttisfy these constraints [11]. Muck
of the software assistance that is currently akilglés either a commercial product o
has been designed specifically for the institution which it was developed
[30,31,32]. In both cases the timetabling procefésnoinvolves significant human
interaction which, in practice, can turn the pracé@®o a room booking exercise
[33,34. Therefore, the construction of a solution iseaficategorised by finding any
timetable that satisfies all of the constraints][F2om a software point of view, any
solution is often seen as a good solution and,edd¢he notion of an ‘optimised
solution’ is usually not a main objective of incuemnlb university administrators. The
reasons for this are diverse and complicated. @sigeiis that as too much assume
and incomplete knowledge surround the entire pmeesl their exists many staff,
with differing view points involved. The data regpd for the process is often
difficult to obtain and, as with the examinatioropess, it is often ‘sketchy’ [45,64].
From a staff point of view, fixed views exist on @vhand where teaching should tak
place within a predominantly ‘territorialism’ cutei[34]. These issues will be furthel
explored in the remainder of the paper with chgénpresented as to how this are
can be moved forward from a research point of vidtvis important to note that,
within the majority of universities which use autated systems, the process of th
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production of a workable timetable remains firmljthwa combination of lecturing
and administrative staff rather than the sole dghe automated component. Recer
years have seen significant research efforts tadugpthis situation. The following
papers represent a small selection of these catitits [16,29,31,33,34,35,41,42,45]
Carter [42] stressed the importance of taking oudaosideration and dealing with the
human factors associated with the process of aststg an institutional wide
timetable. However, when dealing with the issueafrse timetabling, it is often the
case that many of the papers ignore the humanrfaatbtogether, choosing to dea
with ‘sculpted’ data sets in order to evaluate ipakar techniques and approache:
Some real world aspects have been discussed iitdtaure but these tend to be ir
conference abstracts (as a small selection, se®3#4@,66,67]) rather than full
papers. If one of the strategic goals of timetapliesearch over the next few years
to close the gap between theory and practice thesetissues have to gain mor
prominence in the mainstream literature.

Although many advancements have been made witlecespthe development of
search techniques on bench mark data sets [29,38,88], there is not much
evidence that the work has been translated intaahdémplementations within a
significant number of institutions. Indeed Cartadd aporte [31] comment that they
were “somewhat surprised to discover that therevary few course timetabling
papers that actually report that the (researchhoust have been implemented an
used in an institution”. Although this was repdregmost a decade ago, the situatic
largely remains unchanged. They go on to say tlet éixpected to see a number ¢
implementations in the near future. Once agairodmhately this has largely not
been the case.

In relation to this area in general, it is suggeskeere that, there has beel
insufficient investigation of real world issues atiterefore understanding of the
methodologies used by expert timetablers. More wadds to be carried out on thi
formulation and modeling of the problem. This lait=ue is particularly challenging
because different institutions must satisfy a rargjedifferent constraints in
generating an institution-wide timetable [35, 31lhigh means that a generally
applicable solution to this complex problem is eriely difficult. Given the
complexities of real world course scheduling, maegearchers have develope
approaches which rely on various simplifying asstioms in modelling the problem.
While it can be argued that this is valid as anidhiresearch test bed, which ha
resulted in useful and powerful search techniqeesh an approach needs to b
supplemented by methods which addresses the traplexities of the problem that
must appear in real world applications. By wayllofstrating this point, recent work
carried out on practical course timetabling by khetahueuristic network [36] used
generated datasets. It was stated that

"The problem we are studying in the Metaheuristics project is one that is closely
based on real world problems, but simplified. We are not entirely happy about using a
simplified problem, but the reasons are two-fold: We want to be able to see more
clearly what is going on in algorithms designed to solve the problem. Real data is too
complicated, and real problems have too many soft and hard constraints to allow
researchers to properly study the processes and; The large number of soft and hard
congtraints in real data (and the differences between them at different institutions)
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make it a long process for researchers to write code to solve them, or to adapt
existing programsto be suitable.”

Although this has been useful, from a practicahpof view, the results obtained
do not seem relevant in practice. In addition,ithpression is often that benchmarl
course timetabling datasets [36,57] are seen asvdath can be used in addition tc
examination data sets to prove that certain seaaimiques are of benefit. Althougl
successful in this regard the gap between rese@mcimiques and the software
required for actual implementations is much wideant that seen with examinatior
timetabling. Whereas this paper has spent theiogesections detailing challenges
which will help narrow the gap in relation to exaaiiion timetabling, the rest of the
paper will concentrate on describing course sclieglfitom a practical point of view
with the hope of identifying what is required if ralevant and comprehensive
formulation of the problem is to be reached. Ifdk that this view of the course
timetabling problem will better serve the purpodemaking timetabling research
more relevant to real world practice. It is strelsget the contribution of timetabling
research must address more wide ranging issueghbanning of algorithms to work
well on particular datasets. Rather, the modeligsgies related to the complexity o
real world implementations must be recognized aedltdwith. The most realistic
formulation of the problem which currently exisendoe found at [24]. Further work
is required to build on this to allow the full colegities of the problem to be
explored and to narrow the current gap. With tiisia mind, it is essential that more
comprehensive representative benchmark datasetsnade available along with
information on the aims of the associated instituti

3.1 A Very Different Timetabling Problem

University course timetabling is often reportedtle literature as a variance of the
related examination timetabling problem [12]. Indié@ss the author’s impression thal
many pieces of research default to talking aboatrémation timetabling when they
are talking about university timetabling in genefthough some of these issues ar
further described in subsequent sections of thempipvas felt worthwhile to draw
out the major differences between the two typesnaétabling at this early stage in
the discussion. The reported difference is oftenatihéition or removal of particular
constraints e.g. more than one event cannot taeeph the same room and lecture
should be avoided in the last period of the day.[#iladdition, the term ‘best spread’
of events has an entirely different meaning.

A major difference with the examination timetablipgpcess is the environment
in which the construction process is carried outhis is a dynamic, multi-user
distributed environment with various cohorts of @sals and departments who ofter
operate quite autonomously. Although issues iatiai to this have been studied, fo
example [64,69,70,71], much more work is required umderstanding the issues
involved and the interplay between user interacod managing the information
with the goal of producing a workable solution diné extent to which techniques cal
be used in an automated process. These issuesenilsbussed further at various
places under the heading of ‘building the instiin&l model'.
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Another difference that is often overlooked isvath the examination problem,
course timetabling does not take place at the neodukourse level. The following
presents a discussion on the effects of this. @enghe module ‘Introduction to
Computer Science’ with associated module numbelICETL01. The associatec
examination for the module will normally take plaaethe end of the semester it
which the module is given and will be timetabled e rules employed by the
institutional examination officer which are genérahose governing the body of
research which has taken place over the last demasie Therefore, in this case th
‘gap’ which exists between what is required by thstitution and the techniques
researched from an academic sense, is small. Theectimetabling issues with the
module 110CSC101 are more complicated. The moduide broken into a series o
events which require timetabling e.g. lectures, isars, tutorials, practical classe:
and laboratory classes. A subset or indeed altheke ‘event types’ require
timetabling in a manner which provide the groupstidents associated with the
module, firstly, a feasible solution and secondly,good’ timetable. A feasible
solution is achieved by ensuring that individualdeints can attend all event type
associated with each of the modules that constituéeoverall pathway they are
enrolled on e.g. year one of BSc in Computer Sa@erf8econdly a ‘good’ solution is
one which satisfies the soft constraints as defibgdhe institution e.g. Lectures
should be in the morning in a particular time oono It is clear that these sofi
constraints require a higher investigation as tbay vary from one institution to
another and indeed from one event type to anotbkmbing to the same module
Furthermore, in setting up the problem, these evédrgve different individual
requirements, ordering and constraints. The faligwsection outlines some of the
associated issues.

The simplest example is that particular event tyges usually associated with
certain types of space e.g. a computer laboratagsanust take place in a compute
laboratory. Also, lecture events represent theremioup of students on the modul
whereas the other event types represent subgreusisdents are divided into smalle
groups for different types of study. This issueeeént subdivision is further explorec
in the following section. From an ordering perspextit is often the case that
particular orders of events over a defined timdogoee.g. a week, are defined tc
achieve the desired combination of teaching anthileg skills. It is also often the
case that particular events are related to eacér dgthrelation to the time which
separates them in this ordering e.g. seminar dasheuld be timetabled in the
afternoon following the lecture activity. In additi there is an associated hierarcl
with the event types e.g. lectures are timetabted griority in the first instance to
ensure that the entire group can be brought togetheis often the case that this
situation means that lectures will be timetablesdt fivith all other events timetabled
after week one of the semester. Of course, therenany variations of this related tc
when the timetable is produced in relation to stidrolment i.e. pre enrolment ol
indeed post enrolment. Event types may also havarticplar life span associatec
with then throughout the semester. Whereas tharke&vent may run in a particulal
format throughout the entire semester, other evgmés may begin and end ir
particular weeks. In addition they may have ameaissed pattern which is individual
to the event type e.g. lectures may run twice akvieel2 weeks whereas lab classe
may begin in week three and run for a three hoterbon slot every two weeks for
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six weeks. Currently, research does not take tbessiderations when either defining
the problem or applying techniques to help solve problem. This has beer
detrimental to the overall practical area and hasnmh researchers, in many case
have been working on oversimplified problems.

Course scheduling, much more the examination tintiey must be seen in the
wider context of the use and availability of ingibnal space either existing or in the
planning stage. This linkage allows measured angrdued utilisation while
identifying the needs for particular types of spamsoss the Institution. The
Company aims to model how increases in course aglivthrough effective
timetabling, can affect the overall nature andcitme of the campus. Ultimately, this
would allow for strategic decisions to be takerréfation to room types, sizes anc
quantities across all space types within the nstih. The course timetabling systen
is therefore a fundamental part of the strategimmating systems within the
institution.

Another major difference with the examination tiatging problem is not only
related to differences in the nature of the infdfaraand constraints but in the style
in which the solution is constructed. Overwhelmyngh all consultancy and
implementation undertaken to date within the Comgp#me timetable is constructed
prior to student enrolment and therefore optimised projected student numbers
taking particular combinations of modules. In maages the goal of optimisation is
sacrificed for the sake of getting a solution whishworkable. Student clashing is
related to defined course structures as oppos#tetexamination counterpart whick
is based purely on student enrolment to assessmesmts. Regarding soft
constraints, the emphasis is on the ability to roffe many options as possible a
opposed to best spread across a particular exaaningession. Administrators
employ heuristics that suggest what modules shbaldnade available to particulal
courses and which ones should not. Indeed, tfosnration can often be inferred the
from previous year’s data or obtained directly frammbers of particular schools
Because the timetable is constructed pre enrolmeetficiencies occur which are
allowed to ripple throughout the rest of the y&ased on the initial construction anc
space utilisation, potentially the problem couldibaeshuffled or indeed amende
based on a different measure of optimisation. ®pisoned is not presently favourec
by institutions due to the disruption that would ¢sused. There are a number ¢
reasons timetabling pre enrolment; if it were &gftirely to student choice there is n
guarantee that a feasible timetable could be aartsl and secondly, more and mor
emphasis on opening access to universities dictatestudents with busy lives neel
to know timetables before choosing optional paftshe course. Many universities
used a phased approach which is a combination batywee and post enrolment
More work is required to understand the issueslireeband where, what and how
search techniques and indeed what measures ofisgtiiom can be used.

It is clear that the improvement of solutions wilbme about through the
combination of high level heuristics and optimisatitechniques. The researcl
challenge is therefore identified as the requiranien detailed studies of how the
aims, objectives and practicalities of timetabhmithin institutions interlink.
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3.2 Building the Institutional M odel

As with examination timetabling, the timetable doastion process can be broker
down into a series of information and solution nitidg. Even more so than with the
examination problem, this process is complicatéds stated, this is related to the
number of interested parties and diversity of théadequirements. Attempts haw
been made to provide a general framework to awl ghuation. For example, work
has been carried out proposing a generic archieeébu the production of a timetable
by examining the full range of procedures and #smaiated characteristics [64]. Alsc
in [65], a framework was presented allowing theeagsher to combine many
different solution methods in arbitrary ways in g@ution of a single problem. Suct
contributions have provided an important platfonpom which we can build. A more
complete description to enable understanding ofsgiexific needs of the modelling
process is required. The following impacts on mber of key issues.

In the case of course timetabling, information nilirag can be broken into data,
constraint and course structure modelling with sofumodelling being dominated by
factors related to optimisation and evaluation.thdligh it is an important issue,
algorithmic modelling is not discussed here becahsefocus of this discussion in
concerned with highlighting the high level challesghat need to be addressed if tt
gap between theory and practice is to be closedmémy respects, the key tc
narrowing this gap in relation to course schedulseelated to the modelling of the
entire problem, thus identifying where and whethia process search techniques m:
be of use.

3.21 Information Modelling

In terms of information modeling, the main diffecels with examination timetabling
is the much more incomplete nature of the dataireapents [45,64] which are much
more substantial. Data is required on events, eogtrictures, the estate and th
lectures / instructors availability and expertiserom the author’s experience, it is
evident that a combination of poorly implementedoimation strategies and
reluctance of staff within the sector has led tposition where this information is
difficult to obtain. This situation inevitably leadto significant changes in the
timetable formulation at the beginning of the pdrio which it is required. Work has
been carried out on ensuring a changed solutiaoie as possible to the initially
modeled solution after changes in the originalrdgdin. For example see [45].

In many instances, expert timetablers have dealh thie initial construction by
adopting a series of high level heuristics. Forngpia some institutions use &
centralised approach initially, timetable a peraget of the required events in
percentage of the available centrally ‘owned’ rodmss allowing individual schools /
departments to fill in the blanks’ in the remaigirooms or indeed in departmentally
‘owned’ rooms [34]. Many such high level heuristiaee used within institutions
during the construction process, little of which fhie author’s knowledge) have bee
reported in the literature. In general, these eetatspace usage and decompositic
within both the information and solution modellipgpcess. This emphasises the fa
that an important challenge for the research conityus therefore to review real
applications of course scheduling techniques aftédvace with the aim of identifying
the major themes which will facilitate the constroe of robust initial solutions. High
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level heuristics need to be identified, analysed amodeled in terms of constraints
and evaluation. In general these usually relatsttolent and staff preference an
space usage.

3.22 Course Structure Modelling

Modelling the course structure is a difficult amdpiortant aspect of the informatior
modelling process. This aspect is completely ursssrg in the examination
counterpart. Course timetabling raises a varietyisefies relating to when staff
rooms are available and what events should be dlied with which others. The
later of these issues becomes more difficult wiasndiscussed earlier, it is dictate:
that a timetable must be ready before student meml The research challenge i
therefore in identifying easy intuitive ways of repenting constraints. Attempts hav
been made to specify a standard timetabling datedb that is complete and
universally applicable [51,52,53,68]. This work de¢o be extended and made mol
readily available to enable users to identify anablei constraints thus allowing the
interface between users and researchers to beacsttee defined.

Another important issue is the division of studeattending a lecture into sub
events such as tutorial classes. In examiningithéietail a number of key issues ar
explored. Consider the case involving the sepmaratif students enrolled on a
particular course into tutorial classes. Consi@dsp, a lecture event which has
students. If the preferred size of tutorialsyjghen it is trivial to calculate that x/y
tutorial slots are required. The interesting rede#@sue considered hetgowever is
in what way to split thex students into groups while ensuring that maximu
flexibility is introduced into the timetable i.e.hat are the best combinations o
students to be timetabled in which slots. In addithis must be done in a manner t
allow room usage to be maximized while ensuringt tedents are allocated
throughout the week with cognisance taken of thristing commitments on events
related to other courses. This is often done nignbg allowing students to self-
select particular slots from a set of @stablished time slots. In the cours
timetabling literature, the majority of influentialvork on course sectioning
(sometimes termed ‘splitting’) has concentrated tonetabling courses, where
lectures, tutorials and laboratories etc. are t&ttndjuished between each other [4Z
37,31,39,62]. Apart from a few notable exceptipt}, courses or groups of student:
are subdivided into groupings for the purpose &drafg student choice as opposed t
reflecting the structure of events which constittite structure of the course. The
objective is normally related to balancing the sifethe groups while offering
students maximum choice, this enabling them toleanatheir choice of modules.

Within the UK in particular, universities subdividggudents in line with course
structures. The main problem with this current deéin of course splitting is that sub
events do not inherit parental clashing constrdiB®§, apart from where a lecture
event is subdivided. There are also some work mgalith students sectioning
problems dated back to 80s [39, 43]. Once agaiswvibrk is different from what we
are considering here, where students are dividedsimb-groups as opposite to multi
groups. More recently, Fuzzy algorithms have besed [44] to cluster students ir
large classes into groups which may later leadhto fewest possible conflicts in
timetables. Beyrouthegt al [59] considered the problem of splitting in redatito
space objectives by investigating splitting of cm& of same type event into su
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events of that type for the purpose of fitting iprticular room profiles. During the
years little has been done on partitioning the esttgl into actual sub events a
dictated by the course structure. In [40], metariséics are proposed to address tt
Availability-based Laboratory/Tutorial Timetabling Biem (ALTP). This offers a
very promising platform for further exploration anthe automatic constructing of
timetables while providing a solution which assigtedents to the ‘best’ timeslot
based on a defined week range. In should be ribt#dn doing so, it is important
that the needs of all parties need to be addre$$esiraises the interesting concept ¢
how an attained solution should be measured. Wheduping a course timetable
within an institution, it is important that the ttable produced is seen to be fair ar
equitable to all interested parties. The challemgeesearch is investigation of thes
and other information modelling issues. This wid further discussed in the nex
section.

Another aspect of course structure modelling istedl to the timetabling of
associated events together. It is important to idethe ability to link particular
events under the notion of course structure anddsdh them as a ‘package’. Thit
concept is similar to kemp chains in examinatiometiabling [46]. This macro event
scheduling process will allow the basic buildinggdis of the course timetabling
problem to be sustained throughout the process. agpsoach has the advantage ¢
reflecting organisational and course make up. addition it may be possible to
decide which events / courses have similarities eand be linked together wher
timetabling based on individual of indeed groupscbéracteristics. For example
pathways within a particular school could be tirbé&td together at the same time
using the same departmental space. This mimicsahstruction process already ir
existence within an institution where the overatidgtable is broken into a number o
sub units which are timetabled at a particular tibyea particular person. This
subdivision or decomposition of the timetablingaschallenging research aspec
which needs further investigation. Macro eventy ina based on a combination o
course structure and clusters. Academic timetabdblpms tend to show signs ol
clustering related to the organisational structt@. instance modules from a Math’s
school will clash other modules from that schoBlrther to that those modules will
tend to clash with other science subjects suchhgsigs and chemistry. What is
required is a way of splitting such problems imeaier sub-problems in such a way
that any crossover between events in differentmoblems is kept to a minimum.

3.3 Solution Modelling

Within the context of developing and delivering iastitutional wide timetable, it
must be clear what the optimisation issues arehamdthey are to be measured. Th
measurement of optimisation itself is quite diffarfom the measure needed for th
examination problem. There is sometimes a vieviénresearch community that it i<
possible to define the course timetabling problgnsimply altering the optimisation
function used within the examination timetablingiem. However, this formulation
does not define how institutions view the qualitgasure of a particular course
timetabling solution. Institutions are interested combination of room usage, staf
and student satisfaction. The first of these issueble by multiplying occupancy
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by frequency e.g. how many students use a room dftem. The measurement ol
utilisation is an average of multiplication of opauincy and frequency over a set 4
hour week. Staff satisfaction is measured by thtergxo which teaching duties car
be ‘bunched’ together leaving time for research athger activities. In many cases
academic staff members insist on the concept ofesearch day’. As a further
advantage, it is often considered advantageousdésirable hours can be identifiec
and minimised per member of staff. This is termedehas the ‘share bad hours
heuristic and is an example of a new soft condttaibe considered when optimising
the construction and improvement of an institutlonaurse timetable. Student
satisfaction can be measured by the spread of @t the availability of choice
within a particular course structure. As alreadyntimmed, ‘best spread’ has quite
different meaning in this context. A number of atiesues are relevant to the overa
construction problem but not the optimisation peoble.g. staff satisfaction car
further be measured by the ease at which informasgigathered from them.

As previously stated, in many cases optimisatiosdsrificed for the sake of
getting a solution which is workable e.g. the dfin of a ‘good’ solution is driven
by the need to have any solution based on a sobfie actual event types which art
required [47]. This has the effect of meaning thd&asible solution is judged at ar
early stage in the construction process as opptsethswering the question as t
whether or not the solution is actually workablg. ecan all additional events not
timetabled be accommodated after student enrolméften students arrive and
populate the skeleton structure of the timetabiyt®ns to individual problems of
over subscription are obtained through negotiatinod compromise. The overriding
factor which makes the entire process workabléésfact that currently universities
utilise on average about 30 percent of their spaffectively [61,63]. One
explanation for this is that space utilisationds/Ibecause of the inherent flexibility
within the timetable i.e. staff and students havet @f choice. Unfortunately, this is
not always the case as timetabling concerns ragkljhin both student and staff
surveys [38]. Further evidence of the inflexibl@una of the course timetable is the
fact that universities are not able to accommodadee students easily or indeed pla
new or change existing course delivery. The aighgew is very much like that of
Carter [42] e.g. More work needs to be completedinderstand the relationshig
between space usage, staff flexibility and studéoice. It is therefore essential tha
metrics are produced to measure the effectiverfadgnetables from all perspectives.

It is suggested that the optimisation function usedneasure the quality of the
problem solution must be constructed in such a maas to take in the multi criteria
associated with each area. Whereas, optimisatioreléively easily defined for
examination scheduling, it is difficult to definerfcourse scheduling. From the
author’'s experience, it can be defined as a baldmtween keeping all the
stakeholders happy e.g. student choice, stafflfixi and room usage. Therefore, tc
aid with the automation of the task, the constorctind optimization of the solution
must take into consideration three distinct arsaaraabsolute minimum. In addition,
in evaluating a given solution to the course tirhktg problem within an institution,
the users need to understand the situation in tefntbe outcomes of individual
constraints associated with all identified arease Thulti-objective approach has
received significant recent [48,49,50] interesthwigspect to timetabling and, with
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respect to course timetabling, will be able to dreéxpress and illustrate the feature
of a solution to a problem.

4  Conclusion

This paper outlines the major challenges which those researchers working in th
area of university exam and course timetabling. il&hot trying to exhaustively
referencing the literature, detail is provided bé trelevant research in both area
The challenges are presents from the perspectiviheofauthor's experience anc
experience of working closely with the educatiosaktor. The intention is to
stimulate debate in the literature by providing nimm based on practical
implementations. The aim is the improvement of méges and hence software tool
available to the sector to help with this mostidifit and time consuming aspect o
university administration.

In relation to examination scheduling the identifiehallenges to researchers il
the area include the following;

(i) New datasets becoming available on a reguéaisbencompassing more rez
world requirements.

(i) The development of robust techniques which atde to deal with the
information poor environments within which examioattimetables are often
developed.

(i) Investigation of a reformulation of the pra&oh, including new hard and sofi
constraints which better reflect the real worldisgrvment.

(iv) Identification and comparison of key datasdtamacteristics and potential
linkages with the likely best search approach ttelzen.

(v) The investigation of all aspects of solution lgyan the provision of the ‘best’
solution for the institution.

(vi) The exploration of new search technologies #taklishing how developed
systems can be made more general.

(vii) Investigation of how to incorporate user irieze design with the inherent
complexity of the problem.

(viii) Wide ranging Investigation of different ndigouhood structures and fitnes:
landscape within the context of real world probkssiving environments.

In relation to course timetabling, the followingearch themes are highlighted;
() Investigation of techniques to deal with thestdbuted, information poor
environment in which course timetables are produced

(i) Standardisation of datasets, constraints awodeting languages influenced by
real world scenarios.

(iii) Investigation of the role in user interactiom the design of decision suppor
system for course timetabling.
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(vi) Investigation of the need for the reformulatiand modeling of the problem. It
should be need that this represents a far greh#dlenge within the context of
course timetabling than it does for examinatioretabling.

(v) Identification and adaptation of high level ip@s and practices that are
employed by administrators within institution tanstruct of initial solutions.

(vi) Experimentation related to heuristic approadioesubdivision of events.

(vii) Investigation of the effect of pre and post@ment production of the timetable
on the approaches taken to optimisation e.g. pena#d.

(viii) Undertake an investigation into the delivenf more sophisticated models
which capture the complexity and multi-objectiveuna of timetable evaluation
in the real world.

(ix) Investigation of the important linkage betwespace usage and flexibility
within the academic timetable.

(x) Investigation of approaches involving decomposi and ‘macro event’
timetabling.

In summary, this paper has outlined a number ofifiignt research challenges
which provide a rich area for research into autesasearch methodologies foi
educational timetabling. Moreover, by addressings¢hdemanding research issue
the scientific community will be taking a step tods closing the gap between theor
and practice which has existed for so long.
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Abstract. We describe the use of very large-scale neighborhood search
(VLSN) techniques in examination timetabling problems. We detail three
applications of VLSN algorithms that illustrate the versatility and po-
tential of such algorithms in timetabling. The first of these uses cyclic
exchange neighborhoods, in which an ordered subset of exams in dis-
joint time slots are swapped cyclically such that each exam moves to the
time slot of the exam following it in the order. The neighborhood of all
such cyclic exchanges may be searched effectively for an improving set
of moves, making this technique computationally reasonable in practice.
We next describe the idea of optimized crossover in genetic algorithms,
where the parent solutions used in the genetic algorithm perform an op-
timization routine to produce the ‘most fit’ of their children under the
crossover operation. This technique can be viewed as a form of multivari-
ate large-scale neighborhood search, and it has been applied successfully
in several areas outside timetabling. The final topic we discuss is func-
tional annealing, which gives a method of incorporating neighborhood
search techniques into simulated annealing algorithms. Under this tech-
nique, the objective function is perturbed slightly to avoid stopping at
local optima. We conclude by encouraging the timetabling community to
further examine the promising potential of these techniques in practice.

1 Introduction

1.1 Timetabling Problems

The scheduling of classes and examinations is a key practical problem that is
faced by nearly all schools and universities. Substantial effort has been devoted
to developing effective timetabling procedures over the last thirty to forty years.
The problems tackled by such procedures include examination timetabling, in
which a set of exams is to be scheduled over a set of time periods, and course
timetabling, where a set of courses must be scheduled over the length of an entire
semester.

* This work was supported in part through NSF Grant DMI-0217123.
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Timetabling problems are often complicated by numerous constraints; for
instance, in the examination timetabling problem, students should not be sched-
uled to take two exams at the same time. These constraints are typically divided
into hard constraints, which must not be violated (in the course timetabling
problem, a hard constraint might be that no teacher is scheduled to teach two
classes at once), and soft constraints, which possess a penalty for being violated
(in the examination timetabling problem, a soft constraint might be to minimize
the number of students who take two exams back-to-back). Because of the num-
ber and variety of constraints, such timetabling problems typically constitute
NP-hard problems that are quite difficult to solve manually. This in turn has led
to an increased emphasis on finding effective automated timetabling algorithms.

Recent surveys on automated timetabling (see [21,23,24,43]) illustrate the
wide array of methods that have been applied to timetabling problems. Tradi-
tional techniques tested in timetabling include direct heuristics [34], which fill up
the timetable one event at a time and resolve conflicts by swapping exams, and
a reduction to the graph coloring problem [38], where events are associated with
vertices of a graph and edges with potential conflicts. More modern heuristics
include memetic [20] and genetic algorithms [19,27,30], which use techniques
inspired by evolutionary biology; simulated annealing algorithms [18,46], where
nonimproving solutions are permitted with progressively decreasing probability;
tabu search heuristics [26,42], where a list of recently visited timetables are for-
bidden to be visited; and constraint logic programming approaches [25], which
are based on applying declarative logic programming systems to constraint sat-
isfaction problems.

In this paper, we address the application of very large-scale neighborhood
search techniques (see Section 1.2) to timetable scheduling problems, includ-
ing one approach based on genetic algorithms (Section 3) and one that resem-
bles simulated annealing (Section 4). Neighborhood search has long been used
in timetable scheduling, from the swap (2-opt) techniques used in the direct
approaches to the variety of forms of neighborhood search used in genetic al-
gorithms. However, the area of very large-scale neighborhood search has only
recently been investigated with respect to timetable scheduling [1,13,33] (see
Section 2). We believe there are many untapped possibilities for useful algo-
rithms in this context.

1.2  Very Large-Scale Neighborhood Search

Neighborhood search algorithms (also known as local search algorithms) are a
class of algorithms that start with a feasible solution and attempt to find an
improving solution in the neighborhood of the current solution. The neighborhood
structure may be defined in a variety of ways, typically so that all solutions in
the neighborhood of the current solution satisfy a set of prescribed criteria. In
very large neighborhoods, the size of the neighborhood under consideration is
extremely large (typically, exponential) in the size of the problem data, making
it impractical to search such neighborhoods explicitly.
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A wvery large-scale neighborhood search (VLSN) algorithm is one that searches
over a very large neighborhood, giving an improving solution in a relatively
efficient amount of time. Such algorithms tend to search implicitly over the
neighborhood rather than explicitly, since the quantity of solutions precludes
performing an exhaustive search.

There are three main categories of very large-scale neighborhood search al-
gorithms that are outlined in [5]. The first of these is variable depth methods,
which partially search an exponentially large neighborhood by using heuristics.
The second kind are network flow-based methods, which use network flow tech-
niques to search over the neighborhood and identify improving neighbors. The
third main category consists of neighborhoods based on restrictions of NP-hard
problems that are solvable in polynomial time. Ahuja, Ergun, Orlin, and Punnen
[5, 6] provide a thorough exposition of the algorithms in these categories in their
surveys on the topic.

Very large-scale neighborhood search techniques have been applied to a wide
range of problems in combinatorial optimization. These include the traveling
salesman problem [28, 35, 39], the quadratic assignment problem [7], vehicle rout-
ing problems [2,29], the capacitated minimum spanning tree problem [10], the
generalized assignment problem [50,51], and parallel machine scheduling prob-
lems [3]. In several of these problems, the VLSN search algorithms give the
strongest known computational results, making the development of such algo-
rithms desirable in practice.

The design of a successful VLSN search algorithm depends on the choice of an
appropriate neighborhood function and the development of an effective heuristic
method to search the neighborhood for improving solutions. VLSN search tech-
niques may also be combined within the framework of other heuristic methods,
such as tabu search [32,33] and scatter search [41], to provide further computa-
tional improvements. See [5, 6] for a comprehensive discussion of techniques for
developing strong VLSN search algorithms.

1.3 Contributions of this Paper

We describe three applications of very large-scale neighborhood search tech-
niques to timetabling problems. For simplicity, we consider the examination
timetabling problem in each of these instances, but our approaches can be mod-
ified to apply to classroom timetabling problems as well.

In Section 2, we describe the cyclic exchange neighborhood and how it may
be applied to timetabling problems. In this neighborhood, an ordered subset of
exams in disjoint time slots are swapped in a cyclic fashion such that each exam
moves to the time slot of the exam following it the order. We consider recent
applications of the cyclic exchange neighborhood in the timetabling literature,
and relations to other neighborhood search techniques in timetabling.

We discuss the idea of optimized crossover in genetic algorithms in Section
3. In an optimized crossover, the parent solutions used in the genetic algorithm
perform an optimization routine to produce the ‘most fit’ of their children un-
der the crossover operation. This can be viewed as a form of very large-scale
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neighborhood search, where the neighborhood is defined over both of the par-
ent solutions. We discuss problems for which the optimized crossover has been
applied, and how a heuristic for optimized crossover could be incorporated into
genetic algorithms for timetabling problems.

In Section 4, we review a new metaheuristic algorithm known as functional
annealing that combines neighborhood search techniques with a type of simu-
lated annealing algorithm. This algorithm allows the application of very large-
scale neighborhood search techniques within an annealing framework, which was
not previously practical due to the random selection of solutions in simulated
annealing. We discuss how this algorithm has the potential to be very useful in
timetable scheduling problems, on which simulated annealing algorithms have
performed well in the past.

2 Cyclic Exchange Neighborhood

2.1 Definition

The cyclic exchange neighborhood is defined for partitioning problems. We pre-
sent the problem here in terms of scheduling a set of exams over a collection of
time periods, where potential conflicts between the exams are implicitly encoded
in the objective function. However, it should be noted that this neighborhood
extends to any problem that can be expressed in terms of partitioning the mem-
bers of one set, so long as the cost of a partition is the sum of the cost of its
parts.

Let E = {e1,eq,...,e,} be aset of n exams, and let P = {p1,pa,...,pm} bea
set of m time periods in which we wish to schedule the exams. Suppose that .S =
{S1,8a,...5,} is a partitioning of the exams in E into m sets, such that each
exam belongs to exactly one set in .S, and each set S; corresponds to the collection
of exams scheduled in period p;. Let ¢(S) denote the cost of solution S. We
assume that any conflicts between students and exams are implicitly encoded in
the objective function ¢(.9), so that any valid partitioning of the exams represents
a feasible solution to the problem. This is similar to the approach taken by
Abdullah, Ahmadi, Burke, and Dror [1].

Consider a sequence e;,,¢€;,,...,¢; of exams in E such that exam e;; is
contained in set Sj, for each j. Suppose we switch exam e;; from set S; to set
Sjt1,forallj =1,...,k—1, and we switch exam e;, into set S;. We call such an
operation a cyclic exchange. We can also think of the exams as forming a cycle
€i; — €iy — €iy — ... — €, — €4, such that each exam switches to having the time
slot of the exam following it in the cycle. An illustration of a cyclic exchange is
given in Figure 1. In the figure, the sequence e; — e4 — e19 — e13 of exams forms
a cycle; exam e switches from S7 to Ss, exam e4 switches from S to Sy, exam
e1o switches from S4 to S5, and exam eq3 switches from S5 to S;. The set S3 is
not included in the cyclic exchange, so its exams are not changed.

In the case where k = 2, this operation is equivalent to the 2-opt operation,
where a single pair of exams switch time slots. Neighborhoods defined over the
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Fig. 1. The cyclic exchange neighborhood.

2-opt operation have been studied previously in the timetabling community by
Alvarez-Valdez, Martin, and Tamarit [12], Colorni, Dorigo, and Maniezzo [26],
and Schaerf [42], among others. If instead we do not require exam e;, to move
into set S, then we call the operation a path ezchange, which can be described
by the path of exams e;, —e;, —e;; — ... — ¢;,. We can show mathematically
that path exchanges may be modeled as a special case of cyclic exchanges, by
adding dummy nodes as appropriate [10].

We define the cyclic exchange neighborhood of solution S as all partitions
T ={T1,T>,...,T,} that can be obtained from the sets {51, Sa,...Sn} via a
cyclic exchange operation. The size of this neighborhood is exponential in m, the
number of periods; for a fixed value of m, the total number of cyclic neighbors
of a given solution is O(n™). Since the size of this neighborhood is enormously
large, the neighborhood structure will only be useful in practice if we have an
effective search method for finding improving solutions. Fortunately, Thompson
and Psaraftis [49] and Ahuja, Orlin, and Sharma [9, 10] have identified several
methods of finding such solutions.

2.2 Searching the Cyclic Exchange Neighborhood

We use the concept of an improvement graph, introduced in Thompson and Orlin
[48] and further examined by Thompson and Psaraftis [49]. Rather than explic-
itly searching over each possible solution in the neighborhood, the improvement
graph allows us to implicitly search the neighborhood for improving solutions.
This helps dramatically reduce the amount of required computations.

For a feasible partition S = {S1,Ss,... Sy} of the exams, the improvement
graph G(S) is a directed graph with n nodes, each corresponding to one of the
exams in eq, ey, ...,e,. The arc (e;, e;) represents the transferring of exam e;
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from the subset S[i] € S that contains it to the subset S[j] € S containing exam
ej, with exam e; becoming unassigned. More formally, if we let S[i] denote the
subset in S containing exam e;, we can define the edge set as {(e;, e;) | S[i] #
S[j]}, with the interpretation of each arc as previously described. The cost of
arc (e;, e;) is set to ¢;; = c({e;} U S[j]\{e;}) — ¢(S[j]). This is exactly equal to
the cost of adding exam e; to set S[j] and unassigning exam e; from S[j].

We say a cycle W in G(5) is subset-disjoint if the exams in F that correspond
to the nodes in W are all scheduled in different time slots in S. (In other words,
for every pair of nodes e; and e; in W, we have S[i] # S[j].) Thompson and
Orlin [48] showed that there exists a one-to-one correspondence between cyclic
exchanges in S and subset-disjoint directed cycles in G(S); most importantly,
they both have the same cost.

This result suggests that to effectively search the cyclic exchange neighbor-
hood, we need only to identify negative cost subset-disjoint cycles in the improve-
ment graph. Unfortunately, although the problem of finding a general negative
cost cycle is solvable in polynomial time [8], the problem of finding a negative
cost subset-disjoint cycle is NP-hard [47, 48]. However, Thompson and Psaraftis
[49] and Ahuja, Orlin, and Sharma [10] have identified effective heuristic al-
gorithms that produce negative cost subject-disjoint cycles quickly in practice.
Thompson and Psaraftis’s heuristic begins by initially searching for only small
negative cost subset-disjoint cycles (i.e., 2-cycles or 3-cycles), and uses a variable
depth approach to increase cycle length and cost improvement. Although their
algorithm generates and searches only a portion of the graph G(S), it was found
to be effective in practice. Ahuja, Orlin, and Sharma’s heuristic is a modification
of the label-correcting algorithm for the shortest path problem, which restricts
every path found by the label-correcting algorithm to being a subset-disjoint
path. They found that on test instances, the time to identify a negative cost
cycle was less than the time needed to construct the improvement graph.

Hence, the idea of an improvement graph can be efficiently exploited to allow
searching of the cyclic exchange neighborhood. Using the algorithms of Thomp-
son and Psaraftis and Ahuja, Orlin, and Sharma, improving solutions in the
neighborhood can be found successfully in practice. This suggests that the cyclic
exchange neighborhood is a valuable network structure to consider in solving
timetabling problems.

2.3 Cyclic Exchange in the Timetabling Literature

Cyclic exchange neighborhoods have been investigated only recently in the time-
tabling literature. For this reason, we believe this is a potentially fruitful area
for research in timetabling. We now outline a couple of the studies in which the
cyclic exchange neighborhood has been incorporated.

Abdullah, Ahmadi, Burke, and Dror [1] initiated the first study of the cyclic
exchange neighborhood in examination timetabling problems. To identify neg-
ative cost subset-disjoint cycles, they used the heuristic of Ahuja, Orlin, and
Sharma [10]. They additionally introduced an exponential Monte Carlo accep-
tance criterion (see [14]) for accepting nonimproving moves. In this way, their
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algorithm is less likely to become stuck at a local optimum. Tests of the algo-
rithm against other timetabling algorithms on common benchmarks showed that
the performance of their algorithm is comparable to that of the best currently
known timetabling algorithms.

Jha [33] has also recently studied the usefulness of cyclic exchange neigh-
borhoods in timetabling problems. His algorithm uses a dynamic programming
aproach to identify negative cost subset-disjoint cycles. He also combines the
cyclic exchange heuristics with a tabu search framework, to avoid the problem
of halting at local optima. In terms of implementation, he found that the VLSN-
tabu search combination produced robust solutions in a reasonable amount
of time. Compared to approaches using integer programming or neighborhood
search alone, he found that the VLSN-tabu search algorithm performed better
on larger test instances.

Together, these two studies suggest that the combination of cyclic exchange
techniques with other suitable timetabling heuristics can make for especially
strong algorithms. Whether the methods used are Monte Carlo acceptance tech-
niques or tabu search, the combination of the VLSN methodology with the ex-
isting algorithms can be used to produce a more effective algorithm overall.

2.4 Relation to Other Techniques in the Literature

As mentioned in Section 2.1, the 2-opt operation is a special case of the cyclic
exchange operation, where each cycle has length equal to 2. This is occasionally
referred to as the swap operation, since it consists of swapping the time slots
of a pair of exams. The 2-opt neighborhood is defined as the set of all possible
solutions that can be reached from a given solution by performing a single 2-opt
move.

Many papers in the timetabling literature have used neighborhood search
over the 2-opt neighborhood to refine timetabling solutions, though not neces-
sarily using that name and most often in conjunction with other techniques.
Alvarez-Valdes, Martin, and Tamarit [12] used 2-opt moves combined with tabu
search in finding solutions for timetabling problems in the Spanish school system.
Schaerf [42] combined tabu search and the randomized nonascendent method
with 2-opt neighborhood search techniques in solving high school timetabling
problems. Colorni, Dorigo, and Maniezzo [26] used 2-opt techniques along with
simulated annealing, tabu search, and genetic algorithms for problems from Ital-
ian high schools; they found the combination of genetic algorithms with tabu
search to be especially powerful. Carter [22] addresses the scheduling of classes
at the University of Waterloo by decomposing the problem into several subprob-
lems, which are then solved using a greedy procedure including 2-opt moves.

It should be noted that while 2-opt moves can be done efficiently in the
improvement graph (since there are only O(n?) possible such moves), they are
inherently a lot weaker than cyclic exchange moves. For this reason, it would
be interesting to apply the cyclic exchange neighborhood to the same classes
of problems. This presents a fruitful, and largely unexamined, avenue for new
research.
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3 Optimized Crossover in Genetic Algorithms

3.1 Overview of Genetic Algorithms

Genetic algorithms are an optimization technique based on the mechanisms of
evolution and natural selection [37]. In applying genetic algorithms to time-
tabling problems, we assume (as in Section 2) that any valid partitioning of
exams into a timetable T represents a feasible solution, and that potential con-
flicts between the exams are implicitly encoded in the objective function. (It
should be noted that it is also possible to extend the following definitions to the
constrained version of the problem.) There are a wide range of ways to implement
genetic algorithms. We describe a classic approach.

In each iteration of a genetic algorithm, a population of solutions is main-
tained, which represent the current set of candidate solutions. At time t = 0, a

population of timetables {1, TY,..., T} is generated randomly from the set of
all possible solutions. In further iterations, the population {77!, T4+ ,T?’l}

is generated from the population at time ¢ according to the fitness of each of the
candidate solutions T}, along with crossover and mutation operations.

The fitness function is a problem-specific measure of how good a timetable is.
One obvious candidate for the fitness of a solution is its objective function value.
(However, in problems for which calculating the objective is time-consuming,
alternative methods of fitness can be formulated.) In selecting a set of candidate
solutions at time ¢ to produce the next generation at time ¢ + 1, the algorithm
begins by assessing the fitness of all timetables at time ¢. Next, K individuals
of the population are randomly selected, based on a weighted randomization
scheme; the ‘fitter’ a solution is, the more likely it is to be selected.

The crossover operation functions by taking two of the selected timetables
T; and T; and combining them to form a new timetable. The selected timetables
are referred to as the parent timetables, and the new timetable is called the child
timetable. In what follows, we assume that the parent timetables are represented
in the form (p¥, p5, ..., pk), where pé? represents the time period in which exam
ep is scheduled in timetable T}.

The crossover operation can take several forms, of which the fixed point
crossover is very common. In this situation, a given position £ € {1,...,n—1}is
selected; the child solution is created by concatenating the first ¢ periods in the
timetable of the first parent with the last n — ¢ periods in the timetable of the
second parent. Hence, if T; and 7} are the first and second parents, their child
solution will have the form (pi, ... ,pé,péﬂ, ceyph).

Another frequently used crossover scheme is the two-point crossover, where
two random positions ¢; and ¢y (€1 < ¢3) are selected; in this case, the child
is formed by taking the periods of the first parent in the intervals (1, ¢;) and
(¢2+1, n) and the periods of the second parent in the interval (¢1 41, ¢2), giving
a solution of the form (pt, ... ,pzl 7p%1+1’ . ,sz ,p}}ﬁ_l, ..., p). Similarly, we can
define multi-point crossovers by first generating a random number N, arbitrarily
determining N crossover positions, and then creating the child by taking each
odd interval from the first parent and each even interval from the second parent.
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The mutation operation is used to ensure diversity of the timetables gener-
ated. In this operation, a given position ¢ in timetable T}, is selected with some
(small) probability P, and exam e, is reassigned from period p} in which it
is currently scheduled to another randomly selected time period. This has the
effect of ‘mutating’ the {th exam period from its original value. In this way, time
periods that are not a part of the set of parent timetables can be present in the
successive generation, which occasionally leads to better solutions.

3.2 Optimized Crossover

In the previous section we discussed the crossover operation in genetic algo-
rithms. One striking feature of this method is that the crossover points are
determined randomly, and the resulting child is created without regard to the
objective function. Hence occasionally the fitness of a child can deviate quite
widely from the fitness of its parents. Aggarwal, Orlin, and Tai [4] suggested
instead choosing the best child from all possible children, building on an idea of
Balas and Niehaus [15] in the area of graph theory.

The set of all possible children 7;; from two timetables 7; and T} can be
written as {T}; | pfj =p!or pfj = pf, forall £ =1,...,n}. Thus, the period in
which any exam is scheduled in T;; will either be the same as the period in which
it is scheduled in T;, or else the same as the period in which it is scheduled in
T;. The problem of finding the best child is then the problem of choosing from
among the O(2") possible children the one with the best objective function.

We can think of solving the optimized crossover problem as a type of very
large-scale neighborhood search. In this case, the neighborhood is defined over a
pair of parent solutions, instead of a single solution. This is a somewhat unusual
use of the term ‘neighborhood,’” but we claim the concept is plausible since the
neighborhood is well-defined. For each pair of solutions T; and 7}, the crossover
neighborhood is defined as the set of all possible children T;; that can be pro-
duced from T; and T};. The problem of finding the best child can be viewed as that
of finding the child with the best objective value in the crossover neighborhood.

The idea of optimized crossover has not been previously used in genetic
algorithms for timetabling problems, and we believe it is an excellent candidate
for study. In the next two sections, we detail a few of the areas in which optimized
crossover has proven to be useful, followed by comments on the feasibility of the
method on timetabling problems in particular.

3.3 Previous Applications of Optimized Crossover

Aggarwal, Orlin, and Tai [4] were the first to apply the concept of optimized
crossover to genetic algorithms. They studied the independent set problem, for
which they gave an effective method of combining two independent sets to obtain
the largest independent set in their union. This was based on a related technique
of Balas and Niehaus [15]. Their resulting genetic algorithm incorporated this



Very Large-Scale Neighborhood Search Techniques [...] 45

optimized crossover scheme, and was shown to be superior to other genetic algo-
rithms for the independent set problem. This approach was further verified by
Balas and Niehaus [16].

Ahuja, Orlin, and Tiwari [11] later extended the idea of optimized crossover
to genetic algorithms for the quadratic assignment problem. They presented
a matching-based optimized crossover heuristic that finds an optimized child
quickly in practice. This technique can also be applied to other assignment-type
problems, as it relies on the structure of the problem rather than the objective
function.

Most recently, Ribeiro and Vianna [40] have applied the idea of optimized
crossover to genetic algorithms for building phylogenetic trees, which are trees
showing evolutionary relationships among species with a common ancestor. Their
algorithm outperforms the best algorithms currently available. Lourenco, Paixao,
and Portugal [36] have also used a type of optimized crossover heuristic in their
study of bus driver scheduling. They solve a set-covering subproblem to de-
termine the best child solution; their algorithm outperforms other algorithms
tested, albeit at a higher computational cost.

3.4 Optimized Crossover in Timetabling Problems

As mentioned in Section 3.2, for an optimized crossover to be effective in practice,
it requires a method of quickly obtaining a best (or very good) child solution
from two parents. The problem of finding the optimized crossover ezplicitly in
timetable scheduling problems is unfortunately NP-hard, via a transformation
from the MINIMUM SET COVER problem (see [31]). Hence, the best we can hope
for is to find a strong heuristic for obtaining a good crossover. We now describe
how this can be accomplished in timetabling problems.

The algorithm we consider here is a greedy algorithm, which starts with the
two parent solutions T; and Tj. First it randomly selects an order to consider the
exams in. The algorithm proceeds through the exams in order, where for each
exam ey, it places the exam in either slot TF or Tf according to which one gives
the smallest increase in the objective function. The result will be a scheduling
of exams that (hopefully) gives a low objective value. (Many other variations in
the greedy algorithm are possible.)

This algorithm will perform quickly in practice, as once the ordering is de-
cided upon there are only two choices for each of the exams. The quality of the
solutions produced by the algorithm may vary depending on the quality of the
ordering.

Thus we have given a heuristic for solving the optimized crossover problem in
genetic algorithms for timetabling problems. Though this method has not been
tested in a timetabling context, we believe the strong results obtained for the
crossover method in other problems (see [4,11]) make it an attractive avenue to
pursue in the area of timetabling.
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4 Functional Annealing

4.1 The Functional Annealing Algorithm

The functional annealing method is a relatively new metaheuristic for combi-
natorial optimization problems. Proposed by Sharma and Sukhapesna [44,45],
it combines the attractive components of both a neighborhood search method
and a simulated annealing algorithm. As simulated annealing algorithms have
been extensively examined in the timetabling literature (see, for instance, [18]
and [46]), we believe this method should be greatly appealing to the timetabling
community. In this subsection and the next two, we outline the functional anneal-
ing algorithm and its properties, followed by a discussion of applying functional
annealing techniques to timetabling problems in particular.

The main idea of the functional annealing method is to introduce a stochastic
element into the objective function, while employing an efficient neighborhood
search strategy. The stochastic element is given in terms of an annealing function,
which tends to the original objective as the number of iterations increases. The
perturbed objective allows the algorithm to escape efficiently from local optima,
while the neighborhood search heuristic provides for a more effective search of
the feasible space.

We now describe the algorithm more formally, following the structure of
Sukhapesna [45]. Suppose we are given a 0-1 discrete optimization problem
(such as a timetabling problem), with a cost function ¢(x) and a neighborhood
N(z) for each element = in the set F C {0,1}" of feasible solutions. We let
c(z,w) = c(z) + w'z be our annealing function, where w is a random vector
in R™ with independent and identically distributed elements. The wvolatility of
w is determined by a control paramater U, such that w approaches zero as U
approaches zero. We assume we are given a sequence {Uy} of such control pa-
rameters, such that U > 0 for all £ > 0 and limg_,, Ur = 0. Thus, the longer
the algorithm runs, the less stochasticity there is in the objective function. The
functional annealing algorithm is described in Figure 2.

As can be seen from the algorithm, the random vector wy, is always chosen
so that the perturbation attempts to make the current solution worse than its
neighbors, which has the effect of forcing the algorithm to move away from
its current solution. Moreover, the magnitude of the perturbation vector wy is
such that the greater the number of iterations, the smaller the influence of the
perturbation. Hence for small values of k, the algorithm behaves similiarly to a
search for a random neighbor, and for large enough values of k, the algorithm
behaves more like a deterministic neighborhood search algorithm.

One of the appealing features of using a neighborhood search strategy in
tandem with the functional annealing approach is that the algorithm will not
spend multiple iterations at a solution that is not a local optimum, in contrast
to the standard simulated annealing algorithm. Another item of note is that in
the case of a linear objective, the algorithm is equivalent to a problem where the
data is perturbed to avoid lingering at local optimal solutions (see [17]).
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algorithm functional annealing

begin
choose an initial solution zo in F
set k = 0;
while stopping criteria are not met, do
generate a vector wy such that wg(i) = ex(i) if zx(7) = 1
and wi(i) = —ex(i) if xx(i) = 0, where ey is distributed

exponentially with mean Uy;
using a neighborhood search algorithm, find a neighboring
solution y € N(z) U {xz}, such that c¢(y,wr) < c(z, ws);
set Tp+1 = y;
set k=k+1;
end;
end;

Fig. 2. The functional annealing algorithm.

4.2 Properties of the Algorithm

A natural question one might have about the functional annealing algorithm is
whether it is guaranteed to reach the set of optimal solutions. Indeed, Sharma
and Sukhapesna [44, 45] have shown that the algorithm is guaranteed to attain
the set of optimal solutions with probability 1, provided that the neighborhood
search algorithm is such that at any given step each improving solution is chosen
with positive probability. Moreover, the expected number of iterations needed
to reach an optimal solution is finite.

With respect to the choice of improving neighbors, the authors consider a ran-
domized first improvement strategy, in which improving solutions in the neigh-
borhood are selected with equal probability. If no improving neighbor is found,
then the current solution is kept for the next iteration. They show that the
chance of exiting from the current solution under such a strategy is not worse
than that of simulated annealing, and for large numbers of iterations the exit-
ing probability is about |N(z)| times greater than that of simulated annealing.
Thus the functional annealing algorithm is better in theory than simulated an-
nealing in terms of becoming stuck at local optima. They also show that a best
improvement strategy is also guaranteed to reach the set of optimal solutions
with probability one, though the time to find a solution takes longer than with
the first improvement strategy.

Sharma and Sukhapesna [44, 45] give a thorough computational study of func-
tional annealing algorithms applied to the quadratic assignment problem. They
show that the functional annealing algorithm performs significantly better than
both simulated annealing and neighborhood search algorithms on instances of
the problem, confirming the earlier theoretical results. This improvement holds
regardless of the size of the instance being considered. They also show that the
best improvement strategy tends to outperform the randomized first improve-
ment strategy on small instances, while on larger instances the difference is less
pronounced. They conclude by showing that incorporating a statistical learn-
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ing technique along with the functional annealing algorithm gives the strongest
computational results overall.

4.3 Functional Annealing and VLSN Search

Functional annealing provides a way to integrate very large-scale neighborhood
search techniques within the framework of annealing methods. Since the only
condition on the neighborhood search algorithm is that it should be able to
produce an improving solution in the neighborhood in a reasonable amount of
time, we can easily apply existing VLSN techniques to the functional annealing
algorithm.

For instance, the cyclic exchange neighborhood (see Section 2) can be incor-
porated into the functional annealing algorithm. This neighborhood is too large
to be of practical interest with the pure simulated annealing algorithm, since
the simulated annealing algorithm functions by comparing the performance of
random solutions in the neighborhood. The cyclic exchange neighborhood is so
large that there is no reason to believe that a random solution will perform well.
This problem is alleviated in the functional annealing approach, because it does
not rely on the generation of purely random solutions in the neighborhood.

Sharma and Sukhapesna [44, 45] incorporated the cyclic exchange neighbor-
hood in their analysis of functional annealing algorithms for the quadratic assign-
ment problem. They found that in small problem instances, algorithms using the
cyclic exchange neighborhood consistently outperformed algorithms based on a
2-opt structure (see Section 2.4). The results for large problem instances were
less dramatic.

4.4 Functional Annealing and Timetabling Problems

Functional annealing techniques can be applied to timetabling problems in much
the same way that simulated annealing algorithms are currently used. (See [18]
and [46] for details on the implementation of simulated annealing algorithms in
timetabling problems.) Typically, the only restriction on the format of the solu-
tions is that they are represented in such a way that the neighborhood search
subroutine can be performed adequately. In the case of the cyclic exchange neigh-
borhood, for instance, we could use the problem structure previously outlined
in Section 2.

A main advantage of the functional annealing algorithm is that it allows
us to use very large-scale neighborhood search techniques along with annealing
algorithms, which have already been used successfully in timetabling problems
(see [43] for a survey). For this reason, we believe that this algorithm has a
potential to be very valuable to the timetabling community.

5 Concluding Remarks

In this paper, we have discussed one application and two potential applica-
tions of very large-scale neighborhood search techniques in examination time-
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tabling problems. The applications range from one that has been used before in
timetabling problems (the cyclic exchange neighborhood), to one that has been
widely used in contexts other than timetabling (optimized crossover in genetic
algorithms), to a relatively new concept that we believe has a great potential for
timetabling problems (functional annealing algorithms).

Although these applications are presented in the context of examination
timetabling, the techniques are general enough to apply to a wide range of
timetabling problems. It is our hope that the timetabling community will make
use of these techniques and incorporate them into further studies in the time-
tabling literature. Based on the existing work, we believe that very large-scale
neighborhood search techniques may be very useful in the design of new time-
tabling algorithms.
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Abstract In this paper, we first illustrate the state-of-the-art in timeta-
bling research w.r.t. two important research qualities, namely measura-
bility and reproducibility, analyzing what we believe are the most impor-
tant contributions in the literature. Secondly, we discuss some practices
that, in our opinion, could contribute to the improvement on the two
aforementioned qualities for future papers in timetabling research.

For the sake of brevity, we restrict our scope to university timetabling
problems (exams, courses, or events), and thus we left out other equally-
important timetabling problems, such as for example high-school, em-
ployee, and transportation timetabling.

1 Introduction

Thanks mainly to the PATAT conference series, researchers on timetabling prob-
lems have recently started to meet regularly to share experiences and results,
more than in the past. This situation has the positive effect of generating both
a common language and a common spirit that is the base ground for cross-
fertilization of research groups in the timetabling community.

However, according to what we have seen in the recent PATAT conferences,
the road for timetabling to become a well-established research community is still
long. The main issue, in our opinion, is that most timetabling papers tend to
describe the authors’ specific problem and ad hoc solution algorithm without
taking enough care of neither the measurability nor the reproducibility of the
results. The reader is thus “left alone” to judge the quality of the paper, and to
understand what can be learnt from it.

This issue is, to some extent, common to all the experimental areas of com-
puter science and operations research, as clearly explained by Johnson in his
seminal and fundamental paper [14]. Nevertheless, we believe that this is partic-
ularly true in timetabling research, probably because of its shorter tradition as
a scientific community.

Regarding measurability (or comparability), we believe that several “research
infrastructures” are necessary in order to create the ground for truly measurable

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 53—62. ISBN 80-210-3726-1.
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results. Specifically, they range from common formulations, to benchmark in-
stances, to instance generators, to solution validators, and others. Related to it,
but somewhat complementary, is the issue of reproducibility. To this aim, aside
the features just mentioned, it would be also necessary to create the conditions
for sharing code and/or executables among researchers.

In this paper, we try to describe the state-of-the-art with respect to these
crucial qualities of experimental research in timetabling, and we also present
some personal opinions on how to proceed to improve on them. For the sake of
brevity, we restrict our scope to university timetabling problems (exams, courses,
or events), and we left out other equally-important timetabling problems, such
as high-school, employee and transportation timetabling. Nevertheless, to some
extent, the proposed guidelines can have a broader application to all timetabling
domains.

In details, we first survey what, in our opinion, are the most important steps
that have been pursued so far in timetabling research in terms of either mea-
surability or reproducibility of results (Section 2) . Secondly, we propose our
personal “best practices” for improving these two qualities in the timetabling
research (Section 3). Our aim is to encourage both the authors to write research
papers of high level in these important aspects and the reviewers to demand for
it.

2 State of the art

In this section, we review the most remarkable contributions to the aim of creat-
ing the ground for the development of high quality measurable and reproducible
research in timetabling. We first discuss the “standard” problem formulations,
the benchmark instances (datasets), and the related file formats adopted. Next,
we move to the comparison methods proposed, such as competitions and statisti-
cal tools. Finally, we discuss the issue of the objective validation of the proposed
results.

2.1 Problem Formulations & Benchmark Instances

It is well known that timetabling problems vary not only from country to country,
but also from university to university, and even in different departments of the
same university the problem is not quite the same [23].

Nevertheless, throughout the years it has been possible to define common
underlying formulations that could be used for the comparison of algorithms.
In fact, a few basic formulations have become standards de facto, as they have
been used by many researchers. Needless to say, standard formulations allow the
researchers to compare their results and to cooperate for the solution. Further-
more, algorithms developed for more complex ad hoc formulations, can be tested
on the basic standard ones so as to asses their objective quality.

For the EXAMINATION TIMETABLING problem (ETTP), Carter et al [7] pro-
vide a set of formulations which differ to each other based on some components
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of the objective function. They also provided a set of benchmark instances [6] ex-
tracted from real data. Formulations and benchmarks by Carter have stimulated
a large body of research, so that many researches (see, e.g., [4,12,8]) have adopted
one of the formulations of Carter (or a variant of them, creating a new standard
as well), tested on the benchmarks, and also added new instances. For more
complex formulations, additional data have been added by other researchers, in
an arbitrary way. At present, all available instances and the corresponding best
results (up to 2003) are published on the Web [17].

We call LECTURE TIMETABLING problem (LTTP), the problem of weekly
scheduling a set of single lectures (or events). This problem differs from course
timetabling (discussed below) because the latter is based on courses composed
by multiple lectures, whereas lectures are independent. In fact, when a course
is given in multiple lectures per week, some cost components are related to the
way the lectures are placed in the week. On the contrary, this concept is totally
absent in LTTP. The LTTP differs also from ETTP because it has completely
different objectives (e.g., no isolated event vs. spreading exams).

The LTTP has been discussed in [22] and it has been the subject of the time-
tabling competition TTComp2002! [21]. The formulation proposed for TTComp-
2002 has also become quite standard, and many researchers have used it for their
work (see, e.g., [16,9]). Twenty artificial instances were generated for the com-
petition, and they are available from the TTComp2002 web page. In addition, a
few other have been proposed (and made available via web) in [24].

As mentioned above, the COURSE TIMETABLING problem (CTTP), consists in
the weekly scheduling of the lectures of a set of university course. Unfortunately,
no standard formulation has emerged from the community for CTTP so far. Up
to our knowledge, the only formulation available on the Web [11] together with
a set of instances is the one proposed by ourselves in [13], along with 4 instances
coming from the real cases (suitably simplified and made anonymous) in our
university.

2.2 Data Format

For all the problems mentioned above, an important issue for the spreading in
the community of a formulation is the data format. For all the formulations
discussed above, the data format used is an ad hoc fixed-structure text-only one.
For example, for TTComp2002 the input data comes in a single file containing the
scalar values (events, rooms, room features, students), followed by the elements
of the input arrays, one per line. The output format follows the same idea. For
the ETTP the input format is also rather “primitive”, with a fixed grammar and
no formatting tags. Unfortunately, for this problem no output format has been
specified in the original web page and paper.

! In the competition the problem is named CTTP, where C stands for course; but we
believe this is quite misleading, because it deals with isolated lectures/events, rather
than courses composed by many lectures. Therefore we prefer for this problem the
name LTTP
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The use of fixed-structure formats makes it easier to parse the input from
any computer language, and for any (naive) programmer, but may be more
difficult to be maintained and checked. For example, it happened that Carter’s
ETTP instances were replicated incorrectly on other web sites. This was due
to the presence of a few newlines added in the files, that led to different (less
constrained) instances. This unfortunate episode, that might have caused wrong
results in some papers, would have been avoided if a structured format had been
used.

On the other hand, a structured format, such as XML, would be more suitable
in terms of flexibility, extensibility, and maintenance. A few structured format
have been proposed in the literature, such as STTL [5,15] and TTML [19]. In [20],
the authors go even beyond the language, proposing a multi-layer architecture
for the specification and the management of timetabling problems. Up to our
knowledge, however, these proposals have received a quite limited attention so
far. This is probably due to the fact that researchers have normally little interest
in the advantages of a structured language, and they prefer the quick-and-simple
text-only version.

2.3 Comparison Methods & Competitions

The fair comparison of different algorithms and heuristics is well known to be a
complex problem, and it has no simple and straightforward solution. In fact, in
order to assess that an algorithm is “better” than another one it is necessary to
specify not only the instances used, but also on which features they are compared
(e.g., quality of the objective function, success rate, speed, ...). The question
gets even more complicated in presence of randomized/stochastic algorithms,
which add a degree on non-determinism in the solution process.

For the TTComp2002, the solution algorithms (provided as executables) were
granted a maximum CPU time for their execution (based on a CPU benchmark,
about 500 seconds on a recent computer) and they were evaluated only on the
value of the objective function, averaged upon the 20 proposed instances. Un-
feasible solutions where not considered, so that, in order to be admitted to the
evaluation, participants had to find a feasible solution for all instances.

For stochastic algorithms, the participant had to ensure that their solver
could produce the same solution when checked by the organization (by providing
the seed of the random generator). In this situation, it is not clear how to apply
the CPU time restriction and the choice of the organization was to grant the
maximum time for each single trial. This was done to ensure reproducibility,
although it had a drawback. The participants could take advantage of the so-
called Mongolian horde approach: run as many trials as you can with no time
limit and report only the best of all of them.

Up to our knowledge, the TTComp2002 has been the sole attempt in this
respect. All other comparison are based on results published in the literature,
which however often report only part of the necessary information (running
times, number of trials, ...).
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2.4 Result Validation

When some results are claimed in a research paper, the reader (or, more im-
portantly, the reviewer) generally has to trust the author without any actual
proof on the results. Although the possibility that the author is deliberately
claiming a fake result is rare, cases in which the claimed results turned out to
be wrong are relatively frequent. They are normally due to bugs in the code
or misunderstandings in the formulation of the problem, typically the objective
function.

For example, for the Graph Coloring problem, for the famous benchmark
instance DSJC125.5 a 12-coloring has been claimed (and published) in 2002,
whereas it has been successively proved that the minimum number of colors is
17.

Therefore the validation of the results claimed is clearly an important step
toward the full reproducibility of the results. For the LTTP, in the TTComp2002,
the validation of the results was done directly by the organizers, who asked all
the participants to supply an executable that accepts a set of fixed command-line
arguments.

For ETTP, unfortunately, no validation tool is available. Validation is cur-
rently based only on voluntary peer-to-peer interaction based on exchanges of
solutions and values.

For our formulation of the CTTP, we have developed a web page [11] that
allows the other researchers to download the problem formulation, the data
format, and the benchmark instances. More importantly, everybody is allowed
also to validate his/her own solutions, and to insert it among the results obtained
for that instance. All results are automatically published on the web site along
with the date and other information.

3 Proposals

In this section, we highlight some practices that, in our opinion, could contribute
to the improvement on measurability and reproducibility for future papers in
timetabling research. Part of what we propose here can be found also in [14],
although we try to extract the advices by Johnson that we believe best suit to
the current state of timetabling research.

3.1 Statistically Principled Comparison

One of the key issues of performance measurement (often underestimated) con-
cerns the methods to deal with the random nature of many methods for obtaining
a sound comparison of the different techniques. In the practice, this issue is often
neglected and just some tendency indicators of the stochastic variables like mean
values (and, more seldom, also standard deviations) in n runs (with n ~ 10) are
provided. Furthermore, in a rather myopic view, these summary values are often
advocated as the final word on the clear superiority of a technique over their
competitors.
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However, as it is common expertise of other research areas, when dealing with
stochastic variables it is not correct to draw any conclusion only on the basis
of single estimates but a principled statistical analysis on the behavior of the
algorithm is needed (see, e.g., [1,27]). Even in the simplest cases of comparison of
two means the analysis should include some kind of hypothesis testing (e.g., the
t-test or the Mann-Whitney test for the parametric and the non-parametric case,
respectively), that at least provides the reader with a (probability) measure of
“confidence” in the result. For more complex settings further analyses could be
carried on and the statistical tool-case is plenty of methods for correctly coping
with several situations that arises in practice (see, e.g., [18]).

As an example, Birattari [2] has proposed a principled methodology for the
comparison of stochastic optimization algorithms, called RACE, which comes out
also as a software tool for the R statistical package [3]. This procedure, originally
developed for the purpose of selecting the parameters of a single meta-heuristic,
could be employed also in the case of the comparison of multiple algorithms
by testing each of them on a set of trials. The algorithms that perform poorly
are discarded and not tested anymore as soon as sufficient statistical evidence
against them is collected.

This way, only the statistically proven “good” algorithms continue the race,
and the overall number of tests needed to find the best one(s) is limited. Each
trial is performed on the same randomly chosen problem instance for all the
remaining configurations and a statistical test is used to assess which of them
are discarded.

It is worth to notice that the statistical comparison of algorithms outlined in
this section is based on the assumption of having access at previous results (or
better at the code) of the different techniques involved in the comparison. This
is clearly related to the issue of reproducibility of results that, in our opinion,
can be achieved observing the guidelines described in the following.

3.2 Formulation, Data Format, Instances, and Results on the Web

As already mentioned, many papers in timetabling describe the modeling and
the ad hoc solution of a new timetabling problem. For this kind of papers, in
general we cannot expect that the authors make all the steps for obtaining full
measurability and reproducibility such as, for example, publishing all the code. In
fact, this would be quite a big work that would probably be too time-consuming
for a researcher, aside possible employer’s concerns. Nevertheless, we believe that
there are a few actions that could contribute in these respects, which are not
too expensive in terms of work.

First, the authors must state the problem clearly and exhaustively. If this
is not possible in the paper for space reasons, the full formulation should be
posted in an accompanying web site. Secondly, the authors should also post in
the web site all the instances considered (changing names for privacy reasons, if
necessary) in the study, along with all the necessary information accompanying
them: data format, algorithms, results, and running times. Finally, the authors
should post also the files containing their best solutions, so that other researcher
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can verify the actual results, and possibly use that solutions for further studies
and improvements.

These actions would ensure comparability with the results on future research
by other researchers or also by the same authors?.

3.3 Web-based Problem Management System

Nowadays it is very common to see web sites that describe all aspects of either a
specific problem, see e.g. [10,25], or a research area [26]. These web sites normally
exhibit references to papers, people, problem formulations, benchmark instances,
and supply other information.

Web sites are surely very useful for the community, and their presence is
crucial for the quality of the research. Nevertheless, we believe that there is a
further step to be made to this regard. Inspired by the well-known concept of
CMS (content management system), we envision the idea of developing what
we would call PMS (problem management systems). A PMS is a web applica-
tion (rather than a web site) that should allow the users to interact with the
application performing automatically all the following tasks:

Add results: New results are first validated, and then possibly inserted in the
database along with time-stamp and other user-supplied information.

Add instances: Instances can be inserted at any moment. Researchers that
are interested in the problem can be automatically informed by email of this
kind of events.

Manage instance generation: Newly generated instances can be created au-
tomatically by users through interaction with an instance generator.

Analyze instances and results: Instances and results can be analyzed auto-
matically so as to produce important indicators: constrainedness, similarity
to other instances or other results, ...

Add general information: People, references, links, code, and other informa-
tion can be added. Links would be validated periodically in an automatic
way, and broken ones can be removed. References can also be imported from
other sites.

Translate data: Input and output data can be translated in different formats
so that coherent data can be proposed in different format to the community.

Organize on-line competitions: Competitions on specific instances and with
registered participants and fixed deadlines can be organized automatically.
Results can be reported immediately.

Visualize: Solutions can be visualized in graphical form to give an immediate
picture of the features and the violations.

The interesting point is that information posted through the PMS would get
on-line immediately in an automatic way. Obviously, a PMS needs to provide
against possible malicious uses, and therefore some of the actions mentioned

2 Many researchers (including ourselves!) experienced the frustration of loosing their
solutions (or other data) for some of the problems they worked on.
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above would need the approval of the administrator before becoming effective.
This however would be just a Yes/No button, so that the administrator is pushed
to answer shortly.

The PMS would also maintain historical data (through versioning systems),
in such a way to be able to retrieve information eliminated by updates and
deletions.
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Abstract. We propose a flexible model and several integer linear pro-
gramming and constraint programming formulations for integrated em-
ployee timetabling and production scheduling problems. A hybrid con-
straint and linear programming exact method is designed to solve a ba-
sic integrated employee timetabling and job-shop scheduling problem for
lexicographic minimization of makespan and labor costs. Preliminary
computational experiments show the potential of hybrid methods.

1 Indroduction

In production systems, the decisions related to scheduling jobs on the machines
and the decisions related to employee timetabling are often made in a sequen-
tial process. The objective of job scheduling is to minimize the production costs
whereas the objective of employee timetabling is to maximize employee satis-
faction (or to minimize labor costs). Either the employee timetabling is first
established and then the scheduling of jobs must take employee availability con-
straints into account or the scheduling of jobs is done at first and the employees
must then adapt to cover the machine loads. It is well known that optimiz-
ing efficiently an integrated process would both improve production costs and
employee satisfaction. However, the resulting problem has generally been con-
sidered as too complex to be used in practical situations. Some attempts have
been made [1-7] but mostly considering an oversimplified version of the em-
ployee timetabling problem. Nevertheless the integration of task scheduling and
employee timetabling has been sucessfully developped in complex transporta-
tion systems [8-14]. In this paper we propose a model of integrated production
and employee scheduling that takes account of the following possible specific
characteristics of the production context:

A) An employee that has started a task may be replaced at any moment by
another employee (of the same skill) with no notable effect nor interruption
of the processed task.

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 64-81. ISBN 80-210-3726-1.
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B) An employee is not necessarily needed during all the processing time of a
task but only at some time periods that can occur before, during and after
the processed task (setups, removals, transportation).

C) Because of the automated production process, or the nature of the tasks
performed by the employee (e.g. supervision), an employee may perform
several tasks simultaneously during a shift.

D) The production process can be quasi-continuous (on a 24h basis) whereas
the employee timetabling has to be discretized in periods (on a 8-hour basis
for instance).

E) The duration of a task may change depending on the number or on the skill
of the assigned workers.

In Section 2, we review the related work dealing with the integration of task
and employee scheduling and we give the position of the considered problem
among the various production scheduling and employee timetabling problems.
In Section 3, we propose different ILP formulations of the considered problem.
A constraint programming formulation is proposed in Section 4. In Section 5, we
propose a hybrid framework to solve the lexicographic minimization of makespan
and labor costs. In Section 6, we provide the results of a preliminary computa-
tional experiment carried out on a set of employee timetabling and job-shop
scheduling instances. Concluding remarks are drawn in Section 7.

2 Literature review and position of the considered
problem

We review some of the integrated vehicle and crew scheduling methods in Section
2.1 and the previous work on integrated production scheduling and employee
timetabling in Section 2.2. We give the position of the considered problem in
Section 2.3.

2.1 Vehicle and crew scheduling

Integrated vehicle and crew scheduling is an active research area in transporta-
tion systems, see [8-14] among others.

We focus hereafter on some recent papers presenting different models and
solution methods. Cordeau et al. [11] propose a benders decomposition scheme
to solve aircraft routing and crew scheduling problems. They use a set parti-
tioning formulation for both the aircraft routing and the crew scheduling. In
the first scheme, the primal subproblem involves only crew scheduling variables
and the master problem involves only aircraft routing variables. Both the primal
subproblem and master problem relaxation are solved by column generation. In-
teger solutions are found by a 3-phase method, adding progressively the integrity
constraints. More recently, Mercier et al. [14] have improved the robustness of
the proposed model. Their method reverses the benders decomposition proposed
in [11] by considering the crew scheduling problem as the master problem.



66 C. Artigues et al.

Haase and Fridberg [10] propose a method to solve bus and driver scheduling
problems. The problem is formulated as a set partitioning problem with addi-
tional constraints in which a column represents either a schedule for a crew or
for a vehicle. The additional constraints are introduced to connect both schedule
types. A branch-and-price-and-cut algorithm is proposed in which column gen-
eration is performed to generate both vehicle and crew schedules. The method is
improved in [15] with a set partitioning formulation only for the driver schedul-
ing problem that incorporates side constraints for the bus itineraries. These side
constraints guarantee that a feasible vehicle schedule can be derived afterwards
in polynomial time. Furthermore, the inclusion of vehicle costs in this extended
crew scheduling formulation ensures the overall optimality of the proposed two-
phase crew-first, vehicle-second approach.

Freling et al. [13] propose a method to solve bus and driver scheduling prob-
lems on individual bus lines. They propose a formulation that mixes the set
partitionning formulation for crew scheduling and the assignment formulation
for the vehicle scheduling problem. They compute lower bound and feasible so-
lutions by combining Lagrangian relaxation and column generation. Columns
correspond to crew scheduling variables. The constraints involving the current
columns are relaxed in an Lagrangian way. The obtained Lagrangian dual prob-
lem is a single-depot vehicle scheduling problem (SDVSP). Once the lagrangian
relaxation is solved a new set of columns with negative reduced costs is gener-
ated. The method is iterated until the gap between the so-computed lower bound
and an estimated lower bound is small enough. Feasible solutions are generated
from the last feasible SDVSP and the current set of columns.

2.2 Production and employee scheduling

Specific employee scheduling problems involved in production scheduling are of-
ten tackled considering the job schedule is fixed. As a representative work in
this area, Valls et al. [16] consider a fixed schedule in a multi-machine environ-
ment and consider the problem of finding the minimal number of workers. The
problem is formulated as a restricted vertex coloring problem and a branch and
bound algorithm is presented.

A large part of work involving both job scheduling and employee timetabling
aims at keeping the number of required employees at each time period under a
threshold, without considering the regulation constraints of employee schedules
nor the individual preferences and skills of employees. Danniels and Mazzola [1]
consider a flow-shop problem in which the duration of an operation depends on
the selected mode to process an operation. Each mode defines a number of re-
sources (workers) needed during the processing of the operation. The scheduling
horizon is discretized in periods and at each time period, the number of workers
cannot exceed a fixed number. Optimal and heuristics approaches are proposed.
Daniels et al. [3] propose the same approach in a parallel machine context. Bailey
et al. [2] and Alfares and Bailey [4] propose an integrated model and a heuristic
for project task and manpower scheduling where the objective is to find a trade-
off between labor cost and daily overhead project cost. The labor cost depends
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on the number of employed workers at each time period. The daily overhead cost
depends on the project duration. There are no machine constraints and the labor
restrictions lies in a maximal number of workers per period. In [6], the authors
propose a MILP to minimize the makespan in a flow-shop with multi-processor
workstation as a primary objective and to determine the optimal number of
workers assigned to each machine as a secondary objective. The sequence of jobs
is fixed on each machine and the makespan is minimized through lot-streaming.

Faaland and Schmitt [17] consider an assembly shop with multiple worksta-
tions. Each task must be performed on a given workstation by a worker. There
are production and late-delivery costs on one hand and labor cost linked to
the total number of employees on the other hand. The authors study the ben-
efits of cross-training which allows employees to have requisite skills for several
work-centers. A heuristic based on a priority rule and on the shifting bottleneck
procedure is proposed.

A more general problem (w.r.t. the timetabling problem) is studied by Daniels
et al. [7]. They extend the model proposed in [1] to an individual representa-
tion of employees in a flow-shop environment. Each employee has the requisite
skills for only a subset of machines and can be assigned to a single machine at
each time period. The duration of a job operation depends on the number of
employees assigned to its machine during its processing. The employees assigned
to an operation are required during all its processing time. No schedule regula-
tions are considered except unavailability periods. A branch and bound method
is developped and the benefits of the level of worker flexibility for makespan
minimization is studied.

In [18], Hait et al. propose a general model for integrating production schedul-
ing and employee timetabling, based on the concepts of load center, configura-
tion, employee assignment and sequence. A so-called load center is a subset of
machines that can be managed simultaneously by a single employee. A config-
uration is a set of load centers defining a partition of a subset of machines. At
each scheduling time period a single configuration is active. Hence, the num-
ber of load centers in a configuration gives the number of active employees. An
employee assignment is an assignment of each load center of a configuration
to a different employee. The authors define the configuration graph each node
correspond to a possible configuration and there is an arc between two config-
urations that can be consecutive in time with a weight giving the cost of the
configuration changeover. This model allows to represent the simultaneous work
of an employee on several machines. However the computation method of the job
durations performed simultaneously by the same operator is not provided. An
example with a two machines provided by the authors show the computation of
this duration of a job amounts to solve a scheduling problem of the elementary
tasks performed by the operator. Furthermore it can happen in practice that
more than one operator is needed during the processing of a job on a machine,
which is not covered by the proposed model. In this model, a schedule is defined
by the start time of the jobs and by a path (with possible loops and cycles) in
the graph of configurations with the employee assignment for each configuration
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of this path. The authors provide two exemples of integrated resolution in a
flow-shop context. In the first example, they propose a dynamic programming
algorithm to find a feasible path in the configuration graph with a fixed number
of equivalent operators and a fixed sequence of jobs. In the second example they
propose a heuristic and a lower bound of the makespan in a flow-shop where the
timetabling problem reduced to the assignment of an employee to each machine,
the duration of the jobs depending of the employee performance.

Drezet and Billaut [19] consider a project scheduling problem with human
resources and time-dependent activities requirements. Furthermore, employees
have different skills and the main legal constraints dictated by the workforce
legislation have to be respected. The model is quite general. However, only hu-
man resources are considered since the considered context is not a production
scheduling problem where machines are critical resources. A tabu search method
is proposed as well as proactive scheduling techniques to deal with the uncer-
tainty of the problem.

This brief state-of-the-art reveals that, compared to the transportation do-
main, the integration of production scheduling and employee timetabling is in
its earliest phase. Almost no existing approach tackles the complex regulation
constraints of work nor the diversity of employee activities in modern production
systems. Recently, more sophisticated models have been proposed but indepen-
dently of the relevant literature in staff scheduling in other areas and without
proposing a general solution methodology.

2.3 Position of the considered problem

There are several variants of the employee timetabling problem, see for instance
the recent surveys [20,21]. In this paper we focus on only one of the problems
presented in [22] called individual shift scheduling where each employee (or team
of employees) is considered individually with its own skills and preferences. The
time horizon is discretized in elementary time periods (shifts). At each period, a
set of activities has to be performed and each activity requires a specific number
of workers. The objective of the employee timetabling problem is to assign a
single activity to each employee at each time period in order to cover the demand
for all activities. Such an assignment is called a schedule. There are restrictions
on the possible schedules due to regulation constraints and employee profiles. The
objective of the timetabling problem is to maximize the employee satisfaction.

There is also a large number of different production scheduling problems [23].
In this paper we consider a rather general problem where a set of jobs linked by
precedence constraints has to be scheduled on a set of machines. Each job has a
processing time, a release date, a due date and is assigned to a unique machine.
A job cannot be interrupted once started and each machine can process at most
one job simultaneously. The job scheduling problem lies in assigning a start time
to each job with the objective to minimize the production costs.

We propose to integrate the two problems by associating to each job (pro-
cessed on a machine) a set of activities (performed by the employees) such that
assigning a start time to a job determines the period of each associated activity.
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From the employee timetabling point of view, the demand profile is not known
in advance but is determined by the job schedule. From the job scheduling point
of view, the possibility to start a job is subject to the presence of the employees
able to perform the activities generated by this job. The employee profile is de-
termined by the selected employee schedules. We will give several mathematical
formulations of variants of this problem in Section 3.

3 ILP Models of integrated employee timetabling and
machine scheduling problem

The model of integration proposed by [18] is centered on the concept of config-
uration which is a partitition of the machines at a given time period such that
each subset is managed by a single operator. In this paper we propose to per-
form the integration through the concept of activity which is widely used in the
employee timetabling literature. We first provide a model with a common time
representation for timetabling and scheduling (3.1). Then we extend this model
to the case where there is a time representation for employee timetabling and
another time representation for job scheduling (3.2). We show how these models
can be extended to tackle the variability in job durations and machine assign-
ment through the concept of modes (3.3). The three latter models are based on
time indexed and assignment variable formulations. In Section (3.4) we show
how the set covering formulation usually used in efficient employee scheduling
methods can also be used in the production scheduling context.

3.1 Common time representation for timetabling and scheduling
and single-mode jobs

We consider the following employee timetabling and machine scheduling prob-
lem.

Let T denote a time horizon, discretized in a set of elementary time periods
t =0,..,7 —1. We consider an organization comprising a set of E employees
& ={1,...,E} and a set of m machines M = {1,...,m}. There is set of A
activities A = {1,..., A} where each activity may be required by a job and
has to be performed by one or several employees. A, is the set of activities an
employee is able to perform.

The organization has to process a set of n jobs J = {1,...,n} during the time
horizon. Each job j has a known duration p; > 0 and requires for its execution
a precise machine m;. A binary matrix (b;i)1<j<n,1<k<m states if job j requires
machine k, i.e. bjm,;, = 1 and bjp = 0, Vk # m;. A matrix (Rjq)i1<j<n,1<a<A
is given where R;, is the number of employees that have to perform activity a
during the processing of job j. Each job j has a release date r; and a due date
d;.

There are precedence constraints linking the jobs, represented by a directed
graph G = (V,U) where V is the set of nodes including one node per job plus a
dummy start node denoted 0 and a dummy end node denoted N +1. U is the set
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of arcs representing the precedence constraints. Each arc (7, ) of U is valuated
by a (positive or negative) time lag d;;.

There are also specific constraints on the activities that can be assigned to
a given employee over time which will be described below. The objective of the
considered employee timetabling and machine scheduling problem is to assign a
start time to each activity and to assign exactly one activity to each employee
at each time period.

We assume that there is a production cost Wj; if job j starts at time ¢ and
an employee satisfaction cost Ceq¢ if employee e is assigned to activity a at time
t.

x;¢ is a binary decision variable where x;; = 1 if job j starts at time ¢ and
2+ = 0 otherwise. .4 is a binary decision variable such that y..; = 1 if employee
e is assigned to activity a at time ¢ and yeq; = 0 otherwise. The problem can be
formulated as follows:

n T-1 E A T-1
min Z Z th.%'jt + Z Z Z Ceatyeat (1)
7j=1 t=0 e=1a=1 t=0
T-1
Yorp=1YjeJ (2)
t=0
.CL‘jt:OVjEJ,Vtg{rj,...,dj_pj} (3)
n t
> bpw <1 Vte{0,...,.T -1} =Vke M (4)
j=171=t— p]+1
T-1
tr Tt — txzt > dzy V(Z ]) evu (5)
t=0 t=0

t
Zyeat>z S Rjewjr Yae Avte{o,...,T—1}) (6)

j=1l71=t—p;+1

> Year=1VecEVtef0,....,T~1} (7)
a€A.

Fy<f (8)
zjy € {0,1} Vje J,vte{0,..., T -1} 9)

Yeat € {0,1} Ve € E,Va € AVt €{0,..., T —1} (10)

The objective of the problem is to minimize the total cost (1) subject to
the following constraints. Each job has to be started exactly once (2). Each
job must be started a way that it is started and finished within its time win-
dow. (3). At most one job can be processed by a machine at each time pe-
riod (4). The precedence constraints must be satisfied (5). The number of em-
ployees assigned to each activity at each time period has to cover the total
demand of all jobs in process (6). Each employee has to be assigned to ex-
actly one activity (in set A.) at each time period (7). We assume A contains
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also non working activities representing employee inactivity (break, lunch, etc.)
gathered in set P. Constraints (8) are specific constraints for each employee
e of the form ) _, EtT:_Ol FuigYear < fq, with Fgy € {—1,0,1}, which al-
low for instance to take account of minimum or maximum consecutive peri-
ods of work, and other complex regulation constraints. For instance if no em-
ployee can work more than two consecutive shifts, the constraints of the form
ZaeA\p(yea(t—l) + Yeat + Yea(t+1)) < 2 can be defined for each time period
t € [1,T — 2] for each employee e. The main drawback of this formulation is the
number of these constraints can be huge in practical situations and in general a
set covering formulation is preferred (see Section 3.4).

The main difference between machine and the employee resource is that em-
ployee timetables are more flexible as illustrated in the example displayed in
Figure 1. In this example, the two jobs generate a single activity during their
processing. If we suppose that the first employee F; allocated to this activity
has to take a break while J; is in process, another employee can perform the
activity until the break of E; is over which occurs in this example while J; is in
process.

My Na==

Ey

Es

Fig. 1. a 1-machine and 2-employee example

3.2 Different time representations for timetabling and scheduling
and single-mode jobs

We assume that for pratical reasons, there may be a different time representation
for the machine scheduling problem and for the employee timetabling problem.
Let T" denote the time horizon for the scheduling problem and let © denote the
time horizon for the timetabling problem. Furthermore, we assume that if a job
J starts at time ¢, 0 <t < T then a number of employees Rj.9 > 0 is required
to perform activity a at each period 6, 0 < 0 < 6.

Tt follows that demand covering constraints (6) can be generalized with con-
straints (16) below and the new model is:
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n T-1 E A 0-1
minz Z thxjt + Z Z CeaOyeaG (11)
j=1 t=0 e=1a=1 0=0
T-1
t=0
xjtz() VjEJ,Vtg{’I“j,...,dj—pj} (13)
n t
S>> bz <1Vte{0,...,T -1} =Vke M (14)
j=17=t—p;+1
T-1 T-1
til?jt — tmit Z dU V(’Lh]) S U (15)
t=0 t=0
E n —1
> veas > DS Rjaorse Va € AW0 € {0,...0 — 1} (16)
e=1 j=1 t=0
> Year =1 Ve € EVO€{0,...,0 -1} (17)
acA.
Fy<f (18)
zj €4{0,1} Vje J,vte{0,..., T -1} (19)

Yeap € {0,1} Ve € E,Va € A,V €{0,...,0 -1} (20)

Such constraints allow to consider the cases where the employees need not be
present during all the processing of a job on its machine, or when the employee
activity generated by the job is not simultaneaous with the processing of the
jobs. This feature takes place when employees have to perform setup or removal
activities before and after the job processing, or when a control operation has
to be carried out during a limited time while the job is in process. In figure 2,
a third employee is necessary only right before the start and right after the end
of jobs J; and Js.

This type of model allows also to take account of a different time scale be-
tween the time horizon of the scheduling problem, with the time periods consid-
ered in the timetabling problem. Suppose the scheduling time period is 1 hour
and the timetabling period is 4 hours, then an aggregated information of the
activities to perform during each 4 hours period has to be provided. In this pur-
pose, values Rjq9 need not be integers if the activity a generated by job j in
timetabling period € occupies only a portion of an employee’s work capacity. In
figure 3, each job is assumed to require 0.25 employee per time unit and generate
a single activity. Then, the demand for employees able to perform this activity
is displayed for each time table period.
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Fig. 2. a 1-machine and 3-employee example
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Fig. 3. a 1-machine and 2-employee example
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3.3 Multi-mode jobs

We consider the case where for each job j there is a number @); of different pro-
cessing modes corresponding to different ways (durations, machine and activity
requirements) to perform job j. Let p? denote the duration of job j in mode g.
Let b9, = 1if job j uses machine & in mode ¢ and b}, = 0 otherwise. z7, is a
binary decision variable such that x?t = 1 if job j is started at time ¢ in mode
q and x?t = 0 otherwise. R?até now denotes the number of employees that must
perform activity a at period 6 if job j is started at time ¢ in mode ¢q. The model
can be adapted as follows:

n Qj T—1 E A 6-1
mlnz Z Z thx;]'t + Z Z Z CeaGyeaG (21)
j=1¢q=1 t=0 e=1a=1 =0
Q; T—1
2, =1VjeJ (22)
q=1 t=0
x?tzo Vje I, Vge{l,...,Q,}

j t
S Y el <1 vte{o,... . T—1}=Vke M (24)

Qj T-1 Qi T-1
t(E?t — t(Eft > dij V(%j) eU (25)
g=1 t=0 s=1 t=0
E n Qi T—1
Zyeae > Z Z Z Rjatgﬂjg-t Va € A,V0 € {0,...0 —1} (26)
e=1 j=1g=1 t=0
> Year =1 VecEVO€{0,...,0 —1} (27)
a€A,

zf, €{0,1} Vj € J,Vqg € {1,...,Q,},
vie{0,...,T —1} (29)
Yeas € {0,1} Ve € E,Va e A VI € {0,...,0 -1} (30)

3.4 Set covering formulations

Let S denote the set of valid schedules for an employee e. For each schedule
s € Se, each activity a and each timetabling period 6, binary value ysq¢ is such
that ysq9 = 1 if the schedule performs activity a at time 6 and ys,9 = 0 otherwise.
Cy denote the cost of a schedule s € S.. Binary decision variable z; is defined
such that zg = 1 if schedule s is selected and z, = 0 otherwise.
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A new model can then be proposed by including the set covering formulation
of the timetabling constraints (we ignore the multi-mode characteristics):

n T-1 E
minz Z Wiy + Z Z Cszs (31)
=1 t=0 e=1s€S,

T-1
ri=1VjeJ (32)

t=0

xjt =0 V] c .:77

Vtg{rj?"'adjipj} (33)

> bppri, <1 VEe{0,..., T—1} =Vke M (34)

T-1 T-1
Z tl'jt — Z ta;y > dij V(Z,]) eU (35)
t=0 t=0
E n T-1
S Yz = DY Rjawxje Ya€ AVO€{0,...0 —1} (36)
e=1s€S. j=1 t=0
> zo=1Vee& (37)
seS,
zj €{0,1} Vje J,Vte{0,..., T — 1} (38)
2; €{0,1} Vee &,Vs € S, (39)

4 A Constraint Programming model

Constraint programming formulations have been proposed for production schedul-
ing [24] and for employee timetabling [22]. We present hereafter an integrated
formulation which involves start time decision variables S; € [r;, d; — p;] for all
jobs, an activity assignment variable ag. € A, giving the activity assigned to
employee e in period # and a demand variable dy, € IN giving the number of em-
ployees required for activity a during period . Consider the following constraint
satisfaction problem (CSP):

S; =8 >di; V(i,j) €U
Sj+p; <SiVSi+pi <S5 Yi,je T, my=m;
@894, S) VO €{0,...0 —1},Vae A
distribute((0pa)aca, A, (2pe)ece) V0 € {0,...0 — 1}
regular((age)ocfo,. . o-1},1) Ve € &

A,.\AAA
=~ =~
[\ o
NGNS

N
N

W
—_

Constraints (40) are the precedence constraints. Constraints (41) are the ma-
chine disjunctive constraints. Constraints (42) establish the link between the job
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start time variables S and the demand variable § through generic constraint ¢
that needs to be specified for each specific problem. Constraints (43) represent
demand satisfaction through the global cardinality constraint distribute which
states that for a given period 0, dy, variables must have value a in the activ-
ity assignment vector (age)ece of employees during period 6. Last, constraints
(44) express the employee specific and regulation constraints through the global
regular language membership constraints regular [25], restricting the sequence
of values taken by the assignment variables to belong to the regular language
associated to I1.

The advantage of constraint programming is its high flexibility to model
complex demand computations, as well as complex regulation constraints.

The above CSP can be transformed into an optimization problem by in-
troducing cost variables. This can be done through the element global con-
straints (see next Section). As an alternative, in [22], a new global constraint
cost — regular(X,1I, z, C) extends the regular constraint by computing the cost
z associated by an assignment of variables X given cost matrix C.

5 Solving a lexicographic makespan and employee cost
optimization problem by a hybrid LP-CP method

In this Section, we propose a hybrid CP-LP exact method to solve a lexicographic
bicriteria optimization problem. The considered production cost is the makespan,
denoted Chyax. Let Cempr denote the total satisfaction cost of employees. The
considered problem can be denoted

min Lez(Crax; Cempl) (45)
Chax > Sj + pj V] cJ (46)
-1
Cempl - Z Z Ce@ (47)
ecf 0=0
element(Cep, (Ceap)acA,,age) Ve € E,¥0 € {0,...0 —1} (48)
(40) ... (44)

Constraints (46) enforce the makespan value. Constraint (47) defines the to-
tal cost Cemp as the sum of elementary employee/period costs represented by
decision variables C.g. element global constraints (48) simply enforce the impli-
cations ag. = v = Cep = Cepp forall§ € {0,...0—1},e € Eand v € A.. The
problem can be solved by first finding the optimal makespan C}; . (problem A)
and, second, by finding the minimal employee cost C7, | compatible with CY,
(problem B).

We propose to solve both problems A and B through implicit enumeration
in a constraint programming framework. Hence C} .. is found by iteratively

searching the smallest V' such that there is a feasible solution verifying Cpax <V
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(problem A). CZ,, is found by searching the smallest V' such that there is a
feasible solution verifying Crax = Cf . and Cempl < V' (problem B).

At each node of each above-defined search trees, constraint propagation al-
gorithms are performed to either reduce the domain of start time S and activity
variables a or to detect an inconsistency and prune the node. The branching
scheme first assigns values to start time variables and, once all start time vari-
ables are assigned, makes the remaning decisions on activity variables. Note that
constraints ¢ (42) have to ensure that once a complete assignment of the start
time variables is computed, the demand variables § are also completely assigned.

For both problems A and B, the makespan constraints set due dates on the job
operations. Hence, standard scheduling constraint propagation algorithms can
be used to reduce the start time domains. In the present work, we use precedence
constraint propagation and edge-finding. We refer to [26] for a precise description
of those algorithms.

For domain reduction of the demand and activity variables § and a, besides
the standard distribute and regular constraint propagation algorithm, we
propose to embed the linear programming relaxation of the ILP formulation
(21)...(30), limited to constraints involving ye.¢ assignment variables, into a
global constraint. Let §,, denote the smallest value in the domain of demand
variable dy, for activity a during period 6 at a given node of the constraint pro-
gramming search tree. Then we consider the following LP relaxation, considering
only labor costs.

E A ©6-1
min Z Z Z Cea9y6a0 (49)
e=1a=1 0=0
E
> Yeas > 85, Ya € ANVE € {0,...0 — 1} (50)
e=1
3 e =1 VeecE VI {0,....0 - 1} (51)
acA.
Fy<f (52)
0<Yeap <1 Ve€&,Vae A V0 €{0,...,0 -1} (53)

At a given node, the relaxation is stronger if the lower bound dg4, on the
demand is tight. This obviously depends on the definition and propagation of
constraint ¢. Each time the LP relaxation is unfeasible, which can occur due
to both demand undercoverage or labor cost upper bound violation, the current
node is pruned.

Last, whenever an upper bound Z on the total labor cost Cemp1 is known,
the reduced cost based filtering technique can be applied. Let C.ap denote the
reduced cost of an activity assignment variable y..9 and let C', , denote the
current optimal LP solution value. If, 'y, + C.ap > Z. a can be removed from
the domain of ag,.

emp
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6 Computational results on a basic employee timetabling
and job-shop scheduling problem

In this Section, we show the potential of hybrid methods to solve integrated
employee timetabling and production scheduling problems, through the resolu-
tion of basic employee and job-shop scheduling instances. For constraint based
scheduling we use ILOG Solver 6.1 and Scheduler 6.1. For LP resolution we use
ILOG Cplex 9.1. All programs are coded in C++ under Linux on a AMD x86-64
architecture.

We consider the standard job-shop scheduling problem in which a job is made
of m operations which form a chain in the precedence graph. Each job has to
be processed by all the machines successively. Hence the operations of the same
jobs are all assigned to different machines.

We consider job-shop instances of 6 jobs and 4 machines, comprising 24
operations. We consider a set of 15 employees and a set of 4+1 activities. The
job operations processing times vary from 1 to 10. We assume one time unit
corresponds to one hour. We define a timetabling period as a 8-hour shift (i.e.
T = 86). Each employee has to be assigned to one activity during each shift.
We assume activity 5 corresponds to employee inactivity during the shift. Each
employee has skills for 2 production activities out of 4. Each break must be of at
least 2 consecutive shifts (16-hour break). There is a cost (uniformly randomly
generated from 1 to 5) for assigning a production activity to an employee during
each shift. Furthermore, to ensure problem feasibility at minimal makespan, we
consider an additional set of 10 extra-employees having a greater assignment
cost (equal to 9 for all extra-employees and for all periods and all activities).

We now describe how constraint ¢ is implemented for the considered example.
We simply assume there is a mapping between activities and machines. Hence,
whenever a machine is in process during a shift, then an employee able to perform
the corresponding activity is needed. It follows that at most 4 employees can be
required simultaneously during a shift.

More precisely the link between the operation schedule S and the demand
(0ga) can be described by the following constraints. Let D = T/© and let Ji
denote the set of operations scheduled on machine k. Let aj denote the activity
corresponding to machine k.

S;i+p;>DONS; <DO+1) = 69¢1mj =1
Vje J,v0 €10,0 —1]
(Sj +p; <DOVS; > D(9+ 1),Vj IS jk) = 0gq, =0
Vk e M,V0 € [0,0 — 1]
We use the standard job-shop resolution method provided in the example li-
brary of ILOG scheduler for the scheduling constraint propagation parts. For the
search part on the start time and activity variables, we use a simple backtracking

on possible values (in a chronological way for the start times). All employee con-
straints have been coded by distribute constraints. The LP relaxation and the
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reduced cost-based filtering algorithms are embedded into a global constraint.
These algorithms are called whenever the lower bound of an activity demand is
increased for any period or when the domain of a variable (ag.) is changed.

We have generated 10 instances having the above described characteristics.
The results, comparing the hybrid method with and without reduced cost-based
filtering, are displayed in Table 1. Column Inst gives the instance number. Col-
umn Mks* gives the optimal makespan obtained by pure CP without considering
employee cost minimization. Column cost(M) gives the employee cost of the ob-
tained solution. Columns #fails(M) and CPU(M) give the total number of fails
and the CPU times of this search process. Column cost* gives the minimal em-
ployee cost solution with a makespan equal to Mks*. Columns #fails(H) and
CPU(H) give the total number of fails and the CPU times of the complete hy-
brid search method needed to find the optimal cost solution. Columns #fails(H™)
and CPU(H™) give the same values for the hybrid method used without reduced
cost-based filtering.

Inst Mks™ cost(M) CPU(M) #fails(M) cost®™ CPU(H) #fails(H) CPU(H™) #fails(H™)

1 45 75 0.2s 3 29 08s 151 1.1s 438
2 56 69 0.2s 2 26 208s 27176  4099s 2459422
3 4 69 0.2s 2 26 2.2s 732 1.7s 1691
4 40 53 0.2s 3 23 0.5s 24 0.7s 183

5 40 63 0.2s 3 27 62s 4047 2055 117850
6 48 70 0.2s 7 28 0.9s 96 1.2s 371
743 67 0.2s 2 33 0.6s 83 0.8s 242

8 37 57 0.2s 3 22 28s 8185 400s 269799
9 49 69 0.2s 4 24(22) 3364s 340742 - -

10 48 68 0.2s 3 23 41s 1140 408s 267695

Table 1. Method comparison on 10 basic employee and job-shop scheduling instances

For the proposed instances, the makespan minimisation problem is very easy
since CP always solves the problem in less than 0.2s. Note that, in contrast, the
hybrid methods outperform the standard constraint programming approaches
for employee cost minimization since the latter is unable to find the optimal so-
lution in a reasonable amount of time. Furthermore, while keeping the makespan
optimal, the employee cost is significantly improved by the hybrid methods for
all instances. One instance remains unsolved by all methods and the obtained
lower and upper bounds are given as well as the total CPU time and number of
fails needed to obtain them. This underlines the difficulty of the problem and
shows the need for improvement of the proposed methods, considering also that
the considered instances are small ones. The reduced cost-based filtering hybrid
methods outperforms the basic hybrid method on almost all instances showing
the potential of high interaction between CP and LP for this kind of difficult
integrated planning problem.
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7 Concluding remarks

We have proposed a flexible model and several ILP and CP formulations for inte-
grated employee timetabling and production scheduling. We have shown how the
flexibility of constraint programming modeling can be used to represent complex
relationships between schedules and activity demands. A hybrid exact method
involving standard constraint programming-based scheduling and timetabling
technique on one hand, and a linear programming relaxation with reduced-cost
based filtering on the other hand, has been used to solve to optimality instances
of the problem which cannot be solved by standard constraint programming.
We are planning to generate several other instances to study the behaviour of
the proposed method with different problem characteristics. The search algo-
rithm has also to be refined since we have used only standard backtracking
schemes without any particular rule for activity selection. More realistic em-
ployee timetabling constraints will have also to be considered. This may lead to
an improvement of the results of pure constraint programming techniques. The
search could also be guided by using the linear programming optimal solution.
Decomposition methods such as benders decomposition or column generation
will have also to be tested.
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Abstract. In this paper we introduce a new fuzzy evaluation function
for examination timetabling. We describe how we employed fuzzy reason-
ing to evaluate the quality of a constructed timetable by considering two
criteria, the average penalty per student and the highest penalty imposed
on any of the students. A fuzzy system was created based on a series of
easy to understand rules to combine the two criteria. A significant prob-
lem encountered was how to determine the lower and upper bounds of
the decision criteria for any given problem instance, in order to allow the
fuzzy system to be fixed and, hence, applicable to new problems without
alteration. In this work, two different methods for determining bound-
ary settings are proposed. Experimental results are presented and the
implications analysed. These results demonstrate that fuzzy reasoning
can be successfully applied to evaluate the quality of timetable solutions
in which multiple decision criteria are involved.

Keywords - Timetabling, fuzzy sets, multi-criteria decision making

1 Introduction

Timetabling refers to the process of allocating limited resources to a number
of events subject to many constraints. Constraints are divided into two types:
hard and soft. Hard constraints cannot be violated in any circumstances. Any
timetable solution that satisfies all the hard constraints specified is considered as
a feasible solution, provided that all the events are assigned to a time slot. Soft
constraints are highly desirable to satisfy, but it is acceptable to breach these
types of constraint. However, it is very important to minimise the violation of the
soft constraints, because, in many cases, the quality of the constructed timetable
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is evaluated by measuring the fulfillment of these constraints. In practice, the va-
riety of constraints which are imposed by academic institutions are very different
[6]. Such variations make the timetabling problem more challenging. Algorithms
or approaches that have been successfully applied to one problem, may not per-
form well when applied to different timetabling instances.

Researchers have employed many different approaches over the years in an at-
tempt to generate ‘optimal’ timetabling solutions subject to a list of constraints.
Approaches such as Evolutionary Algorithms [7,10,17,25], Tabu Search [8,18,
20, 26], Simulated Annealing [24], Constraint Programming [1,4, 19], Case Based
Reasoning [11,27] and Fuzzy Methodologies [2, 3,22, 27] have been successfully
applied to timetabling problems.

In 1996, Carter et al. [14] introduced a set of examination timetabling bench-
mark data. This benchmark data set consists of 13 problem instances. Originally
these data came from real university examination timetabling problems. There-
fore, it was expected that these data sets varied considerably in terms of resources
given/availability, constraints specified and how the quality of the constructed
timetable were evaluated. For the sake of generality, these data sets were then
simplified such that only the following constraints were considered:

Hard constraint The constructed timetable must be conflict free. The require-
ment is to avoid any student being scheduled for two different exams at the
same time.

Soft constraint The solution should attempt to minimise the number of exams
assigned in adjacent time slots in such a way as to reduce the number of
students sitting exams in close proximity.

In the context of these benchmark data sets, several different objective func-
tions have been introduced in order to measure the quality of the timetable
solution. In addition to the commonly used objective function that evaluates
only the proximity cost (see next section for details), other objective functions
have been derived based on the satisfaction of other soft constraints, such as
minimising consecutive exams in one day or overnight, assigning large exams
to early time slot, and others. This is discussed in more detail in the following
section.

Previous studies such as [3] and [22], demonstrated that fuzzy reasoning is a
promising technique that can be used both for modeling timetabling problems
and for constructing solutions. These studies indicated that the utilisation of
fuzzy methodologies in university timetabling is an encouraging research topic.
In this paper, we introduce a new evaluation function that is based on fuzzy
methodologies. The research presented in this paper will focus on evaluating the
constructed timetable solutions by considering two decision criteria. Although
the constructed timetable solutions were developed based on specific objectives
specified earlier, the method is general in the sense that a user could, in principle,
define additional criteria he or she wished to be taken into account in evaluating
any constructed timetables. This paper is motivated by the fact that in practice
the quality of the timetable solution is usually assessed by the timetabling officer
considering several criteria/objectives.
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In the next section, we present a brief description of existing evaluation meth-
ods, their drawbacks, and a detailed explanation of the proposed novel approach.
Section 3 presents descriptions of the experiments carried out and the results ob-
tained, followed by discussions in Section 4. Finally, some concluding comments
and future research directions are given in Section 5.

2 Assessing Timetable Quality

2.1 Existing Evaluation Function

This section presents several evaluation functions that have been developed for
Carter et al.’s benchmark data sets. The proximity cost function was the first
evaluation function used to measure the quality of timetables [14]. It is moti-
vated by the goal of spreading out each student’s examination schedule. In the
implementation of the proximity cost, it is assumed that the timetable solu-
tion satisfies the defined hard constraint i.e. that no student can attend more
than one exam at the same time. In addition, the solution must be developed
in such a way that it will promote the spreading out of each student’s exams
so that students have as much time as possible between exams. If two exams
scheduled for a particular student are t time slots apart, a penalty weight is
set to wy; = 257t where t € {1,2,3,4,5} (as implemented in [14] and widely
adopted by most subsequent research in this area). The weight is multiplied by
the number of students that sit both the scheduled exams. The average penalty
per student is calculated by dividing the total penalty by the total number of
students. The maximum number of time slots for each data set are predefined
and fixed, but no limitation in terms of capacity per time slot is set. Consecutive
exams either in the same day or overnight are treated the same, and there is
no consideration of weekends or other actual gaps between logically consecutive
days. Hence, the following formulation is used to measure this proximity cost
(adapted from Burke et al. [5]):

N—1 N
dic1 Zj:iJrl 8ijWip; —p;|

S b

where NN is the number of exams, s;; is the number of students enrolled in
both exam ¢ and j, p; is the time slot where exam 14 is scheduled, and S is the
total number of students; subject to 1 < |p; — p;| < 5.

Burke et al. [10] devised a new evaluation function in which the goal is to
minimise the number of students who have to sit two exams in the same day.
Besides the need to construct a conflict free timetable, it also required to schedule
the exams within the maximum number of time slots given. There are three time
slots per weekday and one morning slot on Saturday. A maximum capacity per
time slot is also specified. Burke and Newall [9] extended the previous evaluation
function by defining different weights for two consecutive exams in the same day
and two exams in overnight consecutive time slots.
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More recently, Petrovic et al. [22] employed fuzzy methodologies to mea-
sure the satisfaction of various soft constraints. The authors described how they
modeled two soft constraints, namely constraint on large exam and constraint on
prozimity of exams, in the form of fuzzy linguistic terms and defined the related
rule set. They used these two criteria to evaluate the timetable quality.

2.2 Disadvantages/Drawbacks of Current Evaluation Functions

As can be seen, the final value of the proximity cost penalty function is a measure
only of the average penalty per student. Although this penalty function has been
widely used by many researchers in the context of the benchmark data set, in
practice, considering only the average penalty per student is not sufficient to
evaluate the quality of the constructed timetable. The final value does not, for
example, represent the relative fairness of spreading out each student’s schedule.
For example, when examining the resultant timetable, it may be the case that a
few students have an examination timetable in which many of their exams are
scheduled in adjacent time slots. These students will not be happy with their
timetable as they will not have enough time to do their preparation. On the
other hand, the remaining students enjoy a ‘good’ examination timetable.

EXAMPLE : Consider two cases. Case 1: there are 100 students with each
student given 1 penalty cost; Case 2: there are 100 students, but now 10 students
are given 10 penalty cost respectively; the rest zero. In both cases the average
penalty per student is equal to 1, but obviously the solution in Case 2 is ‘worse’
than the solution in Case 1.

One of the authors (McCollum), with extensive experience of real-world
timetabling, having spend 12 years as a timetabliong officer and with continuing
links with the timetabling industry, has expressed (via private communication)
that ‘proximity cost’ is not the only factor considered by timetabling officers
when evaluating the quality of a timetable. Usually, a timetable evaluation is
based on several factors and some of the factors are subjective and/or based
on ambiguous information. Furthermore, to the best of our knowledge, all the
evaluation functions mentioned in Section 2.1 are integrated into the timetabling
construction process. These objective functions are used to measure the satis-
faction of specific soft constraints. This means that, the constructed timetable
is optimised for certain soft constraints. In practice, the user may consider other
criteria in evaluating the constructed timetable.

One way to handle multiple criteria decision making is by using simple lin-
ear combination. This works by multiplying the value of each criterion by a
constant weighting factor and summing to form an overall result. Each weight
represents the relative important of each criterion compared to the other crite-
ria. In reality, there is no simple way to determine the precise values for these
weights, especially weights that can be used across several problem instances
with different complexity. Fuzzy systems are a generalisation of a linear system,
in that they can implement both linear and non-linear combinations. The nature
of fuzzy systems that allows the use of linguistic terms to express the systems’
behaviours provides a transparent representation of the nonlinear system under
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Fig. 1. Components of a fuzzy system

consideration. Fuzzy systems apply ‘if-then’ rules and logical operators to map
the relationships between input and output variables in the system. Fuzzy rules
may be elicited from ‘experts’, which for the problem under consideration refers
to timetabling officers or timetabling consultants. As mentioned earlier, we have
access to such experts who could provide us with enough knowledge to develop
a fuzzy system.

Therefore, in this paper a new evaluation function utilising fuzzy method-
ologies is introduced. Basically, the idea is to develop an independent evaluation
function that can be used to measure the quality of any constructed examina-
tion timetable. The timetable can be generated using any approach with specific
objectives to achieve. Subsequently, the timetable solution with the problem de-
scription and the list of factors that need to be evaluated are submitted to the
evaluation function.

2.3 Overview of Fuzzy Systems

This subsection is largely reproduced from our paper [3] for the purpose of
completeness. In many decision making environments, it is often the case that
several factors are simultaneously taken into account. Often, it is not known
which factor(s) need to be emphasised more in order to generate a better decision.
Somehow a trade off between the various (potentially conflicting) factors must
be made. The general framework of fuzzy reasoning facilitates the handling of
such uncertainty.

Fuzzy systems are used for representing and employing knowledge that is
imprecise, uncertain, or unreliable. Figure 1 shows the 5 interconnected compo-
nents of a fuzzy system. The fuzzification component computes the membership
grade for each crisp input variables based on the membership functions defined.
The inference engine then conducts the fuzzy reasoning process by applying the
appropriate fuzzy operators in order to obtain the fuzzy set to be accumulated
in the output variable. The defuzzifier transforms the output fuzzy set to crisp
output by applying specific defuzzification method.
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More formally, a fuzzy set A of a universe of discourse X (the range over which
the variable spans) is characterised by a membership function ps : X — [0,1]
which associates with each element x of X a number p4(z) in the interval [0, 1],
with pa(x) representing the grade of membership of x in A [28]. The precise
meaning of the membership grade is not rigidly defined, but is supposed to
capture the ‘compatibility’ of an element to the notion of the set. Rules which
connect input variables to output variables in ‘IF ... THEN ...’ form are used
to describe the desired system response in terms of linguistic variables (words)
rather than mathematical formulae. The ‘IF’ part of the rule is referred to as the
‘antecedent’, the ‘THEN’ part is referred to as the ‘consequent’. The number of
rules depends on the number of inputs and outputs, and the desired behaviour of
the system. Once the rules have been established, such a system can be viewed
as a non-linear mapping from inputs to outputs.

There are many alternative ways in which this general fuzzy methodology
can be implemented in any given problem. In our implementation, the standard
Mamdani style fuzzy inference was used with standard Zadeh (min-max) oper-
ators. In Mamdani inference [21], rules are of the following form:

R; :if (x1 is A;1) and ... and (. is A;.) then (y is C;) for i =1,2,...,L

where L is the number of rules, z; (j = 1,2,3,...,r) are input variables, y is
output variable, and A;; and C; are fuzzy sets that are characterised by mem-
bership functions A;;(x;) and C;(y), respectively. The final output of a Mamdani
system is one or more arbitrarily complex fuzzy sets which (usually) need to be
defuzzified. It is not appropriate to present a full description of the functioning
of fuzzy systems here; the interested reader is referred to Cox [16] for a simple
treatment or Zimmerman [29] for a more complete treatment.

2.4 The Proposed Fuzzy Evaluation Function

As an initial investigation, this proposed approach was implemented on solu-
tions which were generated based on the proximity cost requirements (aver-
age penalty), with one additional factor/objective. Beside the average penalty
per student, the highest penalty that occurred amongst the students (highest
penalty) was also taken into account. However, the latter factor was only evalu-
ated after the timetable was constructed. That is to say, there was no attempt
to include this factor in the process of constructing the timetable.

A fuzzy system with these two input variables (average penalty and highest
penalty) and one output variable (quality) was constructed. Each of the input
variables were associated with three linguistic terms; fuzzy sets corresponding to
a meaning of low, medium and high. In addition to these three linguistic terms,
the output variable (quality) has two extra terms that correspond to meanings
of very low and very high. These terms were selected as they were deemed the
simplest possible to adequately represent the problem. Gaussian functions of
the form e—(@=)*/ "2, where ¢ and o are constants, are used to define the fuzzy
set for each linguistic term. This is on the basis that they are the simplest and
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Fig. 2. Membership functions for input and output variables

most common choice, given that smooth, continuously varying functions were
desired. The membership functions defined for the two inputs, average penalty
and highest penalty, and the output quality are depicted in Figure 2 (a) — (c),
respectively.

In the case of such a system having two inputs with three linguistic terms
there are nine possible fuzzy rules that can be defined in which each input vari-
able has one linguistic term. As we already know, from the definition of proximity
cost, the objective is to minimise the penalty cost, meaning that, the lower the
penalty cost, the better the timetable quality. Also, based on everyday experi-
ence, we would prefer the highest penalty for any one student to be as low as
possible, as this will create more fair timetable for all students. Based upon this
knowledge we defined a fuzzy rule set consisting of all 9 possible combinations.
Each rule set connects the input variables to a single output variable, quality.
The fuzzy rule set is presented in Figure 3. As stated above, standard Mam-
dani style fuzzy inference was used to obtain the fuzzy output for a given set of
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Rule 1: IF (average penalty is low) AND (highest penalty is low)
THEN (quality is very high)

Rule 2: IF (average penalty is low) AND (highest penalty is medium)
THEN (quality is high)

Rule 3: IF (average penalty is low) AND (highest penalty is high)
THEN (quality is medium)

Rule 4: IF (average penalty is medium) AND (highest penalty is low)
THEN (quality is high)

Rule 5: IF (average penalty is medium) AND (highest penalty is medium)
THEN (quality is medium)

Rule 6: IF (average penalty is medium) AND (highest penalty is high)
THEN (quality is low)

Rule 7: IF (average penalty is high) AND (highest penalty is low)
THEN (quality is medium)

Rule 8: IF (average penalty is high) AND (highest penalty is medium)
THEN (quality is low)

Rule 9: IF (average penalty is high) AND (highest penalty is high)
THEN (quality is very low)

Fig. 3. Fuzzy rules for Fuzzy Fvaluation System

inputs. The most common form of defuzzification, ‘centre of gravity defuzzifica-
tion’, was then used to obtain a single crisp (real) value for the output variable.
This process is based upon the notion of finding the centroid of a planar figure,

as given by:
Z (i) - i
— ()
This single crisp output was then taken as the quality of the timetable.

2.5 Input Normalisation

With this proposed fuzzy evaluation function, we carried out experiments to
determine whether the fuzzy evaluation system was able to distinguish a range
of timetable solutions based on the average penalty per student and the highest
penalty imposed on any of the students. All the constructed timetables for the
given problem instance were evaluated using the same fuzzy system, and their
quality determined based on the output of the fuzzy system. The constructed
timetable with the biggest output value was selected to be the ‘best’ timetable.

Based on our previous experience [2, 3], the average penalty values for dif-
ferent data sets result in widely different scales due to the different complexity
of the problem instances. For example, in the STA-F-83 data set (from Carter
et al— see below for full details of the data sets used) an average penalty of
160.42 was obtained, whereas for UTA-S-92, the average penalty was 3.57.

As can be seen in Figure 2(a) and Figure 2(b), the input variables have their
universe of discourse defined between 0.0 and 1.0. Therefore, in order to use this
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fuzzy model, both of the original input variables must be normalised within the
range [0.0,1.0]. The transformation used is as follows:

, (v — lower Bound)
v =

(upper Bound — lower Bound)

where v is the actual value in the initial range [lower Bound, upper Bound). In ef-
fect, the range [lower Bound, upper Bound) represents the actual lower and upper
boundaries for the fuzzy linguistic terms.

By applying the normalisation technique, the same fuzzy model can be used
for any problem instance, either for the benchmark data sets as used here, or
for a new real-world problem. This would provide flexibility when problems of
various complexity are presented to the fuzzy system. In such a scheme, the
membership functions do not need to be changed from their initial shapes and
positions. In addition, rather than recalculate the parameters for each input
variable’s membership functions, it is much easier to transform the crisp input
values into normalised values in the range of [0.0, 1.0]. The problem thus becomes
one of finding suitable lower and upper bounds for each problem instance.

3 Experiments on Benchmark Problems

3.1 Experiments Setup
In order to test the fuzzy evaluation system, the Carter et al.’s [14] benchmark

data sets were used. The 12 instances in these benchmark data sets, with different
characteristics and various level of complexity, are shown in Table 1.

Table 1. Examination timetabling problem characteristics

Data Set Number of Number of Number of
slots(7') exams (N) students (5)

CAR-F-92 32 543 18419
CAR-S-91 35 682 16925
EAR-F-83 24 190 1125
HEC-S-92 18 81 2823
KFU-S-93 20 461 5349
LSE-F-91 18 381 2726
RYE-F-92 23 486 11483
STA-F-83 13 139 611
TRE-S-92 23 261 4360
UTA-S-92 35 622 21266
UTE-S-92 10 184 2750

YOR-F-83 21 181 941
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For each instance of the 12 data sets, 40 timetable solutions were constructed
using a simple sequential constructive algorithm with backtracking, as previously
implemented in [3]. We used 8 different heuristics to construct the timetable
solutions, for each of which the algorithm was run 5 times to obtain a range
of solutions. However, due to the nature of the heuristics used, in some case, a
few of the constructed timetable solutions have the same proximity cost value.
Therefore, for the purpose of standardization, 35 different timetable solutions
were selected out of the 40 constructed timetable solutions, by firstly removing
any repeated solution instances and then just removing at random any excess.
The idea is to obtain a set of timetable solutions with variations of timetable
solution quality, in which none of the solutions have the same quality in terms of
proximity cost (i.e average penalty per student). The timetable solutions were
constructed by implementing the following heuristics:

— Three different single heuristic orderings:
e Least Saturation Degree First (SD),
e Largest Degree First (LD), and
e Largest Enrollment First (LE),
— Three different fuzzy multiple heuristic orderings:
e a Fized Fuzzy LD+LE Model,
o a Tuned Fuzzy LD+LE Model, and
o a Tuned Fuzzy SD+LE Model (see [3] for details of these), and
random ordering, and
deliberately ‘poor’ ordering (see below).

A specific ‘poor’ heuristic was utilised in an attempt to purposely construct bad
solutions. The idea was to attempt to determine the upper bound of solution
quality (in effect, though not formally, the ‘worst’ timetable for the given problem
instance). Basically the method was to deliberately assign student exams in
adjacent time slots. In order to construct bad solutions, the LD was initially
employed to order the exams. Next, the exams were sequentially selected from
this ordered exams list, and assigned to the time slot that caused the highest
proximity cost; this process continued until all the exams were scheduled.

The 35 timetable solutions were analysed in order to determine the min-
imum and the maximum values for both the input variables, average penalty
and highest penalty. These values were then used for the normalisation process
(see Section 2.5). However, because the 12 data sets have various complexity
(see Table 1), the determination of the initial range for each data set is not a
straight-forward process. Thus, two alternative boundary settings were imple-
mented in order to identify the appropriate set of lowerBound and upperBound
for each data set.

The first boundary setting used lowerBound = 0.0 and the upperBound =
mazxValue, where mazValue is the largest value obtained from the set of 35
solutions. However, from the literature, the lowest value yet obtained for the
STA-F-83 data set is around 130 [15]. Thus, it did not seem sensible to use
zero as the lower bound in this case. In order to attempt to address this, we
investigated the use of a non-zero lower bound. Of course, a formal method for
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determining the lower bound for any given timetabling instance is not currently
known. Hence, the second boundary setting used lowerBound = minValue and
upperBound = mazxValue, where minValue is the smallest value obtained from
the set of 35 constructed solutions for the respective data set.

In this implementation, both input variables, average penalty and highest
penalty, were independently normalised based on their respective min Value and
mazValue. The fuzzy evaluation system described earlier (see Section 2.4) was
then employed to evaluate the timetable solutions. The same processes were ap-
plied to all of the data sets listed in Table 1. The fuzzy evaluation system was
implemented using the ‘R’ language (The R Foundation for Statistical Comput-
ing Version 2.2.0) [23].

3.2 Experimental Results

In this section the experiment results are presented. Table 2 shows the min-
imum and maximum values obtained for both criteria. Figures 4(a) and 4(b)
show the evaluation results obtained by the fuzzy evaluation system for the
LSE-F-91 and TRE-S-92 data sets. These two data sets are shown as represen-
tative examples chosen at random. Both graphs show the results obtained when
the boundary setting [minValue, maxzValue] was implemented. In the graph,
the z-axis (Solution Rankings) represents the ranking of the timetable solution
quality evaluated by using the fuzzy evaluation function; in the order of the best
solution to the worst solution. The y-axis represents the normalised input values
(average penalty and highest penalty) and the output values (quality) obtained
for the particular timetable solution. These two graphs show that the fuzzy eval-
uation function has performed as desired, in that the overall (fuzzy) quality of
the solutions varies from close to zero to close to one.

Table 2. Minimum and maximum values for Average Penalty and Highest Penalty
obtained from the 35 timetable solutions for each data set

Average Penalty Highest Penalty
Data Set Minimum Maximum Minimum Maximum

Value Value Value Value
CAR-F-92 4.54 11.42 65.0 132.0
CAR-S-91 5.29 13.33 68.0 164.0
EAR-F-83 37.02 71.28 105.0 198.0
HEC-S-92  11.78 31.88 75.0 136.0
KFU-S-93 15.81 43.40 98.0 191.0
LSE-F-91 12.09 32.38 78.0 191.0
RYE-F-92  10.38 36.71 87.0 191.0
STA-F-83 160.75  194.53 227.0 284.0
TRE-S-92 8.67 17.25 68.0 129.0
UTA-S-92 3.57 8.79 63.0 129.0
UTE-S-92  28.07 56.34 83.0 129.0

YOR-F-83  39.80 64.48 228.0 331.0
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Fig. 4. Indicative illustrations of the range of normalised inputs and associated output
obtained for the LSE-F-91 and TRE-S-92 data sets

Tables 3 and 4 show a comparison of the results obtained using the two
alternative forms of the normalisation process. The Solution Number is used
to identify a particular solution within the 35 timetable solutions used in the
experiments for each data set. In both tables, the fifth and sixth columns (la-
beled as ‘Range [minValue, mazValue]’ indicates the fuzzy evaluation value and
the rank of the solution relative to the other solutions, when the boundary
range [min Value, maz Value] was used. The last two columns in the tables show
the evaluation values and solution ranking obtained when the boundary range
[0, maz Value] was used. Only the first 10 ‘best’ timetable solutions for each of
the data sets are presented, based on the ranking produced when the boundary
range [min Value, maz Value] was used.
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Table 3. A comparison of the results obtained using the two alternative forms of the
normalisation process for six of the data sets

Timetable Criteria Range[minValue, maxValue] Range[0, maxValue]
Data Set  Solution  Average Highest Evaluation Solution Evaluation Solution
Number Penalty  Penalty Value Ranking Value Ranking
CAR-F-92 19 4.544 65 0.888503 1 0.534427 1
17 4.624 71 0.876804 2 0.517946 2
18 4.639 71 0.876791 3 0.517485 3
16 4.643 71 0.876788 4 0.517366 4
7 5.148 68 0.876583 5 0.510084 5
10 5.192 69 0.873279 6 0.506692 6
13 5.508 68 0.858276 7 0.500729 7
12 5.532 68 0.856617 8 0.500120 8
11 5.595 68 0.851966 9 0.498538 9
2 5.609 68 0.850863 10 0.498184 10
CAR-S-91 17 5.292 68 0.888524 1 0.557585 1
13%* 5.573 75 0.880205 2 0.537593 3
11%* 5.911 68 0.879621 3 0.542750 2
15 5.654 75 0.879244 4 0.535472 4
14 5.842 75 0.875877 5 0.530812 5
6% 6.079 76 0.868161 6 0.523516 8
2% 6.393 71 0.860211 7 0.526116 6
21%* 6.509 71 0.853145 8 0.523572 7
12 5.688 83 0.850233 9 0.520297 9
16 5.690 83 0.850227 10 0.520255 10
EAR-F-83 21 37.018 116 0.868135 1 0.467867 1
4* 41.860 118 0.834883 2 0.444700 3
5% 43.637 105 0.827016 3 0.454672 2
18 44.147 118 0.798099 4 0.432416 4
1 41.324 131 0.748303 5 0.415267 5
3% 43.628 129 0.733864 6 0.411292 7
20* 44.968 127 0.718542 7 0.411481 6
12 49.662 114 0.710776 8 0.392966 8
2% 41.178 144 0.699109 9 0.370814 11
16* 44.980 135 0.674252 10 0.385906 9
HEC-S-92 21 11.785 83 0.863057 1 0.506506 1
14 14.774 75 0.854699 2 0.495547 2
13 13.236 84 0.853706 3 0.489407 3
* 14.162 83 0.847966 4 0.482514 5
16* 14.635 83 0.838633 5 0.477754 7
15% 14.217 85 0.832653 6 0.476641 8
1* 15.594 78 0.828916 7 0.481021 6
6% 15.911 75 0.817611 8 0.485117 4
27 15.763 84 0.801080 9 0.463727 9
8% 14.124 94 0.727535 10 0.446459 11
KFU-S-93 17 15.813 98 0.888529 1 0.541211 1
15 16.904 101 0.884358 2 0.526210 2
14 17.336 100 0.883340 3 0.524294 3
16 17.920 104 0.876034 4 0.513226 4
3% 20.022 102 0.852341 5 0.501383 11
9% 16.463 113 0.847871 6 0.509402 5
* 16.471 113 0.847868 7 0.509339 6
6%* 16.500 113 0.847858 8 0.509119 7
8% 16.500 113 0.847858 9 0.509119 8
10%* 16.500 113 0.847858 10 0.509119 9
LSE-F-91 11* 13.458 78 0.881499 1 0.552817 2
13* 12.094 87 0.879126 2 0.555747 1
6% 14.720 89 0.855424 3 0.523229 4
12% 12.349 102 0.812127 4 0.527563 3
10* 16.408 91 0.804048 5 0.504874 5
32% 17.942 98 0.722929 6 0.480142 7
5% 18.564 93 0.720053 7 0.481747 6
9% 16.486 109 0.707889 8 0.476028 9
16* 18.979 95 0.707212 9 0.474395 11
* 17.174 105 0.704871 10 0.476479 8
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Table 4. A comparison of the results obtained using the two alternative forms of the
normalisation process for the remaining six data sets

Timetable Criteria Range[minValue, maxValue] Range[0, maxValue]
Data Set  Solution  Average Highest Evaluation Solution Evaluation Solution
Number Penalty  Penalty Value Ranking Value Ranking
RYE-F-92 21 10.384 87 0.888528 1 0.610225 1
8 12.180 97 0.871582 2 0.558378 2
10 12.337 97 0.870489 3 0.556102 3
20 12.264 98 0.868672 4 0.555205 4
6 12.976 97 0.864830 5 0.547756 5
9 12.417 102 0.854386 6 0.545595 6
7 12.094 105 0.839576 7 0.544225 7
3% 13.678 104 0.831331 8 0.527428 12
2% 14.441 104 0.817334 9 0.519821 14
4% 14.581 104 0.814229 10 0.518513 15
STA-F-83 21 160.746 227 0.888536 1 0.215426 1
20 161.151 227 0.887829 2 0.214107 2
15 164.375 228 0.871792 3 0.202156 3
3 167.394 227 0.824391 4 0.196779 4
31 168.195 227 0.805614 5 0.194967 5
18 168.863 227 0.788882 6 0.193535 6
11%* 168.781 232 0.788385 7 0.182500 17
16* 169.100 227 0.782864 8 0.193043 7
29%* 171.249 227 0.733062 9 0.188900 8
9% 171.391 227 0.730410 10 0.188645 9
TRE-S-92 19%* 9.311 69 0.880078 1 0.478231 2
8% 9.389 68 0.878204 2 0.479078 1
20 9.598 68 0.871588 3 0.475325 3
* 9.039 75 0.868946 4 0.468005 6
6% 9.757 71 0.864316 5 0.465758 8
17* 9.885 68 0.858365 6 0.469941 4
21% 8.671 7 0.855435 7 0.469016 5
1* 10.003 68 0.851293 8 0.467596 7
10 9.856 75 0.846708 9 0.454514 9
16* 9.981 s 0.826007 10 0.446743 11
UTA-S-92 17 3.567 63 0.888536 1 0.532771 1
11 3.833 68 0.878185 2 0.511100 2
14 3.911 68 0.876019 3 0.508369 3
13 3.927 68 0.875482 4 0.507798 4
16 3.977 68 0.873738 5 0.506065 5
12 4.143 68 0.866816 6 0.500466 6
24 4.531 73 0.807693 7 0.475697 7
23 4.573 73 0.802872 8 0.474319 8
27 4.581 73 0.801938 9 0.474053 9
8 4.976 68 0.762605 10 0.472232 10
UTE-S-92 19 30.323 83 0.879116 1 0.438284 1
18 29.718 86 0.878651 2 0.429775 2
21 28.069 90 0.853031 3 0.420748 3
20 32.804 88 0.835146 4 0.400981 4
26 31.522 91 0.826953 5 0.392480 5
15 33.935 91 0.780095 6 0.378000 6
27 34.928 90 0.767341 7 0.377994 7
12%* 32.996 94 0.758297 8 0.367082 9
17* 29.695 98 0.723270 9 0.369027 8
8 30.555 98 0.721926 10 0.362837 10
YOR-F-83 21 39.801 234 0.883004 1 0.372139 1
8%* 44.158 233 0.837983 2 0.363036 3
20* 44.412 231 0.831362 3 0.365581 2
9 45.645 228 0.791749 4 0.359602 4
14 45.736 238 0.785008 5 0.345675 5
1 46.810 234 0.751639 6 0.341781 6
2 46.862 235 0.749650 7 0.340088 7
17 47.142 240 0.736830 8 0.330597 8
32% 46.947 244 0.731929 9 0.324728 10
31%* 47.396 242 0.726141 10 0.324908 9
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4 Discussion

The fuzzy system presented here provides a mechanism to allow an overall de-
cision in evaluating the quality of a timetable solution to be made based on
common sense rules that encapsulate the notion that the timetable solution
quality increases as both the average penalty and the highest penalty decrease.
The rules are in a form that is easily understandable by any timetabling officer.

Looking at Figures 4(a) and 4(b) it can be seen that, in many cases, it is
not guaranteed that timetable solutions with low average penalty will also have
low highest penalty. This observation confirmed the assumption that considering
only the proximity cost to measure timetable solution quality is not sufficient.
As an example, if the detailed results obtained for the [0, mazValue] boundary
range for LSE-F-91 in Table 3 are analysed, it can be seen that solution 13 (with
the lowest average penalty) is not ranked as the ‘best’ solution. The same effect
can be observed in solution 21 for the TRE-S-92 data set and solution 21 for
the UTE-S-92 data set in Table 4.

In these three data sets (LSE-F-91, TRE-S-92 and UTE-S-92), the timetable
solutions with the lowest average penalty were not selected as the ‘best’ timetable
solution, because the decision made by the fuzzy evaluation system also takes
into account another criterion, the highest penalty. This finding can also be seen
in the other data sets, but it is not too obvious especially if we only focus on the
first 3 ‘best’ solution. Regardless, in terms of functionality, these results indicate
that the fuzzy evaluation system has performed as intended in measuring the
timetable’s quality by considering two criteria simultaneously.

Analysing Tables 3 and 4 further, it can also be observed that the decision
made by the fuzzy evaluation function is affected slightly when the different
boundary settings are used to normalise the input values. The consequence of
this is that the same timetable solution might be ranked in a different order, de-
pendent on the boundary conditions. In both tables, the solutions with different
ranking position are marked with *. For the CAR-F-92 (in Table 3) and UTA-
S-92 data sets (in Table 4), the solution rankings are unchanged by altering
the boundary settings. In several cases, the solution rankings are only changed
slightly. It is also interesting to note that, in a few cases, for example solution
3 for KFU-S-93 (in Table 3) and solution 11 for STA-F-83 (in Table 4), the
ranking change is quite marked.

Overall, the performance of the fuzzy evaluation system utilizing the bound-
ary range [0.0, mazValue] did not seem as satisfactory as when the boundary
range [minValue, mazValue] was used. This observation is highlighted by Ta-
ble 5, which presents the fuzzy quality measure obtained for the ‘worst’ and
‘best’ solutions as evaluated under the two different boundary settings. When
the boundary range [0.0, maz Value] was used, it can be seen that the fuzzy eval-
uation system evaluated the quality of the timetable solutions for the 12 data
sets in the overall range of 0.111464 to 0.610225. In the case of STA-F-83, the
‘best’ solution was only rated as 0.215426 in quality. The quality of timetable
solutions falls only in the regions of linguistic terms that correspond to meanings
of very low, low and medium in the timetable quality fuzzy set (see Figure 2(c)).
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Table 5. Range of timetable quality

Range [0, maxV alue] Range [minV alue, mazV alue]
Data Set Worst Best Worst Best

Solution  Solution Solution Solution
CAR-F-92 0.111464  0.534427 0.111464 0.888503
CAR-S-91 0.111464  0.557585 0.111464 0.888524
EAR-F-83 0.111465 0.467867 0.111465 0.868135
HEC-S-92 0.127502  0.506506 0.155374 0.863057
KFU-S-93 0.111466  0.541211 0.111466 0.888529
LSE-F-91 0.111895  0.555747 0.112182 0.881499
RYE-F-92 0.115999  0.610225 0.119240 0.888528
STA-F-83 0.111464  0.215426 0.111464 0.888536
TRE-S-92 0.111476  0.479078 0.111488 0.880078
UTA-S-92 0.111464 0.532771 0.111464 0.888536
UTE-S-92 0.111464  0.438284 0.111464 0.879116
YOR-F-83 0.120046  0.372139 0.213388 0.883004

This is because the lower bound value used here (i.e. lowerBound = 0.0) is far
smaller than the actual smallest values. Consequently, the input values for even
the lowest values (i.e. the ‘best’ solution qualities) are transformed to normalised
values that always fall within the regions of the medium and high linguistic terms
in the input variables. As a result, the normalised input values will not cause
any rule to be fired or, the firing level for any rule is relatively very low. This is
illustrated in Figure 5(a), in which the activation level of the consequent part for
Rule 1 is equal to 0.13. Although the possibility exists for any input to fall into
more than one fuzzy set, so that more than one rule can be fired, the aggregation
of fuzzy output for all rules will obtain a final shape that will only produce a
low defuzzification value.

In contrast, Figure 5(b) illustrates the situation when the normalised input
values fall in the regions of linguistic term that corresponding to the meaning
of low. In this situation, a high defuzzification value will be obtained due to
the fact that most of the rules will have a high firing level. Thus, all of the
solutions being ranked first had quality values more than 0.8, when the initial
range [minValue, maz Value] was used. In this case, the quality of timetable so-
lutions falls in the regions of the linguistic terms that correspond to meanings
of high and very high for the timetable quality fuzzy set (see Figure 2(c)). As
might be expected, from the fact that the actual minimum and maximum val-
ues from the 35 constructed timetable solutions were used, the fuzzy evaluation
results were nicely distributed along the universe of discourse of the timetable
quality fuzzy set. For a clearer comparison of the effect of the two boundary
settings, the distribution of input and output values for the UTA-S-92 data set
are presented in Figure 4. As can be seen, the input values (Figures (b) and
(c)) are concentrated in the middle regions (0.4 — 0.7) of the graphs when the
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Fig. 5. Firing level for Rule 1 with different normalised input values

boundary range [0.0, maz Value] was used. In contrast, when the boundary range
[minValue, maz Value] was used, the input values were concentrated in the bot-
tom regions of the graphs. Based upon the defined fuzzy rules, we know that
the timetable quality increases with a decrease in both input values. Indeed,
this behavior of the output can be observed for both boundary setting (see Fig-
ure 4(a)). Using either of the boundary settings, the fuzzy evaluation system
is capable of ranking the timetable solutions. It is purely a matter of choosing
the appropriate boundary settings of the fuzzy sets for the input variables. One
of the deficiencies of this fuzzy evaluation, at present, appears to be that there
is no simple way of selecting the boundary settings of the input variables. The
drawback is that both boundary settings implemented so far can only be ap-
plied after a number of timetable solutions are generated. Therefore significant
amounts of times are required to construct and analyse the solutions. Further-
more, if boundary setting are based on the actual minimum and maximum values
from the existing timetable solutions, the fuzzy evaluation system might not be
able to evaluate a newly constructed timetable solution if the input values for
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the decision criteria for the new solution lie outside the range of the fuzzy sets.
(Actually, output values can always be calculated — the real problem is that
the resultant solution quality will always be the same once both criteria reach
the left-hand boundary of their variables.) Thus it would be highly beneficial if
we could determine approximate boundary settings, particularly some form of
estimate of the lower bound of the assessment criteria, based upon the problem
structure itself.

5 Conclusions

In conclusion, the experimental results presented here demonstrate the capa-
bility of a fuzzy approach of combining multiple decision criteria in evaluating
the overall quality of a constructed timetable solution. However, in the fuzzy
system implementation the selection of the lowerBound and upperBound for the
normalisation process is extremely important because it has a significant effect
on the overall quality obtained. The initial results presented here only use two
decision criteria to evaluate the timetable quality. Possible directions for future
research include extending the application of the fuzzy evaluation system by
considering more criteria, and devising a more sophisticated approach to de-
termine approximate boundary settings for the normalisation process. Another
aspect to be investigated further is in comparing the quality assessments pro-
duced by such fuzzy approaches with the subjective assessments of quality that
timetabling officers make in real-world timetabling problems.
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Abstract. A standard problem within universities is that of Teaching
Space Allocation; the assignment of rooms and times to various teaching
activities. The focus is usually on courses that are expected to fit into
one room. However, it can also happen that the course will need to be
broken up, or “split”, into multiple sections. A lecture might be too
large to fit into any one room. Another common example is that the
course corresponds to seminars or tutorials, and although hundreds of
students are enrolled, each individual class, or event, should be just tens
of students in order to meet student and institutional preferences.
Typically, decisions as to how to split courses need to be made within
the context of limited space requirements. Institutions do not have an
unlimited number of teaching rooms, and need to effectively use those
that they do have. The efficiency of space usage is usually measured by
the overall “utilisation” which is basically the fraction of the available
seat-hours that are actually used. A multi-objective optimisation prob-
lem naturally arises; with a trade-off between satisfying preferences on
splitting, a desire to increase utilisation, and also to satisfy other con-
straints such as those based on event location, and timetabling conflicts.
In this paper we explore such trade-off surfaces. The explorations them-
selves are based on a local search method we introduce that attempts to
optimise the space utilisation by means of a “dynamic splitting” strategy.
The local moves are designed to improve utilisation and the satisfaction
of other constraints, but are also allowed to split, and un-split, courses
so as to simultaneously meet the splitting objectives.

1 Introduction

An important issue in the management of university teaching space is that of
planning for future needs. Support for such decision-making, is generally divided
into two broad, and sometimes overlapping, areas:
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— space management: near-term planning
— space planning: long-term planning, including capacity planning

A fundamental stage of capacity planning is to estimate the projected stu-
dent enrollments, and multiply by the expected weekly student contact hours
to obtain the total demand for “seat-hours”. Similarly, for the rooms we could
just sum up the room capacities and multiply by the number of hours they are
available in order to determine the “seat-hours supply”. A naive way to per-
form capacity planning, based on such seat-hours estimates, would be simply to
ensure that the supply exceeds the demand. However, it is very rare that it is
possible to use all of the seats. The efficiency of space usage is usually measured
by giving a figure for the “Utilisation”; the fraction (or percentage) of available
seat-hours that actually end up being used. In real institutions, the utilisation
can be surprisingly low, perhaps only 20-50%. To compensate for this, we need
to build in excess capacity [14, 15].

Naturally, such excess capacity is expensive, because it entails planning for
seats to be underused. Good planning should reduce the excess capacity without
increasing the risks that expected activities will not find a space. However, this
is difficult because there is little fundamental understanding of why the utilisa-
tion is so low in the first place, or of the interaction of various constraints and
objectives with the utilisation.

A study of this issue was initiated in [5, 6], however, that work, like the ma-
jority of work on (university) course timetabling research was concerned with un-
splittable “events” (or “courses” or “classes”). Meaning, that they are “atomic”,
they are not to be subdivided, but need to be assigned to a single room and
timeslot. However, in some circumstances, courses cannot be taken to be atomic,
but must instead be subdivided, or “split”, before allocating them to rooms and
timeslots. In this paper we extend the work of [5, 6] to the case of courses that
require considerable splitting.

Course splitting tends to be driven by one (or both) of the following require-
ments:

1. Small-Group Splitting: Courses that are intrinsically designed to be taught
in small groups, such as seminars or tutorials.

2. Constraint-Driven Splitting: Courses that could in principle be held
without splitting, but for which splitting is forced because of other con-
straints:

(a) capacity constraints: the course is simply too large to fit into one
room.

(b) timetable constraints: the enrollment is large and across such a wide
spectrum of students that it will conflict with many other courses, and
this greatly reduces the chances of obtaining a conflict-free timetable.
Splitting such a course into multiple sections can greatly help timetabling
pressures, as students are more likely to be able to find a section that is
conflict free for them.
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Standard university course timetabling methodologies (e.g. [17,4,7,8,10,9,
16,11]) assign events to rooms and timeslots, satisfying capacity constraints,
so that students do not have to take two events at the same time (and possibly
some sequencing or adjacency constraints) and optimising the satisfaction of soft
constraints such as the avoidance of unpopular times. The best-known problem
that consists of “timetabling with splitting” is the “Student Sectioning Problem”
(SSP) [3,2, and others]. In this problem, we are given the enrollment of students
into courses, but each course consists of multiple sections, and students need
to be assigned to sections in such a way as to avoid timetable clashes whilst
respecting room capacities. This means that the student sectioning problem is
most relevant to the short period between students enrolling into courses, and
students needing to know which section they should attend.

However, in this paper, we are not studying such “immediate” problems as
the SSP, but instead we are concerned with decision support for space capacity
planning over a longer time frame. For space planning, we need to understand
which utilisations are achievable and how they depend on the decision criteria,
such as section size, and the constraints, such as those arising from location and
timetabling. Our goals are:

— Devise algorithms to do splitting together with event allocation

— Explore and understand the trade-offs between the various objectives

— Understand the impact of such trade-offs on the use of expected utilisation
as a safety margin within space planning

To achieve the above, our general approach can be outlined as follows:

1. Formulate or model the problem: This includes obtaining a model of splitting
that contains the main aspects - although it does not need to contain all the
details. For example, we will cover the small group requirements by simply
introducing objectives related to the section size or number.

2. Use local search and standard simulated annealing to explore the solution
space and deal with the splitting problem.

3. Carry out experiments in order to draw the trade-off surfaces.

The specific contributions made in this paper are:

— Dynamic splitting: A local search based on exchanges of events, but in
which we also make decisions on how to do the splitting. Moves can split
courses, and can also rejoin them in order to suit the available rooms.

— preliminary trade-off surfaces: We present results on the interaction of
objectives such as location and timetabling, with preferences on section sizes.

Outline of the paper: Section 2 gives the basic description of the problem con-
straints and objective functions, and a brief description of the data sets. In
Section 3 we outline a form of local search that does not include splitting, but
which forms a good basis for the algorithms for splitting presented in Section 4.
In Section 5 we compare the performances of the various algorithms. In Section 6
we move to the exploration of the solution space itself, presenting results for the
trade-offs between the various objectives.
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2 Problem Description

Teaching space allocation is concerned with allocating events (courses/course
offerings, tutorials, seminars) to rooms and times. In this section, we will cover
the basic language of the problem; the constraints and objectives, and then the
dataset that we will use.

2.1 Courses, Events and Rooms
For each course we have:

. Size: the number of students in the course

. Timeslots: the number of timeslots the course uses during the week
. Spacetype: Lecture, Seminar, Tutorial, etc.

. Department: the department that owns or administers the course

=W N =

One can consider other aspects. For example, special features that are im-
posed by some constraints. However, we shall not consider these here. Also note
that the word “course” can mean many different things; ranging from the entire
set of classes constituting a degree down to a single class. However, in this pa-
per, we use “course” in the sense of a set of activities of a single type such as a
lecture or tutorial, and associated with a single subject. In the case of lectures,
the course would be taught by a single faculty. In general, a “course” might have
multiple associated types. For example, lectures in french grammar might always
be accompanied by seminars on french literature. However, for the purposes of
this paper we will disregard such cross-spacetype dependencies, and regard the
lectures and tutorials as separate courses.

Courses will generally be split into sections, though we generally use the term
event to denote courses/sections that are “atomic”, that is, to be assigned to a
single room and timeslot. Events have the same information as courses except
that each takes only a single timeslot. For events we have:

1. Size: Number of students
2. Spacetype: Lecture, Seminar, Tutorial, etc.
3. Department: Department offering/managing the event.

For every room we have:

. Capacity: Maximum number of students in the room.

. Timeslots: The number of timeslots per week.

. Spacetype: Space for Lecture, Seminar, Tutorial, etc.

. Department: The one that owns/administers the room.

I R

The most basic hard constraints ( i.e. those that we always enforce) are:

—_

. Capacity constraint: Size of an event cannot exceed the room capacity
. No-sharing constraint: At most one event is allowed per “room-slot”,
where by room-slot we refer to a (room,timeslot) pair.

[\V]
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In this paper, we will also aply the condition that the spacetype of the event
must be the same as that of the room. In general, this hard constraint can be
softened, and the resulting spacetype mixing is an important issue, but will be
left for future work. So, henceforth, in descriptions of the algorithms we will
ignore spacetypes.

2.2 Penalty and Objective Functions

Merely allocating events to room-slots so as to satisfy the capacity constraints
and no-sharing constraints on its own is not useful; we also need to take account
of models of space utilisation objectives and penalties for additional soft con-
straints. Based on the work in [5, 6], and also from considerations of what a good
allocation is likely to mean in the presence of splitting, we use the following:

Utilisation (U) [5, 6]: The primary objective is that we want to make good use
of the rooms, and have a good number of student contact hours. We will measure
this by the “Seat-Hours” — which is just the sum over all rooms and timeslots
of the number of students allocated to that room-slot. The utilisation U is then
defined as just the Seat-Hours achieved as a fraction of the total Seat-Hours
available (the sum over all rooms and times of the room capacity):

Seat-Hours used

(1)

This is usually expressed as a percentage: U=100% if and only if every seat is
filled at every available timeslot.

~ total Seat-Hours available

Timetabling (TT) [5,6]: The teaching space allocation framework is con-
strained by timetabling needs, and we believe that space allocation needs to
take some account of this. Hence we use here a timetabling penalty (TT) that
is just a standard conflict matrix between events; a set of pairs of events that
should not be placed at the same timeslot. For this paper we will simply use
randomly generated graphs. We use TT(p) to denote that each potential con-
flict is taken independently with probability percentage, p. For example, TT(70)
means that the conflict density is (about) 70%.

Conflict Inheritance Problem: Course conflicts are used to represent the case
that students are enrolled for both of the courses in the conflict. In standard
university timetabling, the conflict graph will be fixed but, with sectioning. Part
of the point is that students can be assigned to sections with the intention of
resolving conflicts. The problem of assigning students to sections is treated in
[13,2, and others]. For example, in [3] a relaxed conflict matrix is created, and
in particular it is less dense than the matrix between courses. Hence, if a course
has multiple sections, then not every section ought to have the same conflicts
as the parent course. That is, there is a “conflict inheritance problem”: when a
course is split, how should we decide upon the timetable conflicts given to the
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resulting events (also see [18]). This problem is not studied here, but destined
for future work. In this initial study of splitting, we will look at the simpler case
in which the inheritance is full; that is, on splitting, each event inherits all the
conflicts of the course.

Location (L) [5,6]: A common objective in timetabling, is the goal of reducing
the physical travel distances for students between events. It also seems likely that
students and faculty would prefer that the events they attend will be close to
their own department. We do not attempt to model this exactly but instead use a
simple model in which there is a penalty if the department of the event is different
from that of the room-slot. Specifically, if an event ¢ has department D(7), and
is allocated to a room r with department D(r), then there is a penalty matrix
derived from the department, Y (D(i), D(r)). Events in their own department are
not penalised, Y (d, d) = 0, and the off-diagonal elements were selected arbitrarily
(as we did not have physical data). The total Location penalty is just the sum
of this penalty over all allocated events.

Section Size (SZ): For courses such as tutorials or seminars it is standard
that they are intended to be in small groups, hence when splitting, we need to
be able to control the sizes of the sections. In this paper, we use a simple model
in which we take a target size for the sections, and simply penalise the deviation
from that target. Given an allocated event ¢, let the number of students be ¢;,
the total number of allocated events be I, and the target section size T'. The
section size penalty SZ that we use is

I

SZ=7 lei—T| (2)

i=1

Section number (SN) : Every section will need a teacher, and so the total
number of sections allocated will have a cost in terms of teaching hours, and
should not be allowed to become out of control. The penalty SN is simply the
total number of allocated events. Pressure to minimise SN will tend to discourage
courses from splitting into more events than are needed.

No Partial Allocation (NPA) : The context in which we do the search is that
we have a large pool of courses available and are investigating the best subset
that can be allocated. However, if a course is broken into sections, then the
course as a whole ought to be allocated or not. The NPA penalises those cases
in which some of the sections of a course are allocated, but other events from
the same course remain unallocated. Enforcing NPA as a hard constraint would
disallow partial allocation: for every course, either all sections are allocated, or
none are allocated.
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Data-set Name: Wksp Tut Sem Tut-trim
Spacetype Workshop Tutorial Seminar Tutorial
num. of courses 1077 2088 3711 620
num. of rooms 16 184 88 47
timeslots number 48 46 46 50
Seat-Hours: courses 86,140 290,839 440,131 87,678
Seat-Hours: rooms 39,408 163,500 176,318 41,350

Table 1. The four data-sets that we use, and some of their properties, including
numbers of rooms and courses, and also the total Seat-Hours demanded by all the
courses, and the Seat-Hours available in all the rooms.

2.3 Overall Objective Function

The overall problem is a multi-objective optimisation problem. However, we
work using a linearisation into a single overall objective or fitness F, which can
be represented as follows:

F=W(U)-U+W(L)-(~L) + W(TT) - (-TT) +
W(SZ)- (—SZ)+ W(SN) - (=SN) + W(NPA)- (~NPA)  (3)

where the W(*) are simply weights associated with each objective or penalty.
The minus signs merely change penalties into objectives, and make all the “di-
mensions” or objectives into maximisation problems.

The aim is to maximise F and consequently maximise utilisation (U) while
reducing the penalties for L, TT, etc. In practice, we will consider a wide variety
of relative weights. Of course, if a weight is large enough then it effectively
turns the penalty into a hard constraint. Using weights is also intended to allow
modelling of the way that administrators will relax some penalties and tighten
others.

2.4 Datasets

Table 1 gives an overview of the four datasets we use to test our splitting al-
gorithms. All datasets are collected from a building of a university in Sydney,
Australia. (We omitted the lectures only data-set used for [5,6] as it is not
relevant to splitting.)

The workshops dataset, Wksp, is mainly characterized by the non-uniform
capacity of rooms ranging from 21 to 80, making it possible for some small
courses to fit without splitting. For Tut, the main characteristic of this data-set
is the small capacity of rooms and their uniformity, e.g. most rooms have sizes
in the range 8-20, enforcing a section size is therefore trivial in this case. The
full data-set, Tut, is quite large and so, in order to be able to plot trade-off
surfaces in a reasonable amount of time, we also created the set Tut-trim by
randomly selecting a fraction of the rooms and courses. The seminar data-set,
Sem, is similar in structure to Tut, it exhibits the same characteristics as Tut, and
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Allocated Unallocated pool
Rooms Timeslots Events
C131 | event6127 | |y event 1 studenty#:30
cap: 25 event 3298 t2> move—inner event 2 setudent # 50
event 345 t3 event 3 student # 25
event 4
P : 1-OPT-swap-rand event 5
Timeslot #: 48
event 6
C132 event 298 tl
cap:50 move—-exterior event7
event 3296 t2
event 448 t3 push-rand
event S435
pop-rand total unallocated
Timeslot #:48

Fig. 1. Schematic of the local search operators (except 2-OPT-swap-rand) for the
local search without splitting.

has room capacities ranging from 30 to 86 students. Both seminars and tutorials
have relatively large courses and therefore splitting is essential for them.

3 Algorithms Without Splitting

In this section, we present the methods we use for cases when splitting is neither
needed nor performed. Although, the focus of the paper is on splitting we think
that describing the non-splitting local operators first helps the presentation of
the paper.

3.1 Local Search Operators Without Splitting

The neighbourhood moves used to explore the search space are given below.
Note that, by construction, all operators (implicitly) maintain feasibility of the
solution. Figure 1 illustrates these local search operators.

1-OPT-swap-rand: Randomly select 2 different rooms and in each room
randomly select an allocated event. The selected events are swapped between
rooms. If the given events violate any of the hard constraints, we randomly
search again for 2 other events to swap.

2-OPT-swap-rand: Similar to 1-OPT-swap but it randomly selects 4 rather
than 2 events and swaps them. Special consideration is given to checking that
the 4 events are all different and that one swap would not cancel the other.
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Move-exterior Randomly selects an allocated and an unallocated event
and tries to swap them; assigning the unallocated event to the timeslot of the
allocated one.

Push-rand Randomly selects one course from the unallocated set of events
and tries to allocate it to a randomly selected room, also picking the timeslot at
random.

Push-rand-p: This move is another version of push-rand but which gives
priority to early timeslots in the rooms timetable, favouring them over late ones.
The local search is allowed to switch probabilistically between the 2 different
versions of push-rand.

Pop-rand: Randomly selects one event from a randomly selected room and
deallocates it.

Move-inner: Swap 2 randomly selected events in a given room between 2
randomly selected timeslots.

3.2 Meta-Heuristics

We only use Hill-Climbing (HC) and Simulated Annealing (SA) [12,1] imple-
mentations in this paper.

The hill climbing algorithm (HC) variant uses most of the moves given above
to perform a search of the neighbourhoods. On each iteration, it selects an oper-
ator from the list above according to a given move probability and applies it to
generate a candidate solution. If the candidate new solution has better (or equal)
fitness than the incumbent, we commit to the move, but otherwise disregard it.

Simulated Annealing (SA) was used as the main component for overcoming
local optima. A geometric cooling schedule was used, specifically temperature
T — oT every 650 iterations with a = 0.998. We generally used 6 million
iterations. Such a slow cooling and such a large number of iterations were chosen
to err on the side of safety.

4 Algorithms With Splitting

In this section, we describe the splitting heuristics that are incorporated into the
hill-climbing (HC) and the simulated annealing (SA) approaches. Two strategies
are implemented: a) constructor-based splitting, and b) dynamic local search-
based splitting. In the first case, the section size is calculated during the con-
struction of an initial solution and remains fixed for all events throughout the
local search. In dynamic splitting, the section size is calculated as the local search
progresses according to the size of the event (and room capacity) that is being
allocated. Hence, we will have:

— SS-HC: Constructor-based static splitting and hill-climbing

— SS-SA: Constructor-based static splitting and simulated annealing
DS-HC: Dynamic splitting and hill-climbing

— DS-SA: Dynamic splitting and simulated annealing
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4.1 Static Splitting

In static splitting we select a target section size (generally based on room profiles)
and then split all the courses of size larger than that target size, into as many
sections as needed during the process of constructing an initial solution. We
use the term static, because once a split is enforced it cannot be changed. We
afterwards run a local search algorithm (hill-climbing or simulated annealing)
to improve the initial solution. So, in this strategy, splitting happens within the
constructor and this provides no flexibility in changing section size during the
local search.

There can be many ways to calculate and fix the target section size. Here we
compare three variants which are based on the notion of a “target room capac-
ity”. This means that the target section size is calculated based on the capacity
of the rooms that are available for allocating course sections. Specifically, the
target section size is fixed to one of three different values:

1. MAXCAP - the largest room capacity
2. AVGCAP - the average room capacity
3. MINCAP - the smallest room capacity

We recognise that more elaborate ways to calculate the target section size
are possible based on information from the room profiles. However, our interest
here is to explore how splitting during the construction phase affects the search
process in general, and compare it to the case in which splitting is carried out
during the local search (dynamic) which is described in the next subsection.

4.2 Dynamic Splitting Operators

In dynamic splitting, we calculate the section sizes during the local search itself.
The dynamic splitting heuristic is also capable of un-splitting/rejoining sections
and this gives more flexibility to determine an adequate target section size by
changing, adding, deleting and merging sections as needed.

Dynamic splitting is embedded in the local search in such a way that there is
freedom and diversity in the choices of section sizes. Thus, the splitting operators,
in conjunction with the local search, can discover good solutions that respond
not only to the room capacities but also to the penalty values for the location
(L), timetabling (TT), section number (SN), section size (SZ), and no partial
allocation (NPA). Note that, at the current stage, the operators themselves do
not directly respond to penalties, and presumably this leads to inefficiencies
because good moves will need to be discovered via multiple attempts within the
SA/HC rather than directly and heuristically; we intend to investigate this in
future work.

In the search, it is important to note that the “pool of unallocated courses”
is a pool of the portions of courses that are not yet allocated. The unallocated
portions contain no information about how they are going to be split; that is,
it is not a pool of sections waiting to be allocated, but instead the sections are
created during the process of allocation. That is, the main characteristic of the
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splitting operators lies in the fact that when a split occurs, we actually select a
fraction of a course and allocate it. When a section is unallocated, we merge it
back with the associated course without keeping track of previous section splits.

Below we detail the neighbourhood operators used in the dynamic splitting
(ordered roughly by their degree of elaborateness):

1-OPT-swap-rand-sec: This operator works as 1-OPT-swap-rand de-
scribed in section 3.1 but the move is carried out between 2 sections (not neces-
sarily of the same course).

Mowve-inner-sec: This operator works as mowe-inner described in sec-
tion 3.1 but the move is carried out between 2 sections (not necessarily of the
same course).

Push-rand: This operator works as push-rand described in section 3.1 but
note that the events being ‘pushed’ to the allocation are sections of a course that
are smaller than the chosen room, and so no splitting was needed.

Pop-unsplit. This operator is used to remove sections from their allocated
room and unsplit /rejoin sections with their unallocated parent course. Note that
this move can be seen as the reverse operation to splitting but not exactly because
we do not keep track of the splits made during the search by split-push and
split-max that we describe next. First, the pop-unsplit operator chooses at
random an allocated event from a randomly selected room. In the case that the
chosen event is a section, the operator unallocates the section and merges it with
its unallocated parent event. If the event is not a section it is simply added to
the unallocated pool.

Split-push: This operator is used to handle courses whose unallocated por-
tion is larger than the chosen room, and is the main operator that is used to
create new sections. It is at the heart of the dynamic splitting:

Proc: split-push
1 Randomly select a room R; with available timeslots.
Let its capacity be C}.
2 Randomly select a course P; from the unallocated pool.
Let the size of P; be N;.
3 Set size s = floor(C; * rand(d, 1))
though if s > N; then s=N;
4 Randomly select empty room-slot t;
5 Create section S; with size s
and resize the remainder P;
6 Set that S; inherits all conflicts from course P; (see section 2.2)
7 Generate candidate move by allocating .S; to room R; in timeslot t;

Note that rand(d, 1) means a number randomly selected from the interval [4, 1]
and the parameter § is described below. After randomly selecting a room-slot
and unallocated course, the main step in this operator comes in its decision as to
how to split the course to create a new section. Assuming that the capacity of the
room is smaller than the size of the remainder of the course, the new section size,
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s, is calculated by multiplying the capacity of the room by a randomly selected
factor. The factor depends on a “section re-sizing parameter”, ¢, that we give
a value between 0.4 and 0.6. Suppose that we take 6 = 0.4 then this effectively
means that the generated section size, s, will be between 40% and 100% of the
selected room’s capacity. The intention of this randomised selection of section
size is that it enables the search to discover section sizes that match the penalties
such as section size and section number. The new section inherits all of the
conflict information from its parent course — see the discussion of the “Conflict
Inheritance Problem” in section 2.2. The new section is then allocated to the
chosen room. The remaining part of the parent course is left in the unallocated
list of courses with its size reduced appropriately.

Split-max: This operator is a version of split-push with =1 and is de-
signed so that courses with size larger then the chosen room are split so that
sections are of the maximum size allowed within the chosen room.

4.3 Example of the Operator Application

Casel Case 2
R1 R2 R3 R4 R1 R2 R3 R4

ROOMS C=60 C=60 C=20 C=20 ROOMS C=60 C=60 C=20 C=20

Tslot 1 Tslot 1

COURSES Cc2

S=120 S=40 S=120 S=40

COURSES

Fig. 2. Example in which applying operators to split courses has different effects. In
case 1, course C2 first receives a push-rand into room R2, and then applications of
split-push to C1 are unable to allocate only 60+20+20=100 students rather than the
needed 120. However, in case 2 we see that reversing the order allows all of both courses
to be allocated.

An example of the search process, and the differences that can arise during
search, are illustrated in the simple example of Figure 2. Two courses C1 and C2,
of sizes 120 and 40 respectively, are to be allocated to the four rooms available;
and we have selected capacities so that total size of courses precisely equals the
total capacity of the rooms. In the first case, it happens that the smaller event
C2 is allocated first via a push-rand because it can be allocated to that room
without a split. But this inevitably means that 20 spaces within room R2 are
wasted, and so it becomes impossible to allocate all of course C1. However, in
the second case, the larger course C1, is first split using split-mazx and then we
end up with a perfect fit. The operator split-max with its implicit “maximum
size sections first” is often better at maximising the utilisation; though there
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are other cases in which push-rand is necessary. For this reason, and also via
experiments, we tend to give the operator split-max more probability of being
selected than the operator push-rand.

4.4 Controlling the search

The example above, and the resulting preference for split-maxz over push-
rand, is just one case of the standard difficult problem of selecting the operator
probabilities.

We have also observed, in an informal manner, that the effectiveness of each
operator varies during the search. As an example, suppose we are just doing non-
splitting local search from section 3. We start with an empty allocation, and then
the Push-rand operator is most important and successful in the early stages as
events/courses need to be allocated, but for capacity reasons it remains stalled
during the rest of the search, during which the other moves provide the bulk of
the successful search efforts. This led to us taking a simple, though adequate,
compromise with probabilities of around 10-20% for each operator.

5 Experimental Comparison of The Algorithms

In this section, we first investigate the “static splitting” method in which only the
constructor does any splitting and is followed by local search, CONS-SA (CONS-
HC is not presented as, unsurprisingly, it performs no better than CONS-SA).
We find that it is far inferior to the dynamic splitting. Moving to the dynamic
splitting itself we then compare the HC and SA variants, and will see that the
DS-SA variant is the better.

However, we first answer the simple question of whether or not, for the data
sets that we use, we need to do any splitting at all. The following table compares
some examples of the utilisation percentages obtained, and the number of events
allocated, without any splitting (not even static splitting from the constructor)
and compares them with those obtained by DS-SA:

Wksp Tut Sem
SA, no splitting|36% (264 ev) 0.015% 0.013%
DS-SA 70% (720 ov)[26% (1747 ov)[44% (3000 ov)

We clearly see that splitting is essential for the tutorials and seminars as, oth-
erwise, virtually nothing is allocated. For the workshops, some courses can be
allocated, but we still lose a lot compared to when splitting is allowed. So from
now on we always permit splitting (we refer the reader back to Subsection 2.4
where the datasets are presented and the difference between the Wksp data set
and the others was also noted). While, in the results above, utilisation figures
seem a bit higher than in real world cases (30-40%) we show in later sections how
the different actual constraints drive the utilisation down to more practical lev-
els; the introduction of section size penalty along with the No-Partial-Allocation
penalty, can also generate a realistic level of utilisation figures.
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Fig. 3. Comparison of dynamic and static (constructor-based) splitting for the Wksp
data set. Plots give the trade-offs obtained between utilisation and Location; all the
other objectives being disregarded (Wrr=Wsz=Wsn=Wnpa=0). The first three sets
of points are from the three constructive methods of subsection 4.1 ; the last “DS-HC”
from the dynamic splitting with hill-climbing.

Our results are generically presenting trade-off curves which are approxima-
tions to Pareto Fronts. These are generally representing the trade-off between
two of the objective functions: We select a wide range of relative values for the
weights associated with the two chosen objectives, and then call the solver with
those weights. For example, we often plot the trade-off between Utilisation, U,
and the location, L; in this case, we pick a non-zero value for W(U), and then
just solve at each of many values for W (L). This leaves some gaps in the curves
due to the presence of unsupported solutions. However, generally the gaps are
small and do not expect that filling them would significantly change the overall
messages from the results. Note that since L is a penalty, then the objective is
essentially —L, and we use this for the y-axis, so that “better” is towards the
top-right corner (and similarly for all others of our trade-off graphs).

5.1 Dynamic vs. Static Splitting

Figure 3 shows the trade-off curves between utilisation and location for the three
different methods from the static splitting (see subsection 4.1), and compares
them to the results from the dynamic splitting method, DS-HC.

We see that for the constructor, splitting based on the average room capac-
ity (AVGCAP), outperforms the other two (MINCAP and MAXCAP). This is
reasonable, as when splitting by the smallest room capacity there is capacity
wastage in larger rooms and when splitting is based on the larger room size
there is a wastage caused by violating room capacities, since we cannot allocate
a section to a room with smaller capacity.

However, it is also clear that all our constructor-based splitting methods
are easily outperformed by the dynamic splitting. This is unsurprising, as it is
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entirely reasonable that it is best to do splits based upon the availability of room
capacities rather than on a uniform target capacity. It is possible that a more
sophisticated constructive method would perform much better. However, for the
purposes of this paper we will henceforth consider only dynamic splitting.

5.2 Dynamic Splitting: HC vs. SA

T T
’ SATT(70 +
-2000 - %Fm )

-4000 | E
-6000 S 1
_, -8000
-10000 E
-12000 E
-14000 + 1
-16000 + 1

-18000 ! ! ! !
0 20 40 60 80 100

Utilisation (%)

Fig. 4. Trade-off of utilisation and location as obtained with dynamic splitting, and
using the hill-climbing (HC) and simulated annealing (SA) algorithms. For the Wksp
data, and in the presence of TT(70), and no other constraints beside U, L, and TT.

Figure 4 illustrates the different performances of DS-HC and DS-SA on the
workshop problems in the presence of timetabling. Figure 5 is the same except
that it is for a tutorials dataset. As is well-known, the conflict graph of the
timetabling penalty moves the problem to a variant of graph colouring. So it
is not surprising that the SA is likely to outperform the HC, as SA can escape
local minima but HC cannot. Perhaps more surprising is that the performances
in the absence of TT are often very similar. Presumably, without the TT, the
search space is rather well-behaved.

In any case, it is clear that DS-SA is the best of the algorithms that we have
considered, and so will be assumed from now on whenever we have a T'T penalty
(and in the absence of a T'T penalty it seemed to matter little which one is used).

6 Trade-Offs Between the Various Objectives

Having selected dynamic splitting as our algorithm of choice, we now change
focus: we no longer pursue the solution algorithm itself, but instead focus al-
most entirely on the solution space. In particular, we present some preliminary
and partial results on how the various objectives interact, and in particular the
magnitude of their effect on the utilisation.
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Fig. 5. Same as for Figure 4 but instead using the tutorials dataset, Tut-trim, and

with TT(75).

6.1 Interaction of Section Size Penalty (SZ), Location Penalty (L),
and Utilisation (U)
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Fig. 6. Trade-off surfaces for the given values of the weight W(SZ) for the section size
policy. On the Wksp data-set, with a target section size of 25; and optimising only
utilisation U, location L, and section size SZ.

Figure 6 gives plots of the trade-off between utilisation (U) and location (L),
in the presence of various weights, W(SZ), for the section size penalty (SZ),
with a target section size of 25, but with no other penalties. Note that the case
W(SZ) = 0, was seen previously as the best line in figure 3, and illustrates that,
even without section size constraints, demanding a low location penalty has the
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potential to significantly reduce the utilisation (from about 98% down to 50%).
The non-zero values for W(SZ) drastically reduce the utilisation: dropping to
the range 10-50%. This corresponds to a policy of a fixed size, but with such an
excessively-strict adherence to that policy that the overall room usage suffers.

Interestingly, the Pareto front shape seems unaltered by changing the target
size, though we currently have no explanation of this, and we believe this issue
deserves further investigation.

6.2 Trade-offs Arising From Section Size Penalty and Utilisation
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Fig. 7. Utilisation vs. section size penalty, SZ, for the Wksp data set, and for two values(
15 and 20) of the target section size.

So far, we have only looked at trade-offs between Utilisation and Location,
but now, in Figure 7 we show the trade-off between utilisation, U, and section
size penalty (SZ). This happens to be with a small weight given to the sec-
tion number penalty, SN; however, with no other penalties: W (L) = W(TT) =
W(NPA) = 0, so in this case location penalties are ignored. Each curve il-
lustrates the drastic drop in utilisation as we move towards the section size
becoming a hard constraint. We also see that reducing the target for the section
size reduces utilisations though by a lesser amount.

Part of this effect is possibly because our current section size penalty does not
allow a range of values for the section size, and because it penalises under-filling
a section just as much as overfilling. In future work, we intend to allow more
relaxed and flexible versions of the section size penalty. However, intuitively, it
still seems very likely that section size requirements are going to have a strong
negative effect on utilisation, and crucially, the methods that we are developing
will still allow one to quantify these effects.

Generally, enforcing a soft section size penalty is more realistic than a hard
one since flexibility in the section size is quite reasonable; sections aren’t always
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standardized towards a fixed, unchangeable target size and it ought to be possible
to vary the target size to suit other constraints.

6.3 Effects of Timetabling Constraints
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Fig. 8. Trade-offs between Utilisation and Location for the Wksp dataset. “No TT”
means that no objectives besides L and U are weighted, in particular W(TT)=0. In
contrast, “T'T(70)” means that a timetabling constraint, with a density of 70% is
enforced as a hard constraint.

Figure 8 is a plot of the usual trade-off between utilisation and location
objectives, but comparing the presence and absence of a timetabling constraint.
The case with timetabling is with conflict matrix of density 70%, and with an
associated weight W(TT) that is large enough that the timetabling is effectively
enforced as a hard constraint. This illustrates that timetabling issues easily have
the potential to significantly reduce the utilisation, and so again could be part
of the explanation for the low values of utilisation observed in real problems.

6.4 Inclusion of the No-Partial-Allocation Penalty

So far we have presented results for cases in which the “No Partial Allocation”
(NPA) objective is ignored, that is, W(NPA)=0. This means that some sections
from a course can be allocated even though others are unallocated. This gives
the search extra freedom, and so it is reasonable that enforcing NPA will only
further reduce the utilisations obtained. The magnitude of this effect is seen in
Figure 9: we see that giving NPA high weights can further reduce the utilisation
by about 10-20%. This is a significant effect, though it is somewhat smaller than
the effects seen in the trade-offs with the timetabling and section size objectives.
It is also interesting that the effect of the NPA becomes very small when selecting
solutions with small location penalty.
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Fig. 9. Trade-offs between Utilisation and Location, in the presence of various strengths
of the “No Partial Allocation” (NPA) penalty, but with no TT or other penalties.

7 Summary and Future Work

We have devised methods, and performed preliminary studies of them, to support
space planning and space planning in the presence of courses that will need to
be split down into multiple sections.

The work broadly splits into two aspects. Firstly, we provided algorithms to
perform splitting and optimisation in the presence of multiple objective func-
tions, including overall space usage, constraints inspired from timetabling, and
also objectives relating to desirable properties of the splits themselves. In partic-
ular, we devised a splitting algorithm, “dynamic splitting”, in which the decisions
as to course splitting are incorporated within a local search.

Secondly, we used an implementation of the dynamic splitting in order to ex-
plore the trade-offs between various objectives. We found that the incorporation
of objectives other than solely employing utilisation can result in the utilisation
dropping from over 90% down to much lower figures such as 30-50%. This is sig-
nificant because such low utilisations are consistent with the real world; and so
our model ultimately has the potential to explain real-world utilisation figures.
The intended longer term consequences of such better understanding will enable
an improved ability to engineer the safety margins that need to be built into
capacity planning.

In future work, we intend to improve the speed and scope of the methods.
This will have multiple aspects, but perhaps the most important is to model the
conflict inheritance issues that we discussed in Section 2.2. At the moment, we
do not answer, or indeed model this problem. In the absence of a good model
for this inheritance, we do not answer here the questions as to how the degree of
inheritance affects results. All our inheritance is either total or none. That is, all
sections inherit either all conflicts of the associated course, or else they inherit
none (equivalent to simply turning off the timetable penalty). Although a defi-
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ciency, this does at least allow us to put bounds on the effect of the timetabling.
The effect of partial inheritance must lie between the two extremes of total and
no inheritance. Building a model for the partial inheritance, and exploring its
effects is a high priority for future work.
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Abstract. Hyper-heuristics are proposed as a higher levehdlstraction as

compared to the metaheuristics. Hyper-heuristicous deploy a set of simple
heuristics and use only nonproblem-specific datghsas, fithess change or
heuristic execution time. A typical iteration of leyper-heuristic algorithm

consists of two phases: heuristic selection mettrmtimove acceptance. In this
paper, heuristic selection mechanisms and moveptarwee criteria in hyper-

heuristics are analyzed in depth. Seven heurigiecion methods, and five
acceptance criteria are implemented. The performariceach selection and
acceptance mechanism pair is evaluated on foursegiknown benchmark

functions and twenty-one exam timetabling problestances.

1 Introduction

The term hyper-heuristic refers to a recent approael as a search methodology [:
3, 5, 11, 21]. It is a higher level of abstractitian metaheuristic methods. Hyper
heuristics involve an iterative strategy that clesoa heuristic to apply to a candidat
solution of the problem at hand, at each step. @owét al. discusses properties o
hyper-heuristics in [11]. An iteration of a hypegthistic can be subdivided into twa
parts; heuristic selection and move acceptancéhdrhyper-heuristic literature, sev-
eral heuristic selection and acceptance mecharasensised [2, 3, 5, 11, 21]. How-
ever, no comprehensive study exists that compar@enformances of these differen
mechanisms in depth.

Timetabling problems are real world constraint optation problems. Due to
their NP complete nature [16], traditional apprazecmight fail to generate a solutior
to a timetabling problem instance. Timetabling peof$ require assignment tirine-
slots(periods) and possibly some other resources & afevents, subject to a set o
constraints. Numerous researchers deal with diffetypes of timetabling problems
based on different types of constraints utilizingriety of approachesEmployee
timetabling course timetablingand examination timetablingre the research fields
that attract the most attention. In this papergeseheuristic selection methods an
five different acceptance criteria are analyzediépth. Their performance is meas
ured on well-known benchmark functions. Moreovdrirty-five hyper-heuristics

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 123-140. ISBN 80-210-3726-1.
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generated by coupling all heuristic selection mdshand all acceptance criteria witt
each other, are evaluated on a set of twenty-oaendimetabling benchmark prob-
lem instances, including Carter’'s benchmark [1@ &zcan’s benchmark [25].

The remainder of this paper is organized as folldwsSection 2 background is
provided including hyper-heuristics, benchmark fiowes and exam timetabling.
Experimental settings and results for benchmarksgaren in Section 3. Hyper-
heuristic experiments on exam timetabling are preskin Section 4. Finally, con-
clusions are discussed in Section 5.

2 Preliminaries

2.1 Hyper-heuristics

Hyper-heuristic methods are described by Cowlingalet[11] as an alternative
method to meta-heuristics. Metaheuristics are ‘lgmbspecific’ solution methods,
which require knowledge and experience about tieblem domain and properties.
Metaheuristics are mostly developed for a particptablem and require fine tuning
of parameters. Therefore, they can be developeddaplbyed only by experts who
have the sufficient knowledge and experience orptbblem domain and the meta
heuristic search method. Hyper-heuristics, on ttlerohand are developed to b
general optimization methods, which can be appleéedgny optimization problem
easily. Hyper-heuristics can be considered as blawk systems, which take the
problem instance and several low level heuristcgiput and which can produce the
result independent of the problem characterishicghis concept, hyper-heuristics usi
only non problem-specific data provided by each level heuristic in order to select
and apply them to candidate solution [3, 5, 11].

The selection mechanisms in the hyper-heuristic auttwere emphasized in the
initial phases of the research period. Cowlinglefld] proposed three types of low
level heuristic selection mechanisms to be usdy/jrer-heuristics; which afsimple,
Greedy and Choice Function There are four types dbimple heuristic selection
mechanismsSimple Randomrmechanism chooses a low level heuristic at a tane
domly. Random Descentechanism chooses a low level heuristic randomlg a
applies it repeatedly as long as it produces impgvesults.Random Permutation
mechanism creates an initial permutation of the llwel heuristics and at each itera
tion applies the next low level heuristic in thermatation. Random Permutation
Descentmechanism is the same Random Permutatiomechanism, except that it
applies the low level heuristic in turn repeatedylong as it produces improving
results.Greedymethod calls each low level heuristic at eaclatten and chooses the
one that produces the most improving solutiBhoice Functioris the most complex
one. It analyzes both the performance of each émellheuristic and each pair of lown
level heuristics. This analysis is based on the aw@ment and execution time. This
mechanism also considers the overall performanatdmpts to focus the search a
long as the improvement rate is high and broademsearch if the improvement rate
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is low. For each of these low level heuristic setgcmechanisms two simple accep
tance criteria are defined. These AM, where all moves are accepted @idwhere
only improving moves are accepted [11].

Burke et al. [5] proposed Babu-Searcheuristic selection method. This meche
nism ranks low level heuristics. At the beginnirfgttte run each heuristic starts the
execution with the minimum ranking. Every time a tigic produces an improving
movement its rank is increased by a positive reaggment rate. The rank of the heu
ristics cannot exceed a predetermined maximum vallleenever a heuristic canno:
make an improving move; its rank is decreased hggative reinforcement learning
rate. Similarly the rank of a heuristic cannot leer@éased to a value less than a pr
determined minimum value. In the case of worsenmmayes, the heuristic is also
added to the tabu list. Another parameter is the @uration which sets the maxi-
mum number of iterations a low level heuristic ctay in the tabu list. The tabu list
is emptied every time there is a change in thesisnof the candidate solution [5].

Burke et al. [8] introduce a simple generic hypettistic which utilizes construc-
tive heuristics (graph coloring heuristics) to feckimetabling problems. A tabu-
search algorithm chooses among permutations oftremtise heuristics according to
their ability to construct complete, feasible aod Icost timetables. At each iteratior
of the algorithm, if the selected permutation prekia feasible timetable, a deepe
descent algorithm is applied to the obtained tifsletaBurke et al. used this hyper-
heuristic method in exam and university course ti@néng problem instances. The
proposed method worked well on the related benckimablem instances [8].

Burke et al. [9] proposed a case based heurisligctien approach. A knowledge
discovery method is employed to find the problestances and situations where
specific heuristic has a good performance. The mepanethod also explores the
similarities between the problem instance and thece cases, in order to predict th
heuristic that will perform best. Burke et al. @pgl Case-Based Heuristic Selectiol
Approach to the exam and university course timetg{p].

Ayob and Kendall [2] emphasized the role of theeptance criterion in the hyper-
heuristic. They introduced tHdonte Carlo Hyper-heuristievhich has a more com-
plex acceptance criterion th&M or Ol criteria. In this criterion, all of the improving
moves are accepted and the non-improving movedeatcepted based on a prot
abilistic framework. Ayob and Kendall defined thrpeobabilistic approaches to
accept the non-improving moves. First approach, atamasLinear Monte Carlo
(LMC), uses a negative linear ratio of the probabitifyacceptance to the fithess
worsening. Second approach named Egponential Monte CarldEMC), uses a
negative exponential ratio of the probability otegtance to the fitness worsening
Third approach, named @&xponential Monte Carlo with CountdEMCQ), is an
improvement overExponential Monte CarloAgain, the probability of accepting
worsening moves decreases as the time passes. EioWwaw improvement can be
achieved over a series of consecutive iteratioan this probability starts increasing
again. As the heuristic selection mechanism, tHeysa simple random mechanisir
[2].

Kendall and Mohamad [21] introduced another hypaiurtstic method which also
focuses on acceptance criterion rather than sefectiethod. They used thereat
Deluge Algorithmas the acceptance criterion arich@e Randonas heuristic selec-
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tion method. In theGreat Deluge Algorithminitial fitness is set as initial level. At
each step, the moves which produce fithess va@sssthan the level are accepted. /
each step the level is also decreased by a fa&ir |

Gaw et al. [17] presented a research on the cHoiwation hyper-heuristics, gen-
eralized low-level heuristics, and utilization dadrpllel computing environments for
hyper-heuristics. An abstract low level heuristiodal is proposed which can be
easily implemented to be a functional low level tigic tackling a specific problem
type. The choice function hyper-heuristic and the-level heuristics are improved to
evaluate a broader range of the data. Two typesstfitdited hyper-heuristic ap-
proaches are introduced. The first approach is glesimyper-heuristic, multiple low-
level heuristics which are executed on differerda®and focus on different areas ¢
the timetable. The second approach utilizes mulfiglger-heuristics each of which
work on a different node. In this approach, hypewfstics collaborate during the
execution [17].

According to this survey it is concluded that seVdreuristic selection methods
and acceptance criteria are introduced for hypaerisiics framework. Each pair of
the heuristic selection and acceptance mechanisnbeaused as a different hyper
heuristic method. Despite this fact, such combamstihave not been studied in th
literature. In this study, seven heuristic selectioechanisms, which are Simple Rar
dom, Random Descent, Random Permutation, RandomuPagion Descent, Choice-
Function, Tabu-Search, Greedy heuristic selectiochargisms, are implemented. Fo
each heuristic selection method five acceptander@i AM, Ol, IE, aGreat Deluge
and aMonte Carloare used. As a result a broad range of hyper4teuxiariants are
obtained. These variants are tested on mathematijattive functions and exam
timetabling Problems.

2.2 Benchmark Functions

Well-defined problem sets are useful to measurepérgormance of optimization
methods such as genetic algorithms, memetic algosit and hyper-heuristics.
Benchmark functions which are based on mathemdtioations or bit strings can be
used as objective functions to carry out such teBke characteristics of these
benchmark functions are explicit. The difficulty &8s of most benchmark functions
are adjustable by setting their parameters. Inghidy, fourteen different benchmarl
functions are chosen to evaluate the hyper-hecsisti

The benchmark functions presented in Tabéelcontinuous functions, afibyal
RoadFunction Goldberg’'s 3 bit Deceptive Functidi8], [19] andWhitley’s 4 bit
Deceptive Functiorf31] are discrete functions. Their deceptive naiardue to the
large Hamming Distance between the global optimumeh the local optima. To in-
crease the difficulty of the problemdimensions of these functions can be combin
by a summation operator.

The candidate solutions to all the continuous fuumgiare encoded as bit string
using gray code. The properties of the benchmarktimms are presented in Tab. 1
The modality property indicates the number of optimahe search space (i.e. be
tween bounds). Unimodal benchmark functions hasegle optimum. Multimodal
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benchmark functions contain more than one optimantheir search space. Suct
functions contain at least one additional locairaptn in which a search method cat

get stuck.

Tab. 1. Properties of benchmark functions, indicates the lower boundib indicates the
upper bound of the search spaggtindicates the global optimum in the search space

Function,[ Sourcé Ib ub opt Continuity Modality
Sphere, [13] -5.12 512 0 Continuous Unimodal
Rosenbrock, [13] -2.048 2.048 0 Continuous Unimodal
Step, [13] -5.12 5.12 0 Continuous Unimodal
Quartic, [13] -1.28 128 1 Continuous Multimodal
Foxhole, [13] -65.536 65.536 0  Continuous Multimodal
Rastrigin, [28] -5.12 512 0 Continuous Multimodal
Schwefel, [29] -500 500 0 Continuous Multimodal
Griewangk, [19] -600 600 0 Continuous Multimodal
Ackley, [1] -32.768 32768 0 Continuous Multimodal
Easom, [15] -100 100 -1 Continuous Unimodal
Rotated Hyperellipsoid,[13] -65.536 65.536 0 Continuous intddal
Royal Road, [23] - - 0 Discrete -
Goldberg, [17, 18] - - 0 Discrete -
Whitley, [30] - - 0 Discrete -

2.3 Exam Timetabling

Burke et al. [4, 6] applied a light or a heavy ntigta, randomly selecting one, fol-
lowed by a hill climbing method. Investigation ainous combinations of Constraint
Satisfaction Strategies with GAs for solving exammetabling problems can be founc
in [22]. Paquete et. al. [27] applied a multiobjeetevolutionary algorithm (MOEA)

based on pareto ranking for solving exam timetabpnoblem in the Unit of Exact
and Human Sciences at University of Algarve. Twaeotiyes were determined as tc
minimize the number of conflicts within the sammwup and the conflicts among
differentgroups Wong et. al. [32] used a GA utilizing a non-sliieplacement strat-
egy to solve a single exam timetabling problem atlé€de Technologie Supérieure
After genetic operators were applied, violationgaviixed in a hill climbing proce-

dure.

Carter et. al. [10] applied different heuristic erehgs based on graph coloring
Their experimental data became one of the commasdy exam timetabling bench-
marks. Gaspero and Schaerf [14] analyzed tabutseg@mroach using graph coloring
based heuristics. Merlot et al. [23] explored arid/lapproach for solving the exam
timetabling problem that produces an initial felsibmetable via constraint pro-
gramming. The method, then applies simulated ammgalith hill climbing to im-
prove the solution. Petrovic et al. [28] introducedase based reasoning system
create initial solutions to be used by great dekigerithm. Burke et al. [7] proposed
a general and fast adaptive method that arrangeketristic to be used for ordering
exams to be scheduled next. Their algorithm prodeoedparable results on a set @
benchmark problems with the current state of the@zcan and Ersoy [25] used ¢
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violation directed adaptive hill climber within aemetic algorithm to solve exam
timetabling problem. A Java tool named FES is mhticed by Ozcan in [26] which
utilizes XML as input/output format.

Exam timetabling problem can be formulated as atcaing optimization problem
by a 3-tuple ¥, D, Q. Vs a finite set of examinationB, is a finite set of domains of
variables, and C is a finite set of constraintdeosatisfied. In this representation
variable stands for an exam schedule of a courseamEinetabling involves a searct
for a solution, where values from domains (timeglare assigned to all variable:
while satisfying all the constraints.

The set of constraints for exam timetabling probtiffers from institution to in-
stitution. In this study, three constraints arardEf and used as described in [25]:

(i) A student cannot be scheduled to two examkeasame time slot.

(ii) If a student is scheduled to two exams in shene day, these should not be a
signed to consecutive timeslots.

(i) The total capacity for a timeslot cannot beeaded.

3 Hyper-heuristics for Benchmark Functions

3.1 Benchmark Function Heuristics

Six heuristics were implemented to be used withemheuristics on benchmark
functions. Half of these are hill-climbing methoatsd the remaining half are muta
tional operators combined with a hill climber.

Next Ascent Hill Climbemakes number of bits times iterations at eachistaur
call. Starting from the most significant bit, atchateration it inverts the next bit in
the bit string. If there is a fithess improvemeiie modified candidate solution is
accepted as the current candidate solution [24¥is’ Bit Hill Climberis the same as
Next Ascent Hill Climber but it does not modify thé sequentially but in the se-
quence of a randomly determined permutation [R2lndom Mutation Hill Climber
chooses a bit randomly and inverts it. Again thalified candidate solution become:
the current candidate solution, if the fithessnglioved. This step is repeated for tot:
number of bits in the candidate solution timesaatheheuristic call [24].

Mutational heuristics ar8wap DimensignDimensional Mutatiorand Hypermu-
tation. Swap Dimensiomeuristic randomly chooses two different dimensianthe
candidate solution and swaps the@imensional Mutationheuristic randomly
chooses a dimension and inverts each bit in tmgedsion with the probability 0.5.
Hypermutationrandomly inverts each bit in the candidate sotutigth the probabil-
ity 0.5. To improve the quality of candidate sola8aobtained from these mutationa
heuristics, Davis’ Bit Hill Climbing is applied.
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3.2 Experimental Settings

The experiments are performed on Pentium IV, 2 Ghimximachines with 256 Mb
memory. Fifty runs are performed for each hyperriséia and problem instance pair.
For each problem instance, a set of fifty randoitiainconfigurations are created.
Each run in an experiment is performed starting ftbexsame initial configuration.
The experiments are allowed to run for 600 CPU s#xoli the global optimum of
the objective function is found before the timeitiia exhausted, then the experimer
is terminated.

The candidate solutions are encoded as bit strifilgs. continuous functions in
benchmark set are encoded in Gray Code. The distnetdons have their own di-
rect encoding. Foxhole Function has default dim@nsif 2. The default number of
bits per dimension parameter is set to 8, 3, afat 4he Royal Road, Goldberg, anc
Whitley Functions respectively. The rest of the tions have 10 dimensions and 3(
bits are used to encode the range of a variable.

3.3 Experimental Results

The experimental results of performance comparidoB5oheuristic selection — ac-
ceptance criteria combinations on 14 different bemark functions are statistically
evaluated. For each benchmark function the combimatare sorted according tc
their performance. The average number of fitnesfuatians needed to converge tc
global optimum is used as the performance critefiwrthe experiments with 100%
success rate. The average best fitness reacheddsfarsthe experiments with suc-
cess rates lower than 100%. The performances ahead®@d statistically using t-test.
Each combination has been given a ranking. Confelémerval is set to 95% in t-
test to determine significant performance variafite combinations that do not have
significant performance variances are grouped tegeand have been given the san
ranking. The average rankings of heuristic selecti@thods and move acceptanc
criteria are calculated to reflect their performanin Table 2, average rankings fo
the heuristic selection methods are provided om g@moblem. The averages are ok
tained by testing the selection methods on eackpaaoce criteria. In Table 3, aver:
age rankings of acceptance criteria are given whiegeaverages are obtained b
testing acceptance criteria on each selection rdethis time. Lower numbers in
these tables denote a higher placement in thengrad indicate better performance
The average ranking of each selection method oaofalie functions is depicted in
Fig. 1, and the average ranking of each acceptatitegion on all of the functions in
Fig. 2.

No heuristic selection and acceptance criteriorpuame out to be a winner or
all of the benchmark functionsChoice Functionperforms well onSphereand
Griewangkfunctions. Simple Randonperforms well onSphereFunction Random
Descentand Random Permutation Descepérform well onRotated Hyperellipsoid
Function Greedyperforms well orRosenbrock FunctionThe performance variances
of heuristic selection methods on remaining fumiavere not as significant as thes
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cases. Choice Function performs slightly betten tfteanaining selection methods ot
averagelE acceptance criterion performs well &astrigin Schwefel Easom, Ro-
tated Hyperellipsoidand discrete deceptiviinctions. Ol acceptance criterion per-
forms well onRosenbrock FunctiorMC acceptance criterion performs well Box-
hole Function IE acceptance criterion indicates significantly atdyeperformance
than the remaining acceptance criteria on average.

Tab. 2. Average ranking of each selection method on eacblgm; CF stands forChoice
Function SRfor Simple RandonRD for Random DescenRP for Random PermutatiQrRPD
for RandomPermutation DescenTabufor Tabu SearchGRfor Greedy

Name CF SR RD RP RPD TABU GR
Sphere 7.0 7.0 245 14.0 245 24.5 24.!
Rosenbrock 20.2 22.0 16.0 23.8 16.0 16.0 12.
Step 17.7 17.7 17.7 18.9 17.7 17.7 18.¢
Quarticw/ noise 17.9 17.9 17.9 17.9 17.9 17.9 18.6
Foxhole 15.7 15.7 15.7 19.3 15.7 15.7 28.:
Rastrigin 17.9 17.5 18.5 17.3 18.5 17.7 18.¢
Schwefel 17.0 17.0 18.8 17.0 18.8 18.8 18.1
Griewangk 11.8 17.2 17.2 17.2 17.2 17.2 28..
Ackley 16.5 16.5 16.5 235 16.5 16.5 20.C
Easom 16.0 16.0 21.7 16.0 21.7 21.7 12
Rotated Hyperellipsoid 20.4 21.2 134 21.6 14.8 19.8 15
Royal Road 16.8 17.6 17.1 17.4 17.1 17.8 22.
Goldberg 18.6 19.3 16.6 19.4 17.4 16.1 18.1
Whitley 17.9 17.9 17.9 17.9 17.9 17.9 18.€
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Fig. 1. Average ranking of each selection method on albfem instances

In Fig. 3 average number of evaluations to convéogglobal optimum by a selectec
subset of hyper-heuristics is depicted on a sutfsbenchmark functions, which are
Sphere, Ackley and Goldberg’'s Functiofgg. 3 (a), (c), and (e) visualize the pet
formance comparison of the heuristic selection mdthusing IE acceptance criterior
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for Sphere, Ackley and Goldberg’'s Functiomspectively and Fig. 3 (b), (d), and (f
the performance comparison of the acceptanceieriising Choice Function heuris-
tic selection method foSphere, Ackley and Goldberg’s Functiorsspectively.
Lower average number of evaluations intends fasiavergence to the global opti-
mum and indicates better performance.

Table 3. Average ranking of each acceptance criterion orh gaoblem;AM stands forAll
Moves AcceptedDl for Only Improving Moves AcceptelE for Improving and Equal Moves
Accepted MC for Monte Carlo Acceptance Criteripand GD for Great Deluge Acceptance
Criterion.

Name AM Ol IE MC GD
Sphere 19.5 17.0 17.0 17.0 19.5
Rosenbrock 23.8 12.0 16.0 23.8 16.0
Step 29.1 18.6 17.7 18.9 17.7
Quarticw/ noise 29.1 17.4 14.5 14.5 14.5
Foxhole 12.4 27.7 26.5 11.1 12.4
Rastrigin 291 10.6 7.6 23.9 18.8
Schwefel 29.1 10.6 7.6 22.6 20.1
Griewangk 11.9 27.7 26.5 11.9 11.9
Ackley 19.0 19.0 16.5 16.5 19.0
Easom 23.3 11.6 8.5 23.3 23.3
Rotated Hyperellipsoid 25.1 11.7 8.8 22.4 22.6
Royal Road 28.1 10.6 7.6 23.0 20.7
Goldberg 29.1 10.6 7.6 22.4 20.4
Whitley 23.9 10.6 7.6 23.9 23.9

25

20

15 -

10 +

5

0 4

AM Ol IE MC GD

Fig. 2. Average ranking of each acceptance criterion opralblem instances

For Sphere Modeldistinct performance variances are observed ltviieuristic
selection methods in Fig. 3 (a) on the other sidedifference is not so prominen
between acceptance criteria in Fig. 3 (b). FigaBshows that Random Permutatio
and Choice Function heuristic selection methodseael faster convergence thai
remaining selection methods. In Fig. 3 (c) andi{d)an be observed that Choice
Function heuristic selection method and |IE accepgtaniterion accomplished a faste



132 B. Bilgin et al.

convergence to global optimum dkckley Function Fig. 3 (e) and (f) show that
Choice Function heuristic selection method and IEeptance criterion performed
best onGoldberg’s Function Fig. 3 (f) shows that the performance variances
tween different acceptance criteria are enormoughensame function. Also AM
acceptance criterion cannot reach the global optiran Goldberg’s Functiorand no
average number of evaluations to converge to gloptimum value is depicted for
this criterion in the same figure.
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Fig. 3. Average number of evaluations to converge to dlamimum of hyper-heuristics
consisting of all heuristic selection methods udgcceptance criterion on (8phere Model
function, (c)AckleyFunction (e) Goldberg Functionand average number of evaluations t
converge to global optimum of hyper-heuristics dstiveg of Choice Function heuristic selec-
tion method and all acceptance criteria on§phere Modefunction, (d)AckleyFunction (f)
Goldberg Function
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4 Hyper-heuristicsfor Solving Exam Timetabling Problems

4.1 Exam Timetabling Problem I nstances and Settings

133

Carter’'s Benchmark [10] and Yeditepe University tHgcof Architecture and Engi-
neering [25] data sets are used for the performanogparison of hyper-heuristics.
The characteristics of as illustrated in Tab. 4.

Tab. 4. Parameters and properties of the exam timetabliolglgm instances

Instance Exams Students Enrollment Density Days Capac
Carfo2 543 18419 54062 0.14 12 200(
Cars91l 682 16925 59022 0.13 17 155
Earf83 181 941 6029 0.27 8 350
Hecs92 81 2823 10634 0.20 6 65(
Kfus93 486 5349 25118 0.06 7 195¢
Lsef9l 381 2726 10919 0.06 6 63t
Purs93 2419 30032 120690 0.03 10 500
Ryes93 486 11483 45051 0.07 8 205!
Staf83 139 611 5539 0.14 4 3024
Tres92 261 4360 14901 0.18 10 65¢
Utas92 622 21267 58981 0.13 12 2801
Utes92 184 2749 11796 0.08 3 124(
Yorf83 190 1125 8108 0.29 7 300
Yue20011 140 559 3488 0.14 6 45(
Yue20012 158 591 3706 0.14 6 45(
Yue20013 30 234 447 0.19 2 15C
Yue20021 168 826 5757 0.16 7 55(C
Yue20022 187 896 5860 0.16 7 55(C
Yue20023 40 420 790 0.19 2 15C
Yue20031 177 1125 6716 0.15 6 55(
Yue20032 210 1185 6837 0.14 6 55(

Hyper-heuristics

consisting @dimple Random, Random Descent, Tabu Sear

Choice Function, and Greedyeuristic selection mechanisms and all the acceptai
criteria, described in Section 2.1 are tested wilbh benchmark exam timetabling
problem instance. The fitness function used foviaglthe exam timetabling prob-
lem takes a weighted average of the number of mnstviolations. The fitness

function is multiplied by -1 to make the problermaimizing problem.

F(T)

1
1+ wg(T)

@
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In the equatior{1), w; indicates the weight associated to ifheonstraintg indicates
the number of violations af" constraint for a given schedule The value 0.4 is
used as the weight for the first and the third t@mst and 0.2 for the second con
straint as explained in Section 2.3.

4.1 Heuristicsfor Exam Timetabling

Candidate solutions are encoded as an array oflttsewhere each locus represen
an exam to be scheduled. Four heuristics are ingrlezd to be used with the hyper
heuristics for solving an exam timetabling problérhree of these heuristics utilize
tournament strategy for choosing a timeslot tolvedale a given exam to improve
candidate solution based on a constraint type,enthié last one is a mutation opere
tor. Heuristics for the constraints (i) and (ii) skasimilarly. Each improving heuristic
targets a different conflict. Both heuristics ramdp choose a predetermined numbe
of exams and select the exam with the highest nurobéargeted conflict among
these. Also a predetermined number of timeslotsardomly chosen and the numbe
of targeted conflicts are checked when the examsggned to that timeslot. The
timeslot with the minimum number of targeted catfiis then assigned to the se
lected exam.

The heuristic which targets the capacity conflidgi$ andomly chooses a prede-
termined number of timeslots and selects the tiotesith the maximum capacity
conflict among these. A predetermined number ofrex¢hat are scheduled to this
timeslot are chosen randomly and the exam thath®snost attendants is selecte
among them. Again a group of timeslots are choaedamly and the timeslot with
the minimum number of attendants is assigned tséfected exam. Mutational heu
ristic passes over each exam in the array andrassigandom timeslot to the exan
with a predetermined probabilitg foumber of coursés

4.2 Experimental Results

The experimental results of performance comparisoSimple Random, Random
Descent, Tabu Search, Choice Function, and Greedlystie selection method and
all acceptance criteria combinations on 21 differexam timetabling problem in-
stances are statistically evaluated. Each pair kas lssigned to a ranking. Confi
dence interval is set to 95% in t-test to determires significant performance vari-
ance. Similar to the previous experiments, the doations that do not have signifi-
cant performance variances are assigned to the rsarkieg.

Average best fitness values for best performingibta selection-acceptance cri-
terion combination are provided in Table 5. If s@véwyper-heuristics share the sam
ranking, than only one of them appears in the fabkrked with *. Seven combina-
tions that have the top average rankings are ptexden Fig. 4. According to the
results, Choice Function heuristic selection combimwith Monte Carlo acceptance
criterion has the best average performance on ¢ixagabling problems. The hyper-
heuristic combinations with acceptance criteria Akt Ol do not perform well on
any of the problem instances.
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Tab. 5. Average best fitness values for best performingikga selection-acceptance criterion
combinations on each problem instand®j stands forAll Moves Accepteddl for Only Im-
proving Moves AcceptetE for Improving and Equal Moves AcceptddC for Monte Carlo
Acceptance CriterionGD for Great Deluge Acceptance Criterion

Instance (Av. B. Fit., Std. Dev). H.Heuristic Alg.
Carf92 (-1.02E-02, 1.18E-03) TABU_IE *
Cars91l (-1.93E-01, 1.20E-01) TABU_IE *
Earf83 (-7.27E-03, 4.94E-04) CF_MC
Hecs92 (-2.19E-02, 2.43E-03) CF_MC*
Kfus93 (-3.40E-02, 4.30E-03) SR_GD
Lsef9l (-1.42E-02, 1.38E-03) CF_MC
Purs93 (-1.41E-03, 6.98E-05) SR_IE
Ryes93 (-1.08E-02, 1.37E-03) CF_MC
Staf83 (-2.68E-03, 1.04E-05) SR_MC *
Tres92 (-6.79E-02, 1.08E-02) SR_GD
Utas92 (-1.87E-02, 1.79E-03) TABU_IE *
Utes92 (-2.27E-03, 8.64E-05) CF_MC
Yorf83 (-8.32E-03, 4.57E-04) CF_MC
Yue20011 (-9.02E-02, 1.07E-02) SR_GD
Yue20012 (-7.54E-02, 9.38E-03) SR_GD
Yue20013 (-2.50E-01, 0.00E+00) SR_MC *
Yue20021 (-3.45E-02, 4.55E-03) SR_GD
Yue20022 (-1.26E-02, 9.08E-04) CF_MC
Yue20023 (-1.52E-02, 2.69E-04) CF_MC*
Yue20031 (-1.59E-02, 1.65E-03) CF_MC
Yue20032 (-5.42E-03, 3.68E-04) CFE_MC

Tab. 6. The performance rankings of each heuristic seleeitceptance criterion on all prob-
lem instances. Lower rankings indicate better parémce.

(@)
H.-h. Carf92 Cars91 Earf83 Hecs92  Kfus93  Lsef9l Purs9:
SR_AM 30.5 26.5 26 26 26 26 26
SR_OI 19.5 19 12.5 16 19 16 8
SR_IE 7.5 7.5 12.5 16 9 11.5 1
SR_MC 15 15 7 7.5 15 11.5 23
SR_GD 7.5 6 8 7.5 1 4.5 9
RD_AM 30.5 315 30 31 31 29.5 31.5
RD_OlI 19.5 19 20 16 19 20 125
RD_IE 7.5 3 12.5 16 9 11.5 4
RD_MC 7.5 11.5 35 4.5 9 4.5 20.5
RD_GD 30.5 31.5 30 31 31 29.5 315
RP_AM 30.5 315 34.5 31 31 345 345
RP_OI 19.5 19 20 16 19 20 125
RP_IE 7.5 3 12.5 16 9 11.5 4
RP_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RP_GD 30.5 315 34.5 31 31 34.5 34.5
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RPD_AM 30.5 315 30 31 31 29.5 315
RPD_OI 19.5 19 20 16 19 20 12,5
RPD_IE 7.5 3 12.5 16 9 11.5 4
RPD_MC 7.5 11.5 35 45 9 4.5 20.5
RPD_GD 30.5 315 30 31 31 29.5 31.5
CF_AM 30.5 26.5 30 31 31 335 27
CF_Ol 19.5 19 20 16 19 20 12.5
CF_IE 7.5 3 12.5 16 9 11.5 4
CF_MC 7.5 9 1 1.5 3 1 16.5
CF_GD 19.5 19 20 16 19 20 125
TABU_AM 30.5 31.5 30 31 31 29.5 28.5
TABU_OI 19.5 19 20 16 19 20 12.5
TABU_IE 7.5 3 12.5 16 9 11.5 4
TABU_MC 7.5 11.5 35 45 9 45 20.5
TABU_GD 30.5 315 30 31 31 29.5 28.5
GR_AM 24.5 24.5 24 24.5 24.5 24.5 24.5
GR_OI 19.5 23 20 16 23 20 16.5
GR_IE 7.5 7.5 12.5 16 9 11.5 7
GR_MC 7.5 14 6 15 2 45 18
GR_GD 24.5 24.5 25 24.5 24.5 24.5 24.5
(b)
H.-h. Ryes93 Staf83 Tres92 Utas92 Utes92 Yorf83
SR_AM 26 31 26 26 26 26
SR_Ol 19.5 16 19.5 15 16 19.5
SR_IE 8 16 8.5 3.5 16 12
SR_MC 15 4.5 15 19 7 7
SR_GD 8 4.5 1 9 8 8
RD_AM 31 31 31 325 31 29.5
RD_OI 19.5 16 19.5 19 16 19.5
RD_IE 8 16 8.5 3.5 16 12
RD_MC 8 4.5 8.5 11.5 4 35
RD_GD 31 31 31 32.5 31 29.5
RP_AM 31 31 31 325 31 34.5
RP_OI 19.5 16 19.5 19 16 19.5
RP_IE 8 16 8.5 3.5 16 12
RP_MC 8 4.5 8.5 11.5 4 35
RP_GD 31 31 31 32.5 31 34.5
RPD_AM 31 31 31 325 31 29.5
RPD_OI 19.5 16 19.5 19 16 19.5
RPD_IE 8 16 8.5 3.5 16 12
RPD_MC 8 4.5 8.5 11.5 4 35
RPD_GD 31 31 31 32.5 31 29.5
CF_AM 31 26 31 27 31 33
CF_Ol 19.5 16 19.5 19 16 19.5
CF_IE 8 16 8.5 35 16 12
CF_MC 1 4.5 2 8 1 1
CF_GD 19.5 16 19.5 19 16 19.5
TABU_AM 31 31 31 28.5 31 29.5
TABU_OI 19.5 16 19.5 19 16 19.5
TABU_IE 8 16 8.5 35 16 12
TABU_MC 8 4.5 8.5 11.5 4 3.5
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TABU_GD 31 31 31 28,5 31 295
GR_AM 245 245 245 24.5 245 245
GR_OI 19.5 16 19.5 23 16 19.5
GR_IE 8 16 8.5 7 16 12
GR_MC 8 4.5 8.5 14 4 6
GR_GD 24.5 24.5 24.5 24.5 24.5 24.5

©

H.-h. Y011 Y012 Y013 Y021 Y022 Y023 Y031 Y032
SR_AM 26 26 225 26 26 9.5 26 28.5
SR_Ol 19.5 19.5 315 195 16 175 16 175
SR_IE 12 115 14 12 12 175 16 9
SR_MC 6 115 4 8 7.5 3.5 7.5 6.5
SR_GD 1 1 8 1 7.5 7 7.5 8
RD_AM 31 31 225 03 29.5 9.5 30 28.5
RD_OI 19.5 195 315 195 20 175 16 175
RD_IE 12 115 14 12 12 175 16 175
RD_MC 6 5 4 4.5 4 15 4 3.5
RD_GD 31 31 225 30 29.5 9.5 30 285
RP_AM 31 31 225 34.5 34.5 34.5 34.5 34.5
RP_OI 195 195 315 195 20 28 16 175
RP_IE 12 115 14 12 12 175 16 175
RP_MC 6 5 4 4.5 4 25 4 3.5
RP_GD 31 31 225 34.5 34.5 34.5 34.5 34.5
RPD_AM 31 31 225 30 29.5 315 30 28.5
RPD_OI 195 195 315 195 20 28 16 17.5
RPD_IE 12 115 14 12 12 175 16 175
RPD_MC 6 5 4 4.5 4 25 4 3.5
RPD_GD 31 31 225 30 29.5 315 30 325
CF_AM 31 31 225 30 33 9.5 30 325
CF_Ol 19.5 19.5 315 195 20 175 16 17.5
CF_IE 12 115 14 12 12 175 16 175
CF_MC 3 5 4 4.5 1 15 1 1
CF_GD 19.5 19.5 315 195 20 175 16 175
TABU_AM 31 31 225 30 29.5 315 30 28.5
TABU_OI 195 195 315 195 20 28 16 175
TABU_IE 12 115 14 12 12 175 16 175
TABU_MC 6 5 4 4.5 4 25 4 3.5
TABU_GD 31 31 225 30 295 315 30 28.5
GR_AM 245 24.5 9.5 24.5 245 5.5 245 175
GR_OI 19.5 19.5 315 195 20 175 16 175
GR_IE 12 115 14 12 12 175 16 175
GR_MC 2 2 4 4.5 4 3.5 4 6.5
GR_GD 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5
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Fig. 4. Top seven heuristic selection method-acceptaniterion combinations considering
the average ranking over all problem instances.

5 Conclusion

An empirical study on hyper-heuristics is providedthis paper. As an iterative
search strategy, a hyper-heuristic is combined withove acceptance strategy. Dil
ferent such pairs are experimented on a set oftimeawk functions. According to the
outcome, experiments are expanded to cover a sexasf timetabling benchmark
problem instances.

The experimental results denote that no combinatibheuristic selection and
move acceptance strategy can dominate over thesatheall of the benchmark func-
tions used. Different combinations might perfornttéreon different objective func-
tions. Despite this fact, IE heuristic acceptandteon yielded better average per
formance. Considering heuristic selection metho@soice Functionyielded a
slightly better average performance, but the dififee between performance o
Choice Functio and other heuristic selection methods were ndigsficant as it
was between acceptance criteria. The experimengalltseon exam timetabling
benchmark indicated th&hoice Functiorheuristic selection method combined witl
MC acceptance criterion performs superior than teeakthe hyper-heuristic combi-
nations.
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Abstract. The students of the Industrial Design department at the TU
Eindhoven are allowed to design part of their curriculum by selecting
courses from a huge course pool. They do this by handing in ordered pref-
erence lists with their favorite courses for the forthcoming time period.
Based on these informations (and on many other constraints), the depart-
ment then assigns courses to students. Until recently, the assignment was
computed by human schedulers who used a quite straightforward greedy
approach. In 2005, however, the number of students increased substan-
tially, and as a consequence the greedy approach did not yield acceptable
results anymore.

This paper discusses the solution of this real-world timetabling problem:
We present a complete mathematical formulation of it, and we explain all
the constraints resulting from the situation in Eindhoven. We present an
elegant integer linear programming model for this problem that easily can
be put into CPLEX. Finally, we report on our computational experiments
and results around the Eindhoven real-world data.

Keywords: University timetabling; network flow formulation; NP-
completeness; integer programming formulation.

1 Introduction

In February 2005, outraged students of the Industrial Design department were
protesting at the TU Eindhoven (The Netherlands). Uproar and revolt were in
the air. What had happened? Here is the story. The academic year of these
roughly 350 students of Industrial Design is split into a number of periods. In
every period, every student must do a number of small courses. There is a pool
of roughly 55 courses to choose from, and every student submits an ordered
preference list with his/her 10 favorite courses to the department. Based on all
the ordered preference lists, a scheduler at the department then assigns roughly
4 courses to every student. Until recently, the scheduler was a human decision-
maker who essentially applied a hand-woven greedy assignment procedure.

In February 2005, the students were absolutely dissatisfied with the work of
the human scheduler: Many of them did not get the courses which they would
have liked to get. Many of them were assigned to courses which they really did
not want to do. And more than 150 out of the 350 students received courses that
were not listed on their preference list!

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 141-156. ISBN 80-210-3726-1.
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The department of Industrial Design realized that they had a problem. They
also realized that they did not know how to settle this problem. The number of
students had increased substantially, and the timetabling problem had become
much larger, much harder, and much more complex. Hence, the department
contacted the local experts on the campus: Us. They were hoping to find a
somewhat better assignment through computer programs. They explained their
problem to us (in a certain problem formulation No. 1), and we happily told
them that we are able to solve it: The problem (in formulation No. 1) could
be modeled as a network flow problem, and hence is solvable in polynomial
time. Unfortunately, it turned out that formulation No. 1 was not a complete
formulation of the problem: They had forgotten to inform us about a number of
additional restrictions that lead to a new, more difficult assignment problem (in
formulation No. 2), which eventually turned out to be NP-hard.

This paper is a report on the course assignment problem of the Industrial
Design department: We will describe the assignment problem in its (incomplete)
formulation No. 1 and in its (complete) formulation No. 2. We show that formu-
lation No. 1 yields a tractable problem, whereas formulation No. 2 yields an in-
tractable problem. Our main contribution is a careful case study of the complete
problem formulation. We design an elegant integer linear programming model
for it, with roughly 9000 variables and roughly 7000 constraints. Putting this
ILP model into CPLEX yields excellent results within moderate computation
times. We describe the ILP model in detail, and we report on our computational
experiments with the real-world data of the Industrial Design department.

Structure of the paper. The rest of the paper is structured in the following way. In
Section 2 we give a literature review of university and school time tabling. Section
3 contains a detailed description of the problem we solved for the department of
Industrial Design. The problem is formulated as an integer linear program which
will be described in Section 4. Section 5 contains the computational results. Some
conclusions are given in Section 6.

2 Literature Review

The literature contains a large number of variants of the timetabling problem.
These variants differ from each other by the type of institution involved (univer-
sity or high school) and by the type of constraints. The annotated bibliography
of timetable construction by Schmidt & Strohlein [12] lists many papers that
appeared before 1980. Schaerf [11] gives a survey of the various formulations of
timetabling problems and classifies the timetabling problem into the following
three main classes:

School timetabling: The weekly scheduling of all the classes of a high school.
Avoid that teachers meet two classes at the same time, and avoid that classes
meet two teachers at the same time.

Examination timetabling: The scheduling of the exams of several university
courses. Avoid that exams of courses with common students overlap. Spread
out the exams for every student as much as possible over time.



Timetabling Problems at the TU Eindhoven 143

Course timetabling: The weekly scheduling for all the lectures of several uni-
versity courses. Minimize the overlaps of lectures of courses with common
students.

Of course this classification is crude, and there are many real-world timetabling
problems that fall in between two of these classes.

The basic school timetabling problem is also known as the class-teacher
model. The simplest problem consists in assigning lectures to periods in such
a way that no teacher or class is involved in more than one lecture at a time.
Even, Itai & Shamir [5] proved that there always exists a solution of this simplest
version of the school timetabling problem, unless a teacher or class is involved
in more lectures than there are time slots. Alternative formulations of the school
timetabling problem with more constraints can be found for example in Even,
Itai & Shamir [5], Garey & Johnson [7] and de Werra [4].

The main differences between course timetabling and examination time-
tabling are that examination timetabling has only one exam for each course,
that the time conflict condition is strict, and that several exams can be done
simultaneously in one room. Examples for additional soft constraints are: Stu-
dents can do at most one exam per day, and students may not have too many
consecutive exams. Schaerf [11] gives an integer linear programming formulation
of the examination timetabling problem and describes some alternative variants
of the problem.

The course timetabling problem consists in scheduling a set of lectures for
each course within a given number of rooms and time period. The main difference
from the school timetabling problem is that university courses can have common
students, whereas school classes are disjoint sets of students. De Werra [4] gives
a binary integer programming formulation. Schaerf [11] discusses some of the
most common variants of the basic formulation.

One variant is called the grouping subproblem or student scheduling problem.
If the number of students is too large for one room, courses are split into groups
of students and there are conditions on the minimum and maximum number
of students that can be assigned to each group. A student is required to take a
certain number of courses, which they have to select themselves after a timetable
is made available. The problem consists of assigning a student to a specific group
of a course for a given fixed timetable such that students are satisfied and there
are no time conflicts, see Busam [2], Feldman & Golumbic [6] and Laporte &
Desrochers [8].

Cheng, Kruk & Lipman [3] discuss the Student Scheduling Problem (SSP) as
it generally applies to high schools in North America. They define the problem
as the assignation of courses and a specific section to each student. The objective
is to fulfil student requests, providing a conflict-free schedule. They show that
the problem is NP-hard and discuss various multi-commodity flow formulations
with fractional capacities and integral gains. The main difference between the
SSP and our timetabling problem is that for the SSP all courses on the preference
list of the students have to be assigned to students. This results in most practical
cases into an empty feasible solution set.
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Laporte & Desrochers [8] give a mathematical formulation of the student
scheduling problem. They formulate the problem as an optimization problem
splitting the requirements into hard and soft ones. The only hard constraint in
their model is that student course selections must be respected. Time conflicts
for students are soft constraints. When time conflicts occur students are advised
to make a different course selection. The problem is then solved in three phases:
In the first one the algorithm searches for an admissible solution, in the second
section enrollments are balanced and in the third the room capacities have to
be respected. Tripathy [13] formulated the student scheduling problem as an
integer linear programming problem and uses Lagrangian Relaxation to solve it.
Sabin & Winter [10] use a greedy approach that is moderated by an intelligent
ordering of the students. Miyaji, Ohno & Mine [9] apply goal programming.

3 Problem Description

At our first meeting, the Industrial Design department explained the problem
to us in a certain problem formulation No. 1; see Subsection 3.1. This problem
can be modeled as a network flow problem, and hence is solvable in polynomial
time; see Ahuja, Magnanti & Orlin [1].

Unfortunately, we learnt after some time that formulation No. 1 was not
a complete formulation of the problem. They actually had forgotten to tell us
about a number of additional restrictions that lead us to a new, more difficult as-
signment problem formulation No. 2. Subsection 3.2 describes formulation No. 2.

3.1 Problem Formulation No. 1

At the first meeting with the Industrial Design department, they told us that
every student hands in a preference list of at most 10 courses and requests a
certain number of courses. The only constraints are that a student can not do
two courses at the same time and there is a maximum number of students that
can be assigned to a course. This subsection contains a more detailed description
of problem formulation No. 1.

A set C of courses and for each course ¢ an upper bound C7*** on the number
of students is given. This number depends on the preference of the teacher and
the room capacity in which the course is given. For each course also the weekly
meeting time is already assigned. This weekly meeting time always consists of
two consecutive hours. Two such consecutive hours are defined as one time slot.
The weekly meeting time of a course is chosen from a set 1" of disjoint time slots.
T(c) is defined as the time slot which is the weekly meeting time of course c.
Hence, one of the constraints in the model is that courses ¢; and ¢; can not be
assigned to one student if T'(¢;) = T'(¢;).

We define S as the set of students. For each student s the requested number
rs of courses is given. P; is defined as the set of positions on the preference
list for which student s filled in a course. Most students have Py = {1,...,10}.
There are also students that hand in a smaller preference list. For instance, a
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student almost finishing his bachelor and only one course left to do, which has
to be a math course, hands in a preference list with only math courses. For a
student s with only six courses on its preference list we have Ps = {1,...,6}.
Table 1 gives a few examples of preference lists. Column Pi gives the encoded
course name of the course on position ¢ of the preference list. The parameter c),
is introduced and is equal to ¢ if course ¢ is on position p of the preference list
of student s.

Table 1. Example of preference lists

Student | 7 P1 P2 P3 - P10

s040202 | 4 | DAC03 DA247 DA125 ... DA405
s040203 | 4 DA619 DA125 DA201 ... DA616
s040204 | 4 DA418 DA242 DA402 ... DA621

In summary: The input of problem formulation No. 1 consists of:

— a set T of time slots.

— a set C of courses; for every course ¢ € C a time slot T'(¢) and a maximum
number C7"** of participating students is given.

— a set S of students; for every student s € S a set P; of filled positions of the
preference list, a course c,, for each position p € P; and a requested number
rs of courses is given.

The goal is to assign as many courses to students as possible, while:

— the number of courses assigned to student s does not exceed the requested
number r;.

— courses assigned to a student are on its preference list.

— courses assigned to a student do not conflict in time.

— no course exceeds its maximum number of assigned students.

This problem can be modeled as a network flow problem. A description of this
network flow model is given in Appendix A.

3.2 Problem Formulation No. 2

As we received the first data set from the Industrial Design department, we were
very surprised: there suddenly were also lower bounds C™" on the number of
students participating in course c¢. This yields the new constraint that a course
either will not be given at all, or otherwise has at least C™" participating
students. This new constraint can not be modeled as a flow-constraint, and
hence the maximum flow model in Appendix A becomes obsolete. In fact, the
new constraint makes the problem NP-hard; see Appendix B. After looking
at the data more carefully and after conversations with the Industrial Design
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department we noticed there were a lot more restrictions. The remainder of this
subsection explains these extra restrictions and defines the problem into more
detail.

An academic year is divided into a certain number of periods. The length of
such a period depends on the number of periods in which the academic year is
split. For instance, the academic year 2005-2006 is divided into six periods of
five weeks. We define such a period as a block. The Industrial Design department
wants us to schedule two blocks simultaneously. Therefore, set B is introduced
as the set of blocks that have to be scheduled simultaneously.

In problem formulation No. 1 we assumed the workload of all courses was
equal. However, there are courses with a workload of 40 hours and courses with
a workload of 80 hours. This can not be modeled with a flow constraint. In the
remainder of this paper a workload of 1 corresponds with a workload of 40 hours.
In Appendix B we prove that having courses with a workload 1 and courses with
a workload 2 makes the problem already NP-hard. For each course ¢ € C' and
block b € B the parameter w(c, b) is defined as the workload of course ¢ in block
b. Hence for a course ¢ with a workload of 80 hours in block b we have w(c, b) = 2.

In problem formulation No. 1, r; was defined as the requested number of
courses of student s. This definition is adjusted in problem formulation No. 2
into the requested workload of student s for |B| blocks together. For every stu-
dent s, a maximum requested workload rg, for each block b € B separately is
given, because the requested workload of a student is not always equally divided
over all blocks b € B. For instance, if blocks b; and by have to be scheduled
simultaneously and s = 3, then parameters rs, and 7, are both equal to 2. In
this case the model is allowed to choose the block in which student s is assigned
two courses. Another example, if student s has to do a practical training in block
bs he has: 7y =2, rg,, =2 and 74, = 0.

It was assumed in problem formulation No. 1 that a course has one meeting
every week, hence it has one time slot. But there are also courses which have
two weekly meetings, hence have two time slots. If such a course is assigned to a
student, the student has to be available at both time slots. If courses with two
time slots are introduced into problem formulation No. 1, the problem can not
be modeled as a network flow problem.

The set C of courses offered to the students contains courses with multiple
sections, meaning that the course is repeated during the week. Table 2 contains
course DA242 as an example. The time slots in the table are encoded. For ex-
ample, code BITM2 stands for the second part of Tuesday morning in block 1.
The workloads of a course in block 1 and 2 are denoted with wlbl and wib2. The
course DA242 has five sections which all have two time slots as meeting times.
The first meeting is for all sections on the same time slot and the other is on
a different time slot for each section. The first meeting is a class in one large
lecture room and the second is a meeting where exercises have to be made in
smaller groups.

We define I as the set of sections offered to the students. For every section
i € I its course ¢(i) € C is given. In problem formulation No. 2 there are
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no maximum and minimum number of students for a course like in problem
formulation No. 1, but a minimum number C" and a maximum number C/"*®
of students for each section ¢ € I. The meeting times for each section i € I are
given as the set of time slots T'(i) C T. There are a few courses, for example
literature studies, which are not assigned to a time slot and thus T'(3) = 0.

Table 2. Examples of courses

Course | Section | Time slots of meetings | wlbl|wlb2 | Min | Max

DA242 |DAG242-1 B1TM2, B1TA1 1 0 0 30
DAG242-2 B1TM2, B1TA2 1 0 0 30
DAG242-3 B1TM2, BIWA1 1 0 0 30
DAG242-4 B1TM2, BIWA1 1 0 0 30
DAG242-5 B1TM2, BIWA2 1 0 0 30

DA247 |DAG247-1 B1WA2, B2WA2 1 1 5 15
DAG247-2 B1WA2, B2WA2 1 1 5 15

Another constraint arises if students have specific needs, for instance when
they almost finish their studies and only have one course left to pass. Then a
course on the preference list of the student can be set to urgent. As long as the
maximum number of students (all with an urgency) is not assigned to this course,
the course has to be assigned to the student. A course which is urgent for one
student has to be given. In this case, it doesn’t matter whether the minimum
number of students is reached or not. We define U as the set containing all
combinations (s, p) for which course ¢, is urgent for student s.

A few courses have meeting times which are spread over two blocks. See
for example course DA247 in Table 2. This course has two sections and a total
workload of two which is equally spread over the two blocks. If a student is
assigned to a section of this course in one block he needs to be assigned to the
same section of this course in the next block. Hence, it is also possible that courses
are given in two blocks which are not scheduled simultaneously. If this occurs,
this implies there are students already preassigned to sections if the schedule of
the second block is made. Therefore, we introduce the set F' of fizations which
contains combinations (s, p, ¢) for which section 7 of course ¢, is already assigned
to student s.

In summary: the input of problem formulation No. 2 consists of:

— a set B of blocks that have to be scheduled simultaneously.

a set T of time slots.

a set C' of courses; for every course ¢ its workload w(e, b) for each block b is
given.

a set S of students; for every student s a total requested workload 7, a
requested workload rg, for each block separately, a set Ps of filled positions
on the preference list and for each position p € P, a course cg, is given.
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a set I of sections; for every section i its course c(i), a minimum C™" and
maximum C™** number of students and a set of time slots T'(¢) C T is given.
a set U of combinations (s, p) for which course ¢, is urgent for student s.
a set F' of combinations (s, p,4) for which section ¢ of course cg, is already
preassigned to student s.

Our main goal is to assign workload to students as much as possible, while:

maintaining the number of students in a section below a maximum size
prescribed.

the total workload assigned to student s is less than or equal to 7.

the workload assigned to student s in block b is less than or equal to rgp.
sections assigned to a student do not conflict in time.

students are only assigned to a section of a course on their preference list.
students are only assigned to one section of a course.

student s is assigned to section i if (s,p,i) € F.

Soft constraints are for example spreading students over sections, a section needs
to be assigned to at least a certain minimum number of students and student s
has to be assigned to course ¢, if (s,p) € U.

4

The Integer Linear Programming Model

To build a schedule which best fits the needs for the students, the problem is split
into four subproblems which are formulated as an integer linear programming
problem. These subproblems are solved sequentially, keeping the objective value
of the foregoing subproblems the same. The goals of the four subproblems are:

1.
2.

Maximize the number of assigned courses with an urgency.

Minimize the shortage of students to reach the minimum number of students
of a section. Because of urgencies, some sections must be taught, but don’t
have enough students with this course on their preference list. We assign as
many students as possible to those sections.

. Maximize the total assigned workload. We try to assign a workload rs to

every student s.

. ’Optimize’ the timetable. For example by assigning courses to students which

rank high on their preference list.

All parameters are already introduced in Section 3. Left to define are the

decision variables. These are defined as follows:

A 1 if course cg, is assigned to student s
*P 7] 0 otherwise

v = { 1 if section % is assigned to one or more students
K3

~ ] 0 otherwise

1 if section 4 of course cg, is assigned to student s
Zspi 1= .
spe 0 otherwise
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The following constraints have to be fulfilled in all four subproblems:
Tsp = Dlicl|csp=c(i) Zopi Vs € S5, Vp e P
EPEPS Zie[\csp:c(i) W(Cep, b)zspi <rspy Vs € S,Vbe B
D opep, Dictlesy=c(i) 2uben W(Csp; b)Zspi STs Vs €S

~ o~ o~ —~
W N
= I = = -

D2s€8 2ape Py cap=c(i) Zoi < Oy Viel 4
2 peP, iel|es=c(i) teT (i) Fspi < 1 VscS,\vteT 5
Zspi =1 Vs € S,Vp € P,

Vi e I|(s,p,i) € F (6)
zsp € {0,1} Vs € S,Vp € Ps (7)
yi € {0,1} Viel (8)
zspi € {0,1} Vse S,Vpe Ps,Viel (9)

Constraint (1) takes care that at most one section of a course is assigned to
a student. The workload assigned to a student has to be less than or equal to
the requested workload each block separately and all blocks together. This is
fulfilled by constraints (2) and (3). Constraint (4) enforces that the maximum
number of students for a section is not exceeded and constraint (5) takes care
that at each time slot only one section is assigned to each student. If (s, p,i) € F
then section ¢ of course cg;, has to be assigned to student s, which is fulfilled by
constraint (6).

As explained above, the problem is split into four subproblems which are
solved sequentially. The goal of the first subproblem is to maximize the number
of assigned courses with an urgency. The constraint that a section needs to have
more than a minimum number of students is not a restriction in this subproblem,
because at least one section of a course must be given if there is a student with
an urgency for this course. This first subproblem can be solved with the following
ILP formulation:

maxr __
U = max Z(s,p)eU Lsp

(XaYaZ) SatiSfy (1)_(9)

The next step is to minimize the shortage of students to reach the mini-
mum number of students of a section, keeping the maximum number of assigned
courses with an urgency equal to U™**. There are sections that have to be given
because they are assigned to students with an urgency for the corresponding
course. Those sections are assigned to other students such that the minimum
number of students for those sections is reached. The decision variable s; is de-
fined as the shortage of students for section 4, i.e. the minimum number CJ™"
of students subtracted with the number of students assigned to section i. The
second subproblem minimizes the total shortage S™" of students. This results
into the following ILP formulation:

S =min ), ;8
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2 (s.pyeu Tsp = U™
Y oecs ZpGPS,CSp:C(i) Zepi + 81 > Oy, Vi€ [
s; €L, Viel

(x,y,2) satisfy (1)-(9)

The third subproblem maximizes the total workload assigned to students with
the restrictions that U™ and S™" keep their optimal values. This maximum
workload is denoted by W™* and is determined by the following model:

W™ = max Eses EpePs ZbeB w(cSp7 b)xSP

Diersi=8m"
Z(s,p)EU Lsp = ymaer
D ees DopeP, copmeli) Zspi T 80 = CFyi, Vi€ 1
s; € T, Viel
(x,y,2) satisfy (1)-(9)

To ’optimize’ the final timetable we assign courses as high as possible on the
preference lists, spread the students as equally as possible over the sections of
a course and discourage that one student gets a lot of courses which are on the
bottom of his preference list. Therefore, the fourth subproblem is solved. The
objective function is separated into three terms and has to be minimized under
the restrictions that U™ S§™" and W™ keep their optimal values.

The term in the objective function to assign courses as high as possible on
the preference lists is: Wy 3" oD cp, D pep W(Csp, 0)(82 — (10 — P)?)Tsp. As-
signing a course on top of a preference list, p = 1 for this course, adds a lot
less to the objective function than assigning a course on the bottom of the list,
p = 10 for this course. W}, is a weighting factor and also the workload is taken
into account.

If a course has multiple sections, students have to be spread as equally as
possible over the sections. Therefore, I7*** is introduced as the number of stu-
dents assigned to the section of course ¢ with the most students assigned. Also
the spread S, of course c is introduced and is equal to the sum over all sections
of the difference between I7"** and the assigned number of students in each
section. S, is added to the objective function with a weighting factor Wj.

We also discourage that one student gets a lot of courses of his 7th up to 10th
position of his preference list. A constraint is added to the model that enforces
that every student gets at most one course from these positions, else a penalty
We is paid for each ’extra’ course from these positions. Therefore, the decision
variable F is introduced for every student s. This variable is equal to the ’extra’
number of courses assigned to student s which are on the 7th up to 10th position
of his preference list.
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This results into the final ILP formulation:

min W, Y ° > > " w(ea, b)(82 = (10 — p)*)zap + We Y S+ We Y E,

seS pePs beB ceC sES
Iér(lz%w 2 ZSGS ZpGPs,cs,):c(i) Zspi Viel
Se = Yietjemeny L™ = Xses ZpePs,csp:c Zspi) Ve € C
Yoper Tsp < 14 Ej Vs € S

ZSES Z;DEPS ZbeB w(csp, b5y = WM
Yiersi=S8""
Z(s,p)eU Top = U™

D ses Zpeps,csp:(}(i) Zspi + 80 > O™y, Viel

E, eN Vse S
e S, e N Vee C
s; €ZT Viel

(x,y,2) satisfy (1)-(9)

5 The Computational Results

The computational results for the academic year 2005-2006 are given in this
section. This academic year was divided into six blocks. Blocks 1 & 2, blocks 3
& 4 and blocks 5 & 6 were scheduled simultaneously.

In all blocks the meetings were on Tuesday morning, Tuesday afternoon,
Wednesday morning and Wednesday afternoon. Every morning and afternoon
was split into two parts. So both blocks contained eight time slots. More details
about the input are given in Table 3. The abbreviation wl stands for workload.

The number of students that requested workload in blocks 1 & 2 was 356 and
the total workload they requested was 1416. Hence, for each block, an average
of two courses of the preference list of 10 courses had to be assigned. Note that
the large number of urgencies in blocks 1 & 2 can be explained by the fact that
first year students are preassigned to courses, because they are not able to make
a choice themselves.

Table 3. Input information for academic year 2005-2006

Blocks| |S|||C|||I]||U]||offered wl|requested wl
1 & 2(356|51|79|590| 1504 1416
3 & 4(328| 64 |88(279| 1545 1288
5 & 6 (302| 58 |89(151| 1544 1333
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The models introduced in Section 4 are solved by the standard IP solver
CPLEX 10.0. The computations are done on an Intel Pentium M, 2.0 GHz
processor with 1.0 GB internal memory. The values of the weighting factors
were W, = 10, W, = 1 and W, = 100. The results for the academic year 2005-
2006 are given in Table 4. What can be noted is that the computation time of
CPLEX is negligible.

Table 4. Results for the academic year 2005-2006

block 1 & 2|block 3 & 4|block 5 & 6
Runtime CPLEX (s) 1.38 1.53 1.67
umer 439 273 134
S 0 0 0
wma® 1369 1261 1300
average position 3.30 3.64 3.87
bad positions 8 16 39

In blocks 1 & 2 a requested workload of 47, in blocks 3 & 4 a requested
workload of 27 and in blocks 5 & 6 a requested workload of 33 could not be
assigned. Especially in blocks 1 & 2 this is caused by the small difference between
the requested and offered workload. However, the main causes are preference lists
for which it was impossible to assign the requested workload. Some examples of
such wrongly chosen preference lists are:

— an empty preference list, because students didn’t hand it in on time.

— a preference list with less than 10 courses.

— a preference list with not enough different time slots in one of the two blocks.

— a preference list with the same course on more positions. There was even a
student with ten times the same course on his preference list.

If all students would hand in a preference list with 10 courses and enough differ-
ent time slots, then in blocks 1 & 2 only five students would not be assigned to
their requested number of courses, in blocks 3 & 4 and blocks 5 & 6 only three
students.

Table 4 also shows that in blocks 1 & 2 only 439 out of 590 urgency requests
could be assigned. This can be explained by the fact that in these blocks all
courses on the preference list of first year students are set as urgent. Most of
those preference lists contain 6 suitable urgent courses of which at most 4 are
assigned. This means at least two not assigned courses with an urgency for each
first year student.

The average position denotes the average of the positions of all courses as-
signed to a student. On average students request a workload of 4, which mostly
corresponds with four courses. Hence, it can be concluded that students get a
lot of courses which are on top of their preference list. A bad position is a course
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assigned to a student who has the course on 7th up to 10th position on its pref-
erence list. Also from the number of bad positions it can be concluded that the
courses assigned to students are on top of their preference lists.

6 Conclusions

We have formulated, analyzed and solved a real-world timetabling problem that
showed up at the department of Industrial Design of the TU Eindhoven. Our suc-
cessful approach was based on an Integer Linear Programming formulation. The
running time that CPLEX needs for solving the resulting instances is negligible.

The administration and the students of the department of Industrial Design
were highly satisfied with the timetables generated by our program. Most stu-
dents now receive courses that are on top of their preference lists. There still
are a few students who are not satisfied, but in most cases this turned out to
be solely their own fault: they failed to specify correct preferences in the correct
format.
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A Max-Flow Model of Problem Formulation No. 1

Full details of the definition of this network flow problem will be given in the
full version of this paper.

Fig. 1. The network flow model

B Some NP-hardness Results

The timetabling problem defined in Subsection 3.2 is an NP-hard problem. We
prove this by identifying two independent NP-hard subproblems. Both subprob-
lems result from adding one additional constraint to the problem formulation
No. 1.

In the first subproblem, the additional constraint are lower bounds on the
number of students in the courses. There are no time slots, there is only one
section for each course ¢ with a minimum and a maximum number of partici-
pating students. The workload of all courses is one, and only one block has to
be scheduled. Formally, problem P,,;, is defined as follows:

Instance: A set C of courses; for every course ¢ € C' a minimum capacity
C™" and a maximum capacity C™% of participating students. A set S
of students; for every student s € S a preference list of some courses in
C, and a number 74 of requested courses.

Question: Does there exist an assignment such that (i) every student s
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gets exactly rg courses from its preference list, and such that (ii) for every
course ¢ the number of assigned students is either zero (if the course does
not take place) or falls between the bounds C”*" and C**?

Theorem 1. Problem P,,;, is NP-hard.

Proof. The proof is done by reduction from the exact cover by 3-sets problem:
Given a ground set X = {z1,...,z,} and a set T = {t1,...,tm} of 3-element
subsets of X, can one select 7/ C T such that every element of X occurs in
exactly one member of 7”7

From an instance of the exact cover by 3-sets problem, we construct a cor-
responding instance of problem P,;, with n students zi,...,z, and with m
courses ti,...,tmy. Every student s has a demand of one course (r; = 1), and
every course ¢ has minimum and maximum capacity three (C™" = CmMe® = 3),

Assume X possesses an exact cover T”. Assign student x5 to course t. if and
only if ; € t. and ¢, € T’. Since T” is an exact cover of X, every student
zs will be assigned to exactly one course t.. The course t. is assigned to three
students if it is in 7", and to zero students if it is not in 7. This shows that the
constructed instance of P,,;, is a yes-instance. The converse statement can be
seen in a similar way. ad

In the second subproblem, we take problem formulation No. 1 and addition-
ally allow courses with a workload of 2. We consider a situation with only one
section for each course ¢, only a single block, and without any time slots. (And
there is no minimum capacity of courses.) Problem P,,; is defined as follows:

Instance: A set C of courses; for every course ¢ € C' a workload wl. €
{1,2} and a maximum capacity C"** of participating students. A set S
of students; for every student s € S a preference list of some courses in
C, and a desired workload r;.

Question: Does there exist an assignment such that (i) every student
s gets courses with a total workload rs from Pj, and such that (ii) for
every course ¢ the number of assigned students is at most C7***?

Theorem 2. Problem P, is NP-hard.

Proof. The proof is done by reduction from the 3-SAT variant where every vari-
able occurs exactly twice in negated and exactly twice in unnegated form. Con-
sider an arbitrary instance of this 3-SAT variant.

— For every variable z;, we introduce two corresponding students st(x;) and
st(Z7) which both request a workload of two.

— For every variable z;, we also introduce a corresponding variable-course
C(z;) which has a workload of two and a capacity of one. C(z;) is in the
preference list of st(x;) and st(z;).

— For every clause ¢;, we introduce a clause-course C(c;) with a workload of
one and a capacity of two. Clause-course C(c;) is in the preference list of a
student st(x;) (respectively st(Z;)) if and only if x; (respectively T;) occurs
as a literal in clause c;.
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Note that in any feasible assignment, student st(z;) (respectively student
st(z;)) will either do course C(z;) or the two courses C(c;,) and C(cj,) for
which literal x; (respectively literal Z;) occurs in clauses ¢;; and ¢ja.

Assume that the 3-SAT instance is a yes-instance, and consider a correspond-
ing satisfying truth-assignment. If x; is set to TRUE, then we assign student
st(x;) to the variable-course C(x;), and student st(Z;) to the two clause-courses
that correspond to the clauses containing Z;. If z; is set to FALSE, we assign
st(x;) to the courses that correspond to the clauses containing z;, and stu-
dent st(Z;) to C(x;). Then each student receives his requested workload, and
every course C(x;) gets only a single student. Since every clause has at most
two FALSE literals, the corresponding clause-courses will get at most two stu-
dents. So every yes-instance of the 3-SAT problem leads to a yes-instance of the
timetabling problem.

Now assume that the constructed instance of problem P,,; is a yes-instance.
Then every student st(x;) receives a workload of 2, which implies that the student
must either be assigned to one course C(z;), or to two clause-courses C(c;1)
and C(cjo). If student st(z;) is assigned to the variable-course C(z;), we set
x; to TRUE. If student z; is assigned to some clause-courses, then we set x;
to FALSE. Since each clause-course C(c;) is assigned to at most two students,
every clause contains at most two FALSE literals. Hence, every yes-instance of
P,,; corresponds to a yes-instance of 3-SAT. 0O
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Abstract. Today’s highly competitive economy calls for newthods of man-
agement. Advanced practices have been proposedriaga human resources,
often acclaimed to be the most important assetsmgforganisation. However,
computer models and applications to support thesthads are often not avail-
able, or not until it is much too late. This papeesents several directions for
advances in strategic employee scheduling, asasetlur approach for imple-
menting these concepts.

Introduction

It is commonly observed that human resource (HRjetsand applications take time
to keep up with emerging management best pracfid&s®). For example, the han-
dling of homogeneous employees first published9B0ls, is still subject to researck
today (see [10, 14]), while scheduling employeeth wiultiple skills have been dis-
cussed since 1980’s. To accelerate this processpé#pier describes in § 1, a consit
tent set of MBP that would make up a Strategic Egg®oScheduling (SES) system
A definition of SES is given in § 2 and we compdreith existing terminology and
models. We will describe our approach in implemamntsuch a system in 8 3 with
some details based on Mixed Integer Programming.

In this paper, we do not consider simpler workiogditions where only days-off
needs to be scheduled or where the requirementyaelie, i.e. they repeat systemati-
cally after a given period of time, typically wegkln addition, we do not consider
shift creation, which assumes cyclic requirements @ given day of the week.

1 Management Best Practices

This part describes the many concepts that managed to consider in producing
“strategic” schedules, i.e. scheduling with a siggt Like multi-skilled staff, these
concepts are not new. However, computing modelsaaptications that handle therr
are only partially available today, e.g. [12].

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 157-166. ISBN 80-210-3726-1.
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1.1 Creating, Operating and Retaining Flexible Teams

It is common knowledge that multiple skilled workerre more productive since the!
can change jobs to meet changing customer needsuridelying principle iglexi-
bility; i.e. teams that cagasilyandquickly adapt to changing market conditions; se
[6]. Through our experienceperatinga flexible team involves concepts such as:

— Multi-term : Annualized hours allow people to work more ontaiaerweeks with-
out incurring overtime. In order to avoid abusés fitexibility is accompanied by
maximal work limits at various horizons (e.g. dailyeekly, monthly or quarterly)
and minimal rest duration at the day and week g&v@apacity planning becomes i
necessity to avoid paying fines when these limies\aolated. This important con-
cept, similar to that of “Planning and Scheduling’,discussed further in § 1.2,
Since 2000, annualized work time has become legah&ny sectors of the econ-
omy in many European countries. We have been wotkitigis area [4], [5].

— Multi-contracts: People may come from different walks of life witlifferent
work durations and times, e.g. students, housesyiratired or semi-retired peo-
ple. For economic reasons, different populationg behired to cater for peak pe-
riods; their differences may be used to adapt t@amiability to different customer
demands in the day, over the week or over a sgaspnsummer/winter season).

— Multi-site/multi-project : People may work on different sites or projects;oad-
ing to the needs of the moment. Rather than hiaimg training new personnel, it
might be more efficient to have them travel acsitss, e.g. during meal breaks.

In addition tooperation the team needs to hmeatedand its membersetained

Team creation involves the identification of keyaolvithin the team, the assignmer

of available individuals to these roles and theuidment of new staff for the missing

roles. This aspect is out of the scope of the pdpsing a one-time activity for which
automation may not be cost-effective.

We think thatretaining team members is an aspect that accompaniesdpara-
tion. Other than better pay, motivation can come bykwiones adapted to individual
needs which can change over time, better workingditions (such as security anc
hygiene), creation of a team spirit or througtofessional mobility For example,
highly skilled staff can act as tutors to new emgpks.

1.2 Capacity Planning and Scheduling and Strategic Emplgee Scheduling

Recently, the concept of Integrated Planning anlde&aling has been introduced
initially in the domain of autonomous systems whacgons must be planned using
Al-based methods and then scheduled for execuian;see [13]. The constituen
domains have been studied separately until receBtith are highly combinatorial
problems and their resolution methods are not mit®i. Their integration and/or
simultaneous execution within the same applicatioey motivated by creating near:
perfect schedules, to solve the problems fasteén solve even larger ones.

We argue that Al-based planning is not always @aie€\yn general managemen
practices. Here, the goals are well defined in adeaand do not necessarily evolv
over time. In many classical scheduling areas,cthcept of planning is typically
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based on capacity reasoning. So that given aetivitan take place as scheduled, it
necessary that all required resources and constitlee present in adequate numbe
in space and in time.

For example, in manufacturing where machines neduktscheduled (at the job-
shop level), Materials Requirements Planning (MR&ware is used to organize
activities so that constituent parts are availaldime (at the same factory/site) an
in required quantities. Resource capacity congsane normally taken into accoun
in Manufacturing Resource Planning (MRP2) softwaearrently, such software’s
run independently in different departments of thenpany. Plans that respect capat
ity can be created in MRP2 that cannot be schednl&tRP.

We see capacity planning as a natural extensiatetailed scheduling, with the
goal of ensuring that needed resources and matdigahvailable in time and in quan
tity so that the schedule can actually be impleew@nWe expect the capacity plan
ning and scheduling processes would be runningietsfep. Many of the scheduling
definitions would come from capacity planning, sashteam size, skill compositions
etc. When capacity planning shows that there iggsige unused capacity, it may b
empowered to launch new activities.

Within the more general context of flexible tearnsts as that described in 81.1
we would refer to the Capacity Planning and Schadutoncept astrategic Em-
ployee Schedulingo as to avoid confusion with Al-based Plannind Scheduling.

1.3 Benefice = Revenue - Costs

We see that flexible teams seek to adapt teamadpiiéty to customer requirements sc

that requirements can be fulfilled so that the hess opportunities are not lost. Th

underlying concept is that the employees be fuligd aisefully occupied. In other

words, avoid downtime. To avoid downtime, managausith additional activities or

projects. For the same fixed costs, increasingmeeevould produce more benefices

— Detect if there is enough slack to launch a newviagt while allowing for some
slack to cater for unforeseen circumstances.

— Choice of a new job/mission/production to introdismench; this may depend on
availability thresholds

— Which item to make to stock: it depends on avadabbhnpower (or what's miss-
ing and must be completed by hires), stocks ofesparts and stocking newly as
sembled parts.

— Compact schedules are those that have work pefimiss/days/weeks) over the
shortest possible horizon. Create compact schedtllése highest possible level
(e.g. quarterly), so that people can be reassiglsssivhere or on other projects.

2 Strategic Employee Scheduling: A Definition

Strategic Employee Scheduling is the process ofywiod detailed daily schedules
for individual employees while taking the organigals strategic goals into consid-
erations at different time horizons (such as monthliarterly or yearly). This defini-
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tion stems from the term “Strategic Scheduling” égample in manufacturing, where
lead times for business decisions range from 3 hsokt several years. Strategi
Scheduling is a general management methodologgrisider an organization’s stra-
tegic goals and scheduling all resources to memnthVith a larger scope, it car
achieve more important gains then ordinary scheguiodels and applications have
been proposed but they arecessarilyspecific to the domain or the combination c
resources managed (manufacturing, transport, faoehugtion, etc.).

In certain cases, it may be possible to combine éxisting models or tools to
cover the strategic terms (long and middle) andstieat term. Here, a good match i
essential because we need bglod strategies that can be schedudedigood short-
term schedules that are long-sighte&hd we need to get them without having t
adjust by hand the results of one to feed the ofnethe following paragraphs, we
offer a more precise definition in terms of objeatsl concepts manipulated.

2.1 Scheduling workforces, nurses or employees

Workforce schedulings taken to be short-term assignment of tasksniie tiwith the
attendant sequencing/precedence constraints. Thplepscheduled are assume:
homogeneous such that individual skills are nogémalkito account, such as in technc
logically mature industries. The first work startieg [7], scheduling homogeneous
workers is still a research subject today [10, 14].

Employeeschedulinga term first used in [9], takes into account indidal skills.
Distinguishing full-time and part-time employeeack employee specifies the mini
mum and maximum hours per week and duration anestiduring the week. In the
literature, some authors misuserkforcescheduling to refer temployeescheduling.

Nurse schedulings generally more complex, producing subtly “bakdi’ sched-
ules for each employee according to their indivigueaferences; see e.g. [1].

Some properties to be taken into account:

— Set of skills and the level of proficiency for eamiployee. This allows him/her to
be assigned to simple tasks in a new skill, thiesvithg a gradual development.

— We need to know the employees’ previous assignmemtss to ensure minimum
rest duration since yesterday’s work or enoughdags in the week, and to ensur
that maximum work duration is not exceeded in theremt month or quarter.
Scheduling history can also be used to producedstbe that are balanced witt
respect to values of counters (such as number gift rdnd/or weekend assign:
ments).

— Contractual and preferred work periods and duration

— Skill and proficiency level required for each attgivtype.

— Per skill, the minimum assignment for each employlees taking into account his
previous assignments. The minimum is to retain Kilecualification (for security
reasons) or to upgrade it, depending on the orgtmniss policy.

— Company skills to develop, employees designatettdiming in these skills

— Identification of activities that may be launchedahe thresholds of excess mar
power that justifies their launching
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2.2 Planning model

The capacity planning model is an aggregated magieyperiods of one day, week
or month, over an annual horizon, for example. Theded amount of work (i.e.
man-hours) per skill per period is forecast, eitsed on statistics with local correc
tions for events in the new horizon, or activitiedidated by higher management
Other inputs are employees’ absence requestss(irmmer/winter holidays). At the
beginning of the year, such forecasts may be intetelprequests formulated during
the year may not be granted, especially during geakons.
Capacity planning consists of determining the wauwkation per employee per pe-
riod and per skill. Other results are:
— Planning off-peak seasons where employees canataeal vacations; these as
signments are nominative but employees with theessiitls may exchange them
— Hiring additional hands when needs cannot be gdisfith available employees
— Launching additional activities when available mampoexceeds requirements by
a given margin.
This component gives SES its strategic dimension pusx scheduling systems.

Employees available . Assigns work durations per
Project plans —»| Capacity Planner—> .10 employees over the year
Training plans Eventual new hires or new
Absence requests T activities launche

Legal constraintsmax work & min. rest durations
Company polices; employee skil

Fig. 1: Capacity Planning

2.3 Scheduling model

The scheduling model is the detailed assignmentyfl@yees to activities or skills
on each day of the week. The schedule must respeditferent daily/weekly con-
straints on work and rest duration, total work doraand total work duration per
skill. There are eventually ¥4 hourly requirements gay of the week, similar to
those in call centers. In the distribution secti@pending on the holidays in the weel
a given weekly load curve can be broken down stémdardload curves per day.

Employees available Assigns employees to
Target total work duration » Scheduler T activities or tasks

and duration per skill

Eventually detailed work +

load per skill Legal constraints On work & rest durations;

maximum continuous work before break
Preferencework & break duration; work times;
Fig. 22 Scheduler employees’ skills and schedulincstoric

The scheduler could also be used to verify if vagiparts of the annual capacity
plan can be scheduled. Compared to convention&dsiérs, it handles multi-skills
and performance levels. It would also take intostderation some planning con-
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straints such as slack thresholds: if exceedeaoitld abort and request the planne
to activate additional tasks (which invalidates ¢cherent schedule anyway).

It is the presence of the planning model and tisgration to the scheduling mode
that transforms the whole into an SES. The integnatimy be at the model level,
where the linear equations of both levels coexist.

3 Our Approach to Strategic Employee Scheduling

In this section, we describe our approach to sgitire SES problem as described i
§ 2. We propose two models for (a) capacity plagrand (b) detailed scheduling.
We solve a capacity planning problem at the anhoalzon with weekly periods.
Here the work hours of each employee are distribste as to meet the forecaste
demand, i.e. the number of hours of expected woK$ w) per skill s and per week
w. The total working duration per week is boundegally. The average working
duration per week over 3 months and the total anmaesking duration are also
bounded. Employees’ requests for summer / wintédagé may be integrated within
the plan at this stage. With the weekly skill disition known, we attempt to pro-
duce a detailed schedule for all days in the cuirvegeks that is compatible with
labor constraints such as maximum work and minimesh durations per day and pe
week. If such a schedule is unfeasible, we recafeuthe annual plan; in particular
we check the plan for the following weeks and ewealty recalculate the detailed
schedule for some weeks (if they are already catled).

In the following, we first detail the capacity phing step. The detailed scheduling
step can be formulated as described in § 3.2. Thefsamployees is denotdfin-
ployees the skills of employee e is denot&dills (e); the periods in day d (or week
w) is notedPeriods(d) or Periods(w). We assume that each skill implies the site
which the skill can be exercised.

The proficiency level of a skill is factored out tife mathematical model. Eact
combination of (Skill, Site, and proficiency levé)mapped into a different skill, e.g.
sl = (s°, Paris, high), s2 = (s°, Paris, mediu)=gs°, Paris, low). An employee
expert in s° will have the three mapped skills artthinee will have only s3.

3.1 Capacity planning in SES

The capacity planning problem uses the integer blsaY(e, s, w) representing the
number of hours worked by employee e in a skiveraveek w. The total work dura-
tion in the week w is given by (1). WD is a semitiouous variable, bounded by the
minimum and maximum contractual weekly work dunati©€Wy;, (€) and CWjax(e).
Itis null if employee e takes weekly holidays.

WD(e, W) =2 soskiisee) Y (€, S, w),00 e, 0 w. o))
CWMin(e) < WD(e, W)S CWMax(e)-

The legal annual work limit Cgyy (€) is assured by
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Zw=1.. 52WD(e, W)S CAnax (8), Oe. (2)

Another legal limit is that the average weekly ower all sliding horizons of
CH=16 consecutive weeks must not exceed,&H

Y w=o.. criW(e,a+wx CHyx/CH,Oe,0a=1...52-CH (3
The requirements constraint is given by R8Mw) for skill s in week w:
Z eDEmponeesY(ey S, W)Z NW(S, W)1 O S, 0 w. (4)

Creation of compact plans at the week level
The logical conditions that imply compact schedyf4.3) is that when there is nc
work on weeks w and w+2, week w+1 must be off ak we
If WD(e, w) >0 and Wk, w+2) > 0Then WD(e, w+1) >0
This condition may be translated into linear equetioNe use binary variables Bi
to hold when the WD variables > 0; M designatesiiiignd CW;ax(€)
If WD(e, w) >0Then X0 =1 WD(e, w)< M x BO; M x BO — M< WD(e, w);
If WD(e, w+2)>0Then X2=1 WD(e, w+2)< M x BO; M x BO — M< WD(e, w+2);
Next, we take the product of the variables BO a@dBd link them to Wige, w+1):
B1<B2;B1<B0; B1 -1+ B0 B1; B1<WD(e, w+1)
Hence, over 52 weeks, we add 400 equations andb&n variables per employee
When single off weeks are requested by the employeehave to avoid posting the
corresponding equations.

New hires

Some dummy employees would be included during dgpatanning. The lower
bounds on total work duration per week would lea@émployees either partially or
completely unemployed over the year, which meaasttiey can be removed. If the
work load exceeds available work capacity of dunamy real employees, the linea
relaxation of the system of equations would quigkigve to be infeasible.

Launching new activities

Projects that last more than a week, with differskitl requirements during each
week of the project life, need to be scheduled,assign them in time subject to re
source capacity limits. We expect such projectbeodecided and scheduled ver
early in the process and taken in account by (8\W). SES needs only to conside
launching projects or activities that can be coteglevithin the week, given enougf
manpower.

To do so, capacity planning is activated withouta@@mployees. At week w, the
selection of projects to launch is a classical gabgelection problem with the 0-1
variables Proje¢t, w) = 1 if project j is selected for the week vptherwise. Given a
set ofProjects, where each j requiregjas) hours of skill s, the basic requirement is

Z jg Projectsa(jy S) X Projec(j, W) < NW(S, W) 'Z el EmployeesY (e, S, W),|:| S, W



164 P. Chan et al.

The objective function to maximize 13; o projects C(j) * Projectj, w), c(j) being the
profit of the project j. These projects are seleeted added to N\(¢, w) before mov-
ing onto the scheduling step.

Hence, handling new activities is not a direct Mi®blem but requires updating
the weekly requirements, may require user intavadb finalize the selected projects

3.2 Scheduling with 0-1 variables and patterns

The scheduling problem of day d uses the 0-1 vaalAd (e, s, p) takes the value 1 i
employee e is assigned to work with skill s atgh&od p[] Period¢d), O otherwise.

2 soskiseX(e, s, px 1,0e,0p. ©)
The needs in skill s of each daily period p, dedigghdy NOXs, p), are covered if
Z eDEmponeesx(ea S, p)2 ND(S, p),D S,D p. (6)

It is straight forward to link the variables X twose in capacity planning. If we de-
fine the auxiliary binary variables(d, p) =2 sp suiis X (€, S, p). They take the value
1 if e is working on period p and 0 otherwise.

WD(e1 W) :z p O Periods(w) U(e, p)ilj €, Ow (7)

Y(e, S, W) :Z pDPeriods(W)X(ev S, p)D €, O S, O w. (8)

At this stage the model can be used to producedside that cover stated re-
quirements, but the employees may be required th oo periods scattered here ani
there and resting in between. Labor law stipuldtaseémployees are paid a minimun
duration of Hy, periods on any day. To produce compact and costtéfé sched-
ules, we use patterns, similar to that proposdé]in

Patterns on a daily horizon

A pattern n in the set #fatternsis defined by the subset of periods that it coviees
v(n, p) = 1 if pattern n covers period p. Valid patts are those that require employ
ees to work on compact schedules, with adequatd/ahea breaks. We define a
supplementary decision variable (&, n) taking the value 1 when employee e is ¢
signed to pattern n; the following equations hold:

Z n0 Patternsx' (e, n) = 1!D €. (9)

Z s Skills(e)x(ey S, p)S Z nDPatternsx' (e! n) \(n, p),D €, 0 p. (10)

Equation (9) stipulates that each employee is asditm one and only one pattern
For a given employee e and period p, if e is aggldo pattern n which covers p, thel
2 soskiise) X (€, S, pX 1 and e may be assigned to a skill s or to repattern n does
not cover period p, the sum is 0 @ido skiise) X (€, S, P 0, i.e. € must be at rest.

Designating the cost of assigning employee e ttepan by ¢e, n), the total cost
is
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Z el Employeesz nQO Patternsx, (e: n) ((e1 I’l) (11)

Patterns render the schedule less flexible in aggigndividual periods, although
they interpret regulations such as minimum and mari work durations (at the
daily horizon in this case), acceptable break wirglcetc. It allows valid solutions to
be found rapidly but there may be over capacitysome periods. Without the equa
tions (9) to (11), the model is limited to smalstances with less than 15 employee
3 skills and 44 periods. The implicit short-term exthling method can also product
solutions quickly, see [11], [3], [5], etc. It r@@s on the number of assignmer
changes instead of the number of employees orothelje resulting model cannot be
directly related to the capacity planning model.

Patterns on a weekly horizon
We need to handle the sequence of patterns onssivealays so as to respect min
mal rest between them. For example, an employéghiilg at 11 pm would not take
the morning shift starting at 7 am the followingyd#nstead of the variable n, we
have n O Patterns, where d1 {1, 7} in the equations (9) to (11)

Define a weekly pattern m by the Boolean varial§la,un, d) = 1 if and only if n is
the d" daily pattern of the valid weekly pattern m. Eadhipioyee is assigned to one
and only one weekly pattern per week.

Zm O Weekly Patterns X (e;,my=10e. (12

X' (e, ) = X mow. patems X" (€, M) Um, n, d),0e,00n, 0 dO{1, 7} 13
To handle the weekly horizon, we replacée{’ny) by X'(e, n, d).

4 Conclusions

In this paper, we discussed the concept of StmtEgiployee Scheduling, its con-
stituents and one possible implementation. Schegl@mployees with a strategy: this
is different from existing concepts in human reseumanagement by the ability tc
handle extra-scheduling features such as teamgsifannching extra activities, or
taking into account considerations outside the lusclaeduling horizon. We aim to
convince researchers that the world of human resoomanagement is very rich anc
there are many aspects that must be taken intaiatcdostead of the homogeneou
resources first discussed 50 years ago.

To implement the planning and scheduling componevesproposed MIP models
for capacity planning and detailed scheduling tzet be directly related to each othe
(i.e. (8)). Building onto the pattern model of [@]}blished in April 2006, we see tha
patterns are well suited to planning at multipleizuns, since they implement sets a
assignments of one level which may be manipulatedeanext. We are currently in
the process of validating the system and no cortipateesults are available. It is not
our aim to propose THE model for solving Strategic Eiype Scheduling; we en-
courage researchers to look into the MBP desciilb&dl and propose their models.
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Ant algorithms for the exam timetabling
problem
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Abstract. Scheduling exams at universities can be formulated as a com-
binatorial optimization problem. Given a planning horizon with a fixed
number of periods the objective is to avoid situations, or at least to
minimize them, when a student is enrolled in two exams that are sched-
uled for the same period. Ant colony approaches have been proven to
be a powerful solution approach for various combinatorial optimization
problems. In this paper a Max-Min and a ANTCOL approach will be
presented. Its performance is compared with other approaches presented
in the literature and with modified graph coloring algorithms.

Key words: scheduling, exam timetabling, ant colony algorithms, Max-Min
approach, graph coloring

1 Introduction

The exam timetabling problem faces the problem of scheduling exams within a
limited number of available periods. As students plan to write different exams,
setting up a conflict free timetable is not a trivial task due to limited resources
like periods, examination rooms and teacher availability. The main objective is
to balance out student’s workload and to distribute the exams evenly within the
planning horizon. In particular, it should be avoided that a student has to write
two exams in the same period. Such situations will be referred to as conflicts of
order 0 in the sequel. Additionally, as few students as possible have to attend x
exams within y consecutive periods. Such conflicts can either be totally forbidden
by constraints or penalized in the objective function. For example, Carter et
al. proposed in [1] a cost function that imposes penalties P, for a conflict of
order w, i.e. whenever one student has to write two exams scheduled within
w 4 1 consecutive periods. In the literature w normally runs from 1 to 5 with
P =16,P,=8P;=4,P,=2,P; = 1.

Solving practical exam timetabling problems requires that additional con-
straints have to be considered, e.g. some exams have to be written before other

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 167-180. ISBN 80-210-3726-1.
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exams or some exams can not be written within specific periods. References [2-4]
give comprehensive lists of possible hard and soft constraints.

The exam timetabling problem can be formulated as a graph coloring prob-
lem. Each node represents one exam. Undirected arcs connect two nodes if at
least one student is enrolled in both corresponding exams. Weights on the arcs
represent the number of student enrolled in both exams. The objective is to find
a coloring where no adjacent nodes are marked with the same color or to mini-
mize the weighted sum of the arcs that connect two nodes marked with the same
color. The exam timetabling problem is a generalization of the graph coloring
problem as in the objective function also conflicts of higher orders are penalized.

To solve exam timetabling problems, several algorithms have recently been
developed. In [1] Carter et al. applied some well known graph coloring heuristics
which they combined with backtracking.

In recent time various heuristical approaches have been developed. Most of
them use local search like tabu search, simulated annealing, great deluge or
adaptive search methods [5,6,1,7,8,2,9-11]. A comprehensive survey on the
literature on exam timetabling problems can be found in [4].

The aim of this paper is twofold: Originally, this research was motivated by
the need for a software tool for solving a practical exam timetabling problem.
As ant colony approaches have been proven to be a powerful tool for various
combinatorial optimization problems (c.f. the survey in [12]), it is apparent to
adapt this solution approach to the exam timetabling problem. In the literature
different variants of ant colony approaches have been presented. We will compare
some of these strategies with respect to their suitability for our problem.

This paper is organized as follows: In section 2 a detailed problem formu-
lation will be presented. Section 3 will give an introduction into ant colony
systems. The next sections will present a solution approach and test results for
some benchmark problems that were taken from the literature. Finally, section
6 summarizes the results and suggests discussion for future work.

2 Problem formulation

Before stating the problem formally, we introduce some notation.

R index set of rooms

I  index set of exams

T index set of periods

{2 index set of order of conflicts

K, capacity of room r in period ¢

ci; number of students enrolled in exam i as well as in exam j

E; number of students enrolled in exam 1

P,, penalty imposed if one student has to write two exams
within w + 1 periods

y;¢+ binary variable equal to 1 if exam i is scheduled in period ¢
and 0 otherwise

pir+ number of students of exam ¢ assigned to room r in period ¢
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Using this notation, the exam timetabling problem can be formulated as
follows:

minz Z Z Pocijyit¥jt—w) (1)

weRijeli#jteT t>w
s.t.

Styi=1 Viel 2)

teT
Pirt <YKy Vi€ ILVre RVteT (3)
Y>> pim=E Viel (4)
reRteT
me <K, VreRNteT (5)
iel
> ey =0 Vijeli#] (6)
teT
yie €{0,1} Vi€ IVteT (7)
pirt €ENg VielI,Vre RVteT (8)

The objective function (1) balances out students’ workload by minimizing the
weighted sum of all conflicts. Constraint (2) states that each exam is assigned
to exactly one period. If an exam is not assigned within a period, then no seats
should be reserved for that period in any room. This is imposed by constraint
(3). Constraints (4) and (5) assure that the number of seats reserved for an exam
will be equal to the number of students who are enrolled in that exam and that
the room capacities are not exceeded. Finally, constraint (6) avoids conflicts of
order 0, i.e. that a student has to write two exams in the same period.

The exam timetabling problem is a generalization of the graph coloring prob-
lem, which is known to be NP-hard [13]. Therefore, solution approaches try to
decompose the problem in order to solve it within a reasonable amount of time
[14]. One way is to split up the problem into the two following subproblems,
which can be solved sequentially:

Problem I: Scheduling of exams, i.e. assign exams to periods in order to bal-
ance out students’ workload as pursued by the objective function (1). Instead
of considering capacity constraints for the single rooms, only the total ca-
pacity of all available exam rooms within a period is considered. In the IP
formulation stated above this can be accomplished by replacing the set of
rooms by a artificial single room. For this problem a solution approach will
be presented in the next sections.
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Problem II: Room planning, i.e. distribute the exams of one period among the
available examination rooms. Finding a feasible room plan is not difficult if
the exams can take place in more than one room and if more than one exam
can take place in one room at the same time, provided that the room capacity
is not exceeded. If exams are split up into different rooms one could consider
the campus layout and try to generate a room plan where these exams are
only assigned to rooms not too far from each other in order to minimize
walking distances. We will not consider this problem in the following.

3 Ant algorithms

Ant colony optimization algorithms represent special solution approaches for
combinatorial optimization problems derived from the field of swarm intelligence.
They were first introduced by Colorni, Dorigo and Maniezzo in the early nineties
[15]. See [12] for an in depth introduction into ant systems.

Ant algorithms were inspired by the observation of how real ant colonies find
shortest paths between food sources and their nest. This observation was first
implemented in algorithms for solving the traveling salesperson problem (TSP).
This type of ant colony optimization algorithm is known in the literature as ant
systems (AS). We will briefly describe the basic principle of AS algorithms by
means of the TSP. This solution approach to the TSP will be adopted to solving
the exam timetabling problem in the next section.

The solution approach consists of n cycles. In each of these cycles first each
of the m ants constructs a feasible solution. In AS each ant builds a complete
tour that visits all nodes. Obviously, this solution neither has to be optimal nor
must it be even close to the (unknown) optimal value. Improved solutions can
be obtained if the knowledge gathered by other ants in the past on how good
solutions can be obtained is incorporated into the ant’s decision. Assume that an
ant is located in a node ¢. To choose the next node j that has not yet been visited
by that ant one may apply one of the following two randomized strategies:

Strategy I: Constructive heuristic. Apply one priority rule like randomized
nearest neighbor. Decision values for all nodes j are determined by the in-
verse of the distance from node ¢ to that node j. The next node the ant
moves to is then randomly chosen according to the probabilities determined
by those decision values. Consequently, if node j; is closer to ¢ than node js
it is more likely to choose node j;. The decision values of the constructive
heuristic will be later referred to as 7;;.

Strategy II: Pheromone trails. This strategy is mainly inspired by the way real
ants find shortest paths. While commuting between two places on different
possible pathes ants deposit a chemical substance called pheromone. The
shorter the path is the more often the ant will use this path within a limited
period of time and, consequently, the larger the amount of pheromone will
be on that path. Thus, whenever an ant has to choose between different
available paths it will prefer the one with higher amount of pheromone.
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To adapt these observations to the TSP, the amount of pheromone is stored
in a matrix 7 which is initialized with 0 for all arcs (4, j). After an ant has
completed a tour, the values of the cells that belong to the arcs the ant has
chosen are updated by the inverse of the obtained objective function value,
i.e. the length of the tour. The amount of pheromone trail 7;; associated to
arc (4,7) is intended to represent the learned desirability of choosing node
j when in node i. Consequently, arcs belonging to good solutions receive a
high amount of pheromone.

AS algorithms combine these two strategies. The probability that an ant v
located in node 7 chooses the next node j is determined by the following formula:

kENY (Ti)* (i)

otherwise

(7i)* (mij)”? e v
piyj:{z 7 if j € V] )
0

o and (3 are a given weighting factors and IV} is the set of nodes that have
not yet been visited by ant v currently located in node 1.

Excepting the TSP, AS algorithms have been implemented for various com-
binatorial optimization problems, such as the quadratic assignment problem or
the sequential ordering problem. Different variants of AS algorithms have been
suggested in the literature, like e.g. ant colony systems (ACS) or Max-Min ant
systems (MMAS), which obtained much better results than AS (c.f. [12]). In par-
ticular, MMAS, which was first proposed by Stiitzle and Hoos [16], generated
significantly better solutions for the TSP than AS. Socha et al. [17] compared
the MMAS variant with ACS and found out that MMAS outperformed the ACS
approach for the considered timetabling problem.

The main modification of MMAS are related to the way how the matrix 7
is initialized and how pheromone values are updated. Additionally, MMAS uses
local search to improve the solutions found by the ants. Details will be discussed
in the next section.

As far as the author is aware, ant colony algorithms to scheduling problems
have only been applied by Colorni et al. [15] and by Socha et al. [17]. The
former article focuses on the job shop scheduling problem, the latter one on
the timetabling problems for university classes, which are slightly different from
the exam timetabling problem considered here. Finally, Costa and Hertz [18]
used an ant colony approach to solve assignment type problems, in particular
graph coloring problems. Recently, Dowsland and Thomson as well as Vesel and
Zerovnik modified and improved in [19,20] this graph coloring algorithm with
respect to the examination scheduling problem.

4 An ant algorithm for the exam scheduling problem

4.1 General modifications for the exam timetabling problem

Like in AS, the solution approach consists of n cycles. In each of these cycles first
each of the m ants constructs a feasible solution using therefore the constructive
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heuristic and the pheromone trails. These exam schedules are then evaluated
according to the given objective function and the experience accumulated during
the cycle is used to update the pheromone trails.

Depending on the choice of a constructive heuristic and the way the pheromone
values are used, there are different ways how this basic solution approach can
be adapted to the exam timetabling problem.

— At each stage of the construction process in the AS approach of Costa and
Hertz [18] called ANTCOL the ant chooses first a node ¢ and then a feasible
color according to a probability distribution equivalent to (9). The matrix
7 provides information on the objective function value, i.e. the number of
colors required to color the graph, which was obtained when nodes ¢ and j
are colored with the same color.

In contrast to elite strategies where only the ant that found the best tour from
the beginning of the trial deposits pheromone, all ants deposit pheromone
on the paths they have chosen. According to [12] this strategy is called ant
cycle strategy.

Different priority rules were tested as constructive heuristic. Among those
chosen in each step, the node with the highest degree of saturation, i.e. the
number of different colors already assigned to adjacent nodes, achieved the
best results with respect to solution quality and computation times.

— In Socha et al. [17] a pre-ordered list of events is given. Each ant chooses
the color for a given node probabilistically similar to the formula (9). The
pheromone trail 7;; contains information on how good the solution was, when
node i was colored by color t. The constructive heuristic employed in their
approach is not described.

For the exam timetabling problem the way the information in matrix 7 is
used in both approaches is not meaningful. Due to the conflicts of higher orders
the quality of a solution does not depend on how a pair of exams is scheduled
nor on the specific period an exam is assigned to. For example, assigning two
exams ¢ and j with ¢;; = 0 to the same period can either result in a high or in
a low objective function value as the quality of the solution strongly depends
on when the remaining exams are scheduled. In the following we implemented a
two step approach.

Step I: Determine the sequence according to the exams is scheduled. Like for
the TSP we assume that an ant located in a node, corresponding to an
exam, has to visit all other nodes, i.e. it has to construct a complete tour.
The sequence according to this ant constructs the tour corresponds to the
sequence in which the exams are scheduled.

Step II: Find the most suitable period for an exam which should be scheduled.
Therefore, all admissible periods are evaluated according to the given penalty
function.

Following this two step approach probabilities p;; for choosing the next node
Jj that has to be scheduled are computed according to (9). Pheromone values 7;;
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along the ants’ paths are updated by the inverse of the objective function value.
For the heuristic value 7;; the following simple priority rule for graph coloring
was implemented. The exam with the smallest number of available periods is
selected. A period would not be available for an exam if it caused a conflict of
order 0 with another exam that has already been scheduled. This priority rule
corresponds to the saturation degree rule (SD) which was tested in [1]. The value
7;; is chosen to be the inverse of the saturation degree.

4.2 MMAS specifications

MMAS approaches mainly differ from AS algorithms in the way they use the
existing information (c.f. [16]):

— Pheromone trails are only updated by the ant that generated the best solu-
tion in a cycle. The corresponding values 7;; are updated by p7;; + 1/ fhest
where f%¢* is equal to the best objective function value found so far. For
all other arcs (7,7) that are not chosen by the best ant 7;; is updated by
(1 — p)71i;. p € [0,1] represents the pheromone evaporation factor, i.e. the
percentage of pheromone that decays within a cycle.

— Pheromone trail values are restricted to the interval [Tmin, Tmaz), 1-.€. When-
ever after a trail update 7;; < Tyin OF Tij > Timas then 745 is set to Ty, or
Tmaz, Tespectively. The rationale behind this are that if the differences be-
tween some pheromone values were too large, all ants would almost always
generate the same solutions. Thus, stagnation is avoided.

— Pheromone trails are initialized to their maximum values 7,,q.. This type of
pheromone trail initialization increases the exploration of solutions during
the first cycle.

The solution quality of ant colony algorithms can be considerably improved
when it is combined with additional local search. In hybrid MMAS only the best
solution within one cycle is improved by local search. For the exam timetabling
problem a hill climber procedure has been implemented. Within an iteration of
the hill climber two sub-procedures are carried out in succession. The hill climber
is stopped if no improvement can be found within an iteration.

Within the first sub-procedure of the hill climber for all exams the most
suitable period is examined. Beginning with the exam that causes the biggest
contribution to the objective function value, all feasible periods are checked and
the exam is assigned to its best period. The first sub-procedure is stopped if
all exams have been checked without finding an improvement. Otherwise the
contributions to the objective function value are recalculated and the process is
repeated.

The second sub-procedure tries to decrease the objective function value by
swapping all exams within two periods, i.e. all exams assigned to period t’' are
moved to period ¢ and the exams of that period are moved to period ¢'. There-
fore all pairs of periods are examined and the first exchange that leads to an
improvement is carried out. Again, the process is repeated as long as the objec-
tive function value is decreased.



174 M. Eley

Finally, the use of a so called candidate list has been proven to reduce re-
quired computational times as well as to improve solution quality at the same
time (c.f. [12]). Such a list provides additional local heuristic information as it
contains preferred nodes to be visited from a given node. Instead of scanning
all other exams only the exams in the candidate list are examined and only in
case all exams in this list have already been scheduled, the remaining exams are
considered.

5 Computational experiments

The proposed Max-Min algorithm was implemented in Borland Delphi 7.0. It
will be referred to as MMAS-ET in the sequel. Test runs were carried out on a
computer with 3.2 GHz clock under Windows XP.

5.1 Test cases

To benchmark algorithms test cases of twelve practical examination problems can
be found on the site of Carter (c.f. [21]). Table 1 summarizes some characteristics
of these problems. To make a comparison meaningful all algorithms must use the
same objective function. Therefore, Carter proposed weighting conflicts accord-
ing to the following penalty function: P| = 16, P, = 8, Ps =4, P, =2, P; = 1,
where P, is the penalty for the constrain violation of order w. The cost of each
conflict is multiplied by the number of students involved in both exams. The ob-
jective function value represents the costs per student. As the proposed MMAS-
ET algorithm does not guarantee that no conflicts of order 0 occur, additionally,
the penalty Py was imposed and set to 10000.

Table 1. Test cases from Cater et al. [1,21,22]

test case # exams # students # student exams problem density # periods

car-{-92 543 18419 55522 13.8 % 32
car-s-91 682 16925 56877 12.8 % 35
ear-f-83 190 1125 8109 26.7 % 24
hec-s-92 81 2823 10632 42.0 % 18
kfu-s-93 461 5349 25113 5.6 % 20
Ise-f-91 381 2726 10918 6.3 % 18
pur-s-93 2419 30032 120681 29 % 43
rye-f-92 486 11483 45051 7.5 % 23
sta-f-83 139 611 5751 14.4 % 13
tre-s-92 261 4360 14901 5.8 % 23
uta-s-92 622 21267 58979 12.6 % 35
ute-s-92 184 2750 11793 8.5 % 10

yor-f-83 181 941 6034 28.9 % 21
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5.2 Adjustment of the parameters

The required parameters were specified as follows. The number of cycles was
set to 50. Within each cycle 50 ants were employed to construct solutions. The
candidate list contained the 20% of exams with the lowest number of available
periods. Several test runs were carried out in order to determine the required
parameters appropriately:

— The evaporation rate p was set to 0.3. Like in [16] it turned out that this
parameter is quite robust, i.e. the parameter p does not clearly influence the
performance.

— For the restrictions of the pheromone interval values to strategies were tested.
Setting Tmaz = 1/p obtained slightly better results than in the case of vari-
able Tyar and T, as proposed in [16].

— Different values for the weighting factors « and  were tested. It turned out
that the approach performed best when a was set to one and 3 was chosen
high. Best results were obtained for § equal to 24. But the difference was on
the average less than one percent when 3 was bigger than eight. A high ¢
forces that exams which can be scheduled, due to zero order conflicts, only in
a few remaining periods are scheduled first as they are given a much higher
probability in (9). Remember that 7;; is the inverse of the saturation degree
as explained in section 4.1. Thus, a high 8 value has the same effect like a
candidate list. This could be a reason why the use of the candidate list did
not improve the solutions. Whereas, for small values of 3, i.e. values lower
than 5, solutions with zero order conflicts could not always be avoided.

— As the approach is non-deterministic each test case was solved twenty times.

After determining the parameters in such a way, it turned out that less than
2 % of the solutions were generated more than once. Thus, stagnation, that is
caused by the fact that many ants generate almost the same solutions, could not
be observed.

5.3 Test results for the MMAS-ET approach

Table 2 displays the results for different approaches. For each approach the
minimal objective function value and the average result after twenty test runs
are given. Results of the proposed MMAS-ET approach are given in the second
column.

In order to find out how much the hill climber contributes to the solution
the MMAS-ET approach was also tested without making use of the hill climber.
Comparing the results in the second and in the third column it is obvious that
the hill climber considerably improves the solutions.

Thus, one could ask how much the ants contribute to the solution or if solu-
tions of the same quality could also be achieved by applying only the hill climber
on a random starting solution. Therefore a third version of the MMAS-ET ap-
proach was implemented where each ant constructs an exam timetable without
interacting with the other ants, i.e. the matrix 7 is not updated at all. This
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approach can be seen as a randomized greedy heuristic. As in MMAS-ET with
50 ants and 50 cycles 2500 exam timetables were generated. The best solutions
of this approach are displayed in the last column of table 2.

As the MMAS-ET approach without ants generates the worst solutions it is
obvious, that the ant colony has a positive impact on the diversification of the
solution space, i.e. the ants guide the search process into promising regions of
the solution space where the hill climber can find good solutions.

Increasing the number of ants and the number of cycles to 100 in the MMAS-
ET approach did not result in achieving better solutions. Neither the average
value of all twenty iterations was improved nor were better solutions found during
the twenty iterations.

Table 2. Results for three different variants of the MMAS-ET approach for twenty
test runs

MMAS-ET MMAS-ET MMAS-ET
without hill climber without ants

test case best avg. best avg. best avg.
car-f-92 4.8 49 7.8 8.0 10.9 13.3
car-s-91 57 59 9.3 9.5 11.9 139
ear-f-83 36.8 38.6 50.4 53.0 49.5 624
hec-s-92 11.3 11.5 14.8 15.8 11.6 15.5
kfu-s-93 15.0 15.5 23.9 24.6 19.5 22.0
Ise-f-91 12.1 12.7 19.3 19.8 16.7 254
pur-s-93 54 56 12.2 12.5 11.7 14.6
rye-s-93 10.2 104 18.0 18.7 12.2 14.2
sta-f-83 157.2 157.5 160.6 161.9 157.3 157.7
tre-s-92 88 9.1 124 12.8 9.2 13.1
uta-s-92 3.8 3.8 6.2 6.3 82 99

ute-s-92 27.7 28.6 33.6 34.5 27.7 30.1
yor-f-83 39.6 40.3 50.5 51.3 62.9 73.0

5.4 Comparison with other exam timetabling approaches

The proposed MMAS-ET approach was compared with the following approaches:

— LD, SD, LDW and LE: Carter et al. compared in [1] four different priority
rules largest degree (LD), saturation degree (SD), largest weighted degree
(LWD) and largest enrollment (LE).

— Wal: Tabu search approach with longer-term memory proposed by White et
al. in [11].

— GS: Tabu search approach proposed by Di Gaspero and Schaerf in [2].

— Cal: Local search approach of Caramia et al. [6].

— BN: Great deluge local search approach developed by Burke and Newall [5].
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— Mal: Simulated annealing approach of Merlot et al. [9].

Ga: Multi-neighborhood search approach presented by Di Gaspero [8]
PS: Tabu search approach of Paquete and Stiitzle [10].

— CT: Randomized adaptive search algorithm of Casey and Thomson [7].

The results of the benchmarks are taken from the literature [11] and from
the internet (c.f. the timetabling database at the University of Melbourne [22]).
Table 3 displays the best solution and the average solution achieved when each
test case was solved twenty times. The results of table 3 can be summarized as
follows:

Table 3. Best (b.) and average (a.) solution after twenty test runs for the benchmark
test cases from Carter et al.[1,21, 22]

test LD SD LWD LE Wal GS Cal BN Mal Ga PS CT MMAS

case -ET
car b. 76 66 66 6.2 46 52 60 4.0 43 - - 4.4 4.8
-f92 a. 76 6.6 66 62 47 56 60 41 4.4 - - 4.7 4.9
car b. 79 71 74 76 57 62 66 46 51 5.7 - 5.4 5.7
-s9la. 79 71 74 76 58 65 66 47 52 58 - 5.6 5.9

ear b. 364 46.5 37.3 42.3 458 45.7 29.3 36.1 35.1 394 40.5 34.8 36.8
-f-83 a. 36.4 46.5 37.3 42.3 46.4 46.7 29.3 37.1 354 43.9 45.8 35.0 38.6

hec b. 10.8 12.7 158 159 129 124 9.2 11.3 10.6 10.9 10.8 10.8 11.3
-s-92 a. 10.8 12.7 15.8 159 134 12.6 9.2 11.5 10.7 114 120 109 11.5

kfu b. 14.0 159 22.1 20.8 17.1 18.0 13.8 13.7 135 - 16,5 14.1 15.0
-s-93 a. 14.0 159 22.1 20.8 17.8 19.5 13.8 139 14.0 - 183 143 155

Ise b. 12.0 12.9 13.1 10.5 14.7 155 9.6 10.6 10.5 12.6 13.2 14.7 12.1
-f-91 a. 12.0 129 13.1 10.5 14.8 159 9.6 10.8 11.0 13.0 155 15.0 12.7

pur b. 44 41 50 3.9 - - 3.7 - - - - - 5.4
-s-93a. 44 41 50 3.9 - - 3.7 - - - - - 5.6
rye b. 73 74 100 7.7 116 - 6.8 - 8.4 - - - 10.2
-s-93a. 73 74 100 7.7 117 - 6.8 - 8.7 - - - 10.4

sta b. 162.9 165.7 161.5 161.5 158.0 161.0 158.2 168.3 157.3 157.4 158.1 134.9 157.2
-f-83 a. 162.9 165.7 161.5 161.5 158.0 167.0 158.2 168.7 157.4 157.7 159.3 135.1 157.5

tre b. 11.0 104 9.9 9.6 89 100 94 82 84 - 9.3 8.7 8.8
-s-92a. 11.0 104 99 96 9.2 105 94 84 8.6 - 102 8.8 9.1
uta b. 45 35 53 43 44 42 35 32 35 4.1 - - 3.8
-s-92a. 45 35 53 43 45 45 35 32 36 43 - - 3.8
ute b. 38.3 31.5 26.7 25.8 29.0 29.9 244 255 25.1 - 27.8 254 27.7
-s-92 a. 38.3 31.5 26.7 25.8 29.1 31.3 244 258 252 - 294 255 28.6

yor b. 49.9 44.8 41.7 45.1 42.3 41.0 36.2 36.8 37.4 39.7 38.9 37.5 39.6
-f-83 a. 49.9 44.8 41.7 45.1 425 42.1 36.2 37.3 379 40.6 41.7 38.1 40.3

Although, the MMAS-ET approach does not generate outstanding results
its performance is comparable with other approaches. Beside the graph coloring
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heuristics of Carter et al. it also finds better solutions than the Wal, the GS, the
PS, the Ga and the CT approach for most test cases.

In addition, it is striking that no approach outperforms all other approaches
for all test cases. Thus, there are some test cases where MMAS-ET outperforms
the approaches Cal, BN and CT, although one must confirm that these three
approaches generate better solutions for most of the test cases. For example,
MMAS-ET found better solutions than the Ca approach in four out of the 13
test cases, i.e. for the test cases car-f-92,car-s-91, sta-f-83 and tre-s-92.

5.5 Comparison with the approach of Costa and Hertz

Finally, the results of MMAS-ET were compared with a modified version of the
ANTCOL algorithm of Costa and Hertz [18], which originally was developed for
solving graph coloring problems. This approach will be called ANTCOL-ET in
the sequel. Within that approach the ANT_DSATUR(1) procedure was used as
a constructive method as described in [18]. The objective function was modified
in order to consider conflicts of higher order too. Test runs were carried out to
adjust the parameters appropriately. The parameter o was set to 1, 8 to 35. p
was set equal to 0.3. Again, each test case was solved twenty times.

Table 4 shows the results for the thirteen test cases and compares them with
the MMAS-ET approach. Surprisingly, the simple AS like approach ANTCOL-
ET outperformed the MMAS-ET for some test cases. In particular, this result is
contrary to other results presented in the literature where MMAS algorithms ob-
tained better results for various combinatorial optimization problems by avoiding
stagnation (c.f. [12,16]).

Thus, ANTCOL-ET was modified by implementing additionally the hill climber
already incorporated in the MMAS-ET approach. This modified version of the
Costa and Hertz approach provided on the average better solutions than the
MMAS-ET approach and

Like the MMAS-ET approach the ANTCOL-ET approach in particular im-
proves the test cases that already achieved the best solutions. For example, it
again outperformed the approach of Caramia et al. in the test cases car-f-92,
car-s-91, sta-f-83 and tre-s-92. White et al. argued in [11] that these test cases
seem to be in a way easier.

Computing times for the MMAS-ET approach lay in the range of 10 seconds
for the smallest test cases, i.e. hec-s-92, to 2.5 hours for the pur-s-93 problem.
Compared to the MMAS-ET approach the computing time of the ANTCOL-ET
combined with the hill climber was on the average 80 % higher. Thus, one can
conclude that ANTCOL-ET takes more time but gets a better solution quality
than MMAS-ET. Please note that the same stopping stopping criteria was used
for both algorithms, namely, 2500 solutions.

6 Conclusion

In this paper different strategies for solving exam timetabling problems were
tested. Ant colony approaches are capable of solving large real world exam



Ant Algorithms for the Exam Timetabling Problem 179

Table 4. Comparison between different ant colony approaches.

test case MMAS-ET ANTCOL-ET ANTCOL-ET
without hill climber with hill climber

car-f-92 best 4.8 4.5 4.3
avg. 4.9 4.6 4.4
car-s-91 best 5.7 5.3 5.2
avg. 5.9 5.4 5.2
ear-f-83 best 36.8 40.3 36.8
avg. 38.6 41.4 38.3
hec-s-92 best 11.3 12.2 11.1
avg. 11.5 12.6 11.4
kfu-s-93 best 15.0 15.4 14.5
avg. 15.5 15.8 14.9
Ise-f-91  best 12.1 11.9 11.3
avg. 12.7 12.2 11.7
pur-s-93 best 5.4 4.8 4.6
avg. 5.6 4.9 4.6
rye-s-93 best 10.2 10.2 9.8
avg. 10.4 10.7 10.0
sta-f-83 best 157.2 158.2 157.3
avg. 157.5 159.3 157.5
tre-s-92 best 8.8 8.8 8.6
avg. 9.1 9.0 8.7
uta-s-92 best 3.8 3.6 3.5
avg. 3.8 3.7 3.5
ute-s-92 best 27.7 28.9 26.4
avg. 28.6 29.4 27.0
yor-f-83 best 39.6 42.2 39.4
avg. 40.3 43.7 40.4

timetabling problems. The implemented algorithms generated comparable re-
sults like other high performance algorithms from the literature.

Unlike for other combinatorial optimization problems like the TSP or the
QAP for the exam timetabling problem the MMAS approach did not outperform
the simpler AS strategy. Of course, it goes without saying but proper adjusting
parameters can improve the performance of an algorithm considerably.

A self-evident extension would be to incorporate additional constraints and
requirements like e.g. scarce room resources or precedence constraints between
exas.
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Abstract. KTS is a web-based software system for solving high school
timetabling problems, freely accessible on the Internet. This paper de-
scribes KTS, including its data model, user interface, and solver. The
solver uses operations research models in a polynomial-time heuristic
framework to produce high quality solutions in a few seconds. Results
are presented for six instances taken from Australian high schools.

1 Introduction

Research into automated timetabling has had many successes in recent years.
Examination timetabling and university course timetabling have yielded to meta-
heuristic methods, as the proceedings of recent PATAT conferences [1, 2] show.

High school timetabling has had much less success [3], probably because it
is dominated by hard constraints, to which meta-heuristics seem less well suited
[8]. There may also be non-technical reasons, such as fewer researchers in the
field and less ready access to data.

KTS is a web server for high school timetabling created by the author. Its web
interface puts the system on the desk of the timetable planner, and its polynomial
time heuristic solver delivers a very good timetable in a few seconds. Together
these features support non-traditional requirements such as rapid evaluation of
alternative scenarios and incorporation of late changes, as well as the traditional
one of solving a fixed instance to near-optimality. The system is fully operational
and available continuously on the Internet [6].

This paper is a general overview of the KTS system. Section 2 presents a
detailed specification of the high school timetabling problem as defined by KTS.
Section 3 describes the user interface. Section 4 describes the solver, and Section
5 presents results for six instances taken from Australian high schools.

2 Data model

The KTS data model is object-oriented. It is described in this section, with a
few minor omissions.

An account object, or just account, represents one user’s account with the
KTS system. Each account contains any number of institutions, representing

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 181-195. ISBN 80-210-3726-1.
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educational institutions for which the user wishes to construct timetables. Each
institution contains any number of instances, each representing that institution’s
timetabling problem for a particular year, or semester, etc.

Each instance contains a time group object, holding all information about
time. K'T'S has a simple time model in which time is divided into individual ¢times
of equal duration, ordered chronologically, with each time optionally separated
from the next by a break, which could be a meal break or the end of a day, etc.
The full sequence of times is called the cycle.

A sequence of one or more times that follow each other chronologically and
do not span a break is called a time block. Any set of times may be viewed
as a set of time blocks, by grouping the times into blocks of maximal size. The
sizes of these blocks, written as a sequence of integers, form the block structure of
the set of times. For example, the set of times {Monl, Mon2, Tue5, Tue6, Thu3}
presumably has block structure 2 2 1. The order in which the elements of a block
structure are written does not matter; non-increasing order is used by convention.
Meetings may specify that their times should have a particular block structure.

In addition to the instance’s set of available times, the time group contains
any number of time subgroups, which are subsets of the times, used when defining
workload limits and time conditions. These latter place requirements on the sets
of times assigned to meetings, and are either limit conditions, which limit the
number of times from a given subgroup that a meeting may contain, for example
limiting to 1 the number of undesirable times, or spread conditions, which require
the time blocks assigned to a meeting to be spread evenly over a sequence of
time subgroups, such as the days of the week.

An instance also contains any number of resource group objects, represent-
ing collections of resources (participants in meetings). Although not mandatory,
there would typically be three resource groups, called Student Groups, Teach-
ers, and Rooms. KTS is intended for high school timetabling problems, in which
groups of students are timetabled, not individual students.

A resource group may contain divisions, representing administrative units
such as faculties or departments (for teachers) and forms or years (for students).
If a resource group has divisions, then each of its resources lies in exactly one of
those divisions.

A resource group may also have capabilities, which are subsets of its set of
resources. For example, an English capability would be the subset of teachers
qualified to teach English; a ScienceLab capability would be the subset of rooms
in which Science classes may be held. A resource may lie in any number of
capabilities, and a capability may contain any number of resources. A division
is usable as a capability, as is the resource group as a whole.

Each resource may have a set of times when it is unavailable to attend classes.
It may also have workload limits, which might specify, for example, that the
resource may attend meetings for at most 30 times over the cycle, and at most
7 times on each day. A limit may be placed on the number of occupied times in
any subset of the times of the cycle, defined by a time subgroup. Each limit may
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have a hard component, a number of times which must not be exceeded, and a
soft component, for which violations are penalized but not prohibited.

One resource may follow another. For example, a room may follow a partic-
ular teacher, meaning that it is considered first when assigning room selections
in meetings to which that teacher is assigned. Such a room is often called the
home room of a teacher.

An instance also contains meetings, which specify that certain resources are
to meet together at certain times.

A meeting’s times are specified by a single time selection, which requests that
a particular number of times be assigned. It may request that the times conform
to a given block structure, and include preassigned times. All time conditions
defined in the time group apply to all time selections, as far as the time selection’s
block structure and preassigned times allow.

A meeting’s resources are specified by any number of resource selections.
For example, a meeting in which class 74 studies Science might contain a Stu-
dent Groups resource selection requesting student group 74, a Teachers resource
selection requesting one teacher with the Science capability, and a Rooms selec-
tion requesting one ScienceLab. A resource selection may include preassigned
resources.

An instance may contain any number of solve profiles, which are named col-
lections of options for controlling the solver. The solver may be invoked with this
set of options by a single click on the appropriate link. An instance may also
contain any number of display profiles, which are named collections of options de-
scribing a timetable display or print: whether to use HTML, PDF, or PostScript;
whether to display large planning timetables or individual resources’ timetables;
whether to display the whole timetable, or just one division or resource; and so
on. Again, one click produces a display using these options.

An instance may also contain a current solution. This consists of assignments
of particular times and resources to some (hopefully all) of its time and resource
selections. A resource assignment may be a split assignment, in which one quali-
fied resource is assigned for some of the times of the meeting and a different one
to the remaining times; or it may be a partial assignment, in which a particular
resource is assigned for some of the times of a meeting but there is no assignment
for the remaining times.

KTS objects are persistent: they exist permanently on disk, but can be up-
dated in memory while the system is running. They are stored externally in
UTF-8 text files, updated by a two-phase algorithm which protects against acci-
dental corruption. Each account and its institutions occupies one file, and each
instance occupies one file, including all the instance’s objects (typically 10 to
20 kilobytes of data). Most operations concern a single instance, and they be-
gin by reading this file and end by writing it. Instances are represented using
a simple specification language, also called KTS, which is a descendant of the
well-known TTL language [4]. The user may upload and download KTS instance
files, although there is no strong motive for doing so.
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Meeting 7TA-Science [Copy whole meeting| [Delete whole meeting] [New submeeting]

Times Required blocks Suggested blocks Preassigned times
I 5 - | 21 | I None 7| I (not selected) 7| | (not selected) 7|

Students (preassigned only)

| 07A | | not selected) ~]

Teachers Capability Preassigned Special workload Splittable
Il j | ScienceYr7-10 | |[not selected) ;I I(not selected) j |‘r’es j
Rooms  Capability Preassigned Splittable

Il s | |Sc'|enceLab i I(not selected) 7| |Yes R

New [ Rooms, [ Students, [ Teachers resource select

i?A—Science Update Meeting |

Fig. 1. Screen shot of the user interface to one small meeting. A page header and
navigation links precede this box and are not shown here. After the header line, the
first inner box holds the time selection, here requesting 5 times including block struc-
ture 2 1. The next box holds a Student Groups resource selection, requesting student
group resource 07A. This box accepts preassignments only, in accordance with an op-
tion set on the Student Groups resource group page. The following boxes request one
ScienceYr7-10 teacher and one ScienceLab room. Split assignments are usually allowed;
the Splittable boxes let the user disallow them for individual resource selections. Teach-
ers have workload limits, so the Teachers selection offers a Special Workload box which
allows the workload associated with this selection to be reduced (e.g. to 0 for staff
meetings).

3 User interface

The KTS system is not distributed to users for installation on their own systems.
Instead, there is a unique copy running on a server at the author’s institution,
publicly accessible via the web, using HTML and CGI for its user interface.
This has several advantages: it makes KTS available instantly on any computer
connected to the Internet; the software may be upgraded centrally at any time;
and the data is held on the server where it may be captured for research purposes,
in accordance with an agreement that users enter into when they create their
accounts.

The user interface has one page for each object, beginning with a header and
some navigation links, and continuing with updatable displays of the object’s
attributes. Most pages contain paragraphs of text describing their fields, so are
self-documenting. The exception is the page which displays a meeting (Figure
1), where there is too much detail to document on the spot. Instead, a set of
examples of meetings of increasing complexity is offered, which shows step-by-
step how each meeting is built up. There is also an overview document explaining
the capabilities of the system, and a glossary.
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[Bankstown Girls High School, 1998 |Saﬁsfu{:tur].r ‘Unsaﬁsfa{:tury ‘Tntal
[No.| % [No. [ % [No.[ %

=i

|Assignments to time selections

|

| Required blocks [147 [ 967 [ B { 33 [152[100.0
| Suggested blocks (152 [1000 | @ | 0.0 [152[100.0
| Atmost 1 Undesirable time (152 [1000 | 0 | 00 [152[100.0
| Even spread through Day1..Day5 120 | 789 | 32 | 211 |152[100.0
|Assignmentn toresource selections | | | | ’_ |

| Rooms [229 [979 [[5 | 21 [234[100.0
| Students 316 [100.0 [ 0 | 0.0 [316[100.0
| Teachers |408 | 923 | 34 | 7.7 4421000
|Suft workload limits | | ‘ ‘ ’7 |

| Teachers (266 [95.0 [ 14 | 50 [280[100.0

Fig. 2. Screen shot of the summary table from the evaluation page. Each underlined
number is a link leading to a detailed list of defects. Below this table are other tables
giving an intermediate level of detail, such as the number of time conditions defects
affecting each student form, the number of soft workload overloads per teacher, etc.

When there is a solution, KTS offers an evaluation page summarizing its
defects (Figure 2), with links to more detailed evaluations. The most interesting
of these detects sets of resource slots that cannot all be assigned to, owing to a
shortage of resources (Figure 3).

Entry of a complete instance takes some hours. Short-cut operations for cre-
ating a time group and the usual three resource groups help somewhat, as do
operations for copying resources and meetings. There is also an operation for
copying a complete instance, which saves time when moving to a new year or
semester.

4 The solver

The KTS solver aims to produce a very good and comprehensible timetable
in ten seconds or less. It has five stages: column layout, tile construction, time
assignment, time adjustment, and resource assignment. The basic approach ap-
peared in an earlier paper by the author [5], but the present work describes a
completely rewritten solver, with more and better results.

The following five subsections describe the five stages. Some details have been
omitted, since a full description would be too lengthy for this paper, which aims
to present a balanced view of the whole system.
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Hall Set 2

The resource selections in this Hall set are;

|Meeﬁng |Submeet'|ng |Cap ability or resource |Req1:|ired time(s) |’[‘ixels
{ZCKO-D&T12-Art34 [7CKO3-2 WisualArtsYr7-10 \Mon5 [ 1
[ZCKO-D&TI2 Art34 [7TCKO4-2 VisualArtsYr7-10 IMon5 | 1
11-2/12-1 12-1-VisualArts [VisualArtsYrl1-12  |Mon5 | 1
| Total tixels demanded | 3

To satisfy this demand, the following tixels of supply are available:

|Ilesuurr:e |Time{s] |'ﬁxels
!Diﬂmond !MnnEr | 1
Lecon  Mon5 | 1
| Tutalt'[xelsmpplied| 2

Subtracting supply from demand gives 1 unassignable tixel in this Hall set.

Fig. 3. Screen shot of a detailed evaluation, showing that a set of three simultaneous
Art classes cannot all be assigned teachers, because there are only two Art teachers.
The analysis is based on finding the Hall sets of a bipartite matching between all the
tixels demanded by the instance and all the tixels supplied (a tizel is one resource at
one time). Two versions of this analysis are carried out, one before time assignment
and one after. Hall sets can be much more complex than this very simple example;
they might reveal that the supply of English and History teachers, taken together, is
insufficient to cover all the English and History classes even before time assignment,
and so on. KTS merely prints the Hall sets; the user must find the explanations.

4.1 Column layout

As far as possible, the meetings in a high school timetable should overlap exactly
in time, or not at all. This makes the timetable comprehensible, and simplifies
resource assignment.

KTS’s method of achieving such regularity begins by dividing the cycle into
columns: sets of times which make good choices for assigning to meetings, and
which meetings are encouraged to use wherever possible. The reader may be fa-
miliar with this approach from its use in North American universities, where the
columns Mon-Wed-Fri 9-10am, Mon-Wed-Fri 10-11am, and so on, are frequently
used. A traditional column plan in Australian high schools divides a cycle of 40
times into six columns each with six times, and one column with four times pre-
assigned those times when the whole school attends Sport and optional religious
instruction.

There is no requirement that meetings fit exactly into columns. In the se-
nior years they usually do, but in the junior years the school offers many small
subjects, often with little resemblance to any column plan.
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Day 1 Day 2 Day 3 Day 4 Day 5
Time 1 Column 1 Column 6 Column 5
Time 2 Column 1 Column 6 Column 5
Time 3 Column 6 Column 3 Column 4 Column 3 Column 3
Time 4 Column 6 Column 3 Column 4 Column 3 Column 6
Time 5 Column 5 _ Column 1 Column 4 Column 4
Time 6 Column 5 Column 5 Column 1 Column 4 Column 7
Time 7 Column 4 Column 1 Column 5 Column 6 Column 7
E_ Column 7 Column 3 Column 1 Column 7

Fig. 4. A typical layout of a week of 40 times into six columns of width 6 plus one of
width 4. Breaks are not shown, but occur after the fourth and sixth times each day
except Friday, when they occur after the third and fifth. This diagram was generated
in PostScript by KTS.

Although a column plan could easily be inferred from the time selections of
the meetings, it is such a basic part of the timetable planner’s thinking that
it seems better to have the user enter it, including a number of times, block
structure, and optional preassigned times for each column. Given this plan, the
solver’s first task is to assign specific times to each column, aiming to ensure that
each column satisfies the time conditions, so that meetings assigned to them will
do so. An example of such a column layout appears in Figure 4. Producing it is
quite easy in practice. The solver does it in two steps.

First, the time blocks naturally present in the cycle (between one break
and the next) are partitioned into smaller blocks whose sizes exactly match the
complete set of block sizes of the columns. KTS does this heuristically, checking
after each break that the columns’ block sizes can be packed into the current
cycle breakdown, and with an eye to the time conditions defined by the user: if
meetings should be spread evenly over five days, then the solver aims to have
the same number of time blocks on each day, and so on. Blocks of preassigned
times already present in meetings are used wherever possible.

Second, the time blocks created by breaking down the cycle’s blocks are as-
signed to columns. After an initial round-robin assignment, a simple hill climber
swaps pairs of equal-width time blocks between columns until no swap exists that
reduces the badness of the columns as measured against the time conditions.

4.2 Tile construction

KTS continues its efforts to build a regular timetable by first timetabling small
sets of meetings together into larger entities called tiles.

Figure 5 contains two examples of tiles. The students are grouped by abil-
ity for Mathematics, so the five Mathematics classes must run simultaneously
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Time 0 Timel —  Time2 Time3 Time4 Time 5
8CKOAS-Maths 8C-History
8K-History
80-History
8A-History
8S-History
Time 0 Time 1 v Time 2 Time 3 v Time 4 Time 5
8C-English 8C-Music
8K-English 8K-Music 8K-English
80-English 80-Music 80-English
8A-English 8A-Music 8A-English
8S-English 8S-Music 8S-English

Fig. 5. Two examples of tiles from the bghs98 instance. Each row is the timetable of one
student group resource; each column is one time. The wedges indicate block structure.

and are combined into one large meeting in the input data. The adjacent His-
tory meetings do not have to run simultaneously, but fitting them neatly along-
side Mathematics forces them to. The second tile illustrates a construction, well
known to manual timetablers, called the runaround. There are only two Music
teachers and two Music rooms, so the five Music classes cannot run simultane-
ously. By interleaving them among other meetings as shown, the tile demands
only one of each at any one time.

Tiles are built in three steps. First, the meetings of each student form are
grouped into buckets. Any meeting containing all the form’s student group re-
sources goes into a bucket by itself; meetings which are identical except for their
student group resources share a bucket; any meetings which cannot be analysed
in a similar manner go into a leftovers bucket.

Second, a series of decisions is taken to merge certain sets of buckets. These
decisions are made by a sequential heuristic which produces one merged bucket
per iteration. Buckets that cannot be timetabled effectively because of a lack of
resources are merged with other buckets. For example, the bucket holding the
Music classes from Figure 5 is not viable alone and must be merged. Other rel-
evant factors include preassigned times, the presence of student group resources
from several forms, and a preference for tiles whose width (number of times) is
a multiple of the usual column width, for regularity.

Finally, the meetings within each bucket are timetabled with respect to each
other, producing tiles. This is a general time assignment problem, on a small
scale, and the time assignment algorithm described in the next subsection is
used to solve it. This step is interleaved with the previous one: if the bucket’s
timetable turns out to be more defective than its meetings individually, the
bucket merging heuristic tries alternative bucket mergings.
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4.3 Time assignment

After tiles are built, the next stage is to timetable them into the times of the
cycle, producing a complete time assignment for all meetings.

The time assignment software module is called from three places within the
KTS solver: to timetable submeetings into their meetings, meetings into their
tiles, and tiles into the cycle. These problems are all essentially the same, differing
only in scale. This description will speak of timetabling meetings into the cycle,
rather than introducing unilluminating general terminology.

The meetings to be timetabled are first grouped into layers: sets of meetings
required to be disjoint in time, typically because they contain the same preas-
signed student resources. The layers are sorted so that the most difficult ones
(those requiring the most resources) come first, and timetabled one by one with
no backtracking. A meeting may lie in more than one layer, in which case it is
timetabled along with its first layer. In the time assignment stage of the solver
there is one layer per student form, plus one layer for each staff meeting.

Within each layer, each meeting is timetabled in turn, widest first, if possible
into a single column. A few assignments are tried for each meeting, but without
backtracking; instead, forward checks, involving two kinds of bipartite matchings
that monitor the availability of resources, keep the solver on track. These checks
are described in detail in a companion paper [7]. A timetable created by this
algorithm, plus time adjustment, appears in Figure 6.

4.4 Time adjustment

After a complete time assignment is obtained, time adjustment attempts to im-
prove it by hill climbing: swapping time blocks around while this produces an
improvement. Hill climbing is very effective here, since it corrects simple prob-
lems resulting from the lack of backtracking during time assignment, in time
proportional to the number of improvements it makes.

Although no resources have yet been assigned to meetings, there are never-
theless two useful evaluations that can be made at this point: checking the sets of
times assigned to meetings for their conformance to time conditions, and check-
ing that resources are sufficient at each time to cover the resource demands made
by meetings assigned that time (using a bipartite matching at each time between
resource demands and resources). A neighbour is accepted if it reduces problems
with resources, or improves time conditions without increasing problems with
resources.

There are several promising neighbourhoods that could be tried. The current
implementation explores two, repeating until neither gives any improvement.

The first neighbourhood takes each pair of time blocks of equal size assigned
to columns, such that none of the times involved is preassigned to any meeting
or column, and tries swapping these time blocks globally through every meeting.
This might reduce resource problems as well as time condition problems, because
resources’ unavailable times stay fixed, and a swap might move resource demands
away from the unavailable times of the resources they need.
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M1 [M2 |W5 [W6 T7 |R8 (W1 [W2 [R1 |R2 (M8 |T5 [T3 |T4 [R3 |R4 W8 [F3 W3 |W4 [RS |R6 [M7 |F5 [M5 |M6 [FI |F2 [T6 |W7 [M3 |M4 [T1 |T2 |R7 |F4 |F6 |F7 [F§ T8
07A ALy = S T N 76} [1A5:A[7-Opi
078 7S-Languages| [75-Gel 75-Ge} 75-Ge|
07C [1C-Ge) [TCKO-Ar12.D| |7C-Geography|7C-Laj [7C-La)
07K [TK-G TK-Ge 7KL [7K-Laj [7K-Ge|
070 70-G [70Ge [70-La| 70-La) [70-Ge}
08A 8-LPD-1234 8A-Ge[SAS-At12-D& 8A-Ge 184Gl 3-Opti
085 55.Ge) 55 Geography|
08C 4C Geopapy] 0K0-An12D[3C.Ge
08K K- Gengrapty KGe
050 50 Gengraphy 10
109-1 [E9-7 E9-4 [E9-6 [E9-4 [E9-6 [E9-5 [E9-7 E9-5 9-Sport 19-Opti
1092
109-3
109-4
109-5
10-1_ [E10-6 E107  [E104  [E105  [E10-4[EI0S] E10-7 103[E10-4]10-Sport 100y
102
10-3
10-4
105
Yearll 11-2/12-1 11-Sport 11-0pt
(Yearl1-2-04$|
Yearl 13048 11-3/1 11-3/12:3-0A8)

Vearl1-+045} 11-4/1[11-4/12-4-0AS-B[11-412408

(Vearl1:5-045| 11-5/12-5-0AS-A|
Yearl2 1207
(Yearl2-2-04S| 1220} 12-2-0A8-A|

[Vear 2-3-048{11-3/1{11-3/12-3-OAS-A|11-312-3-0AS}

(Vearl2-4-045| 11-4/1{11-4/12-4-0AS-B| 14/124-0AS|

(Yearl2-3-048| 11-5/12-5-0AS-A|

|Other |Sport [StafiM|
(Other [ExcoutiveMeeting|

Fig. 6. A planning timetable for the bghs98 instance. Each row except the last two
represents the timetable of one student group resource. The columns represent times,
permuted to bring the times of the columns (in the column layout sense: six of width 6
and one of width 4) together, making them and the tiles within them clearly visible. An
example of a time adjustment, swapping Science with Personal Development, appears
in the row of student group 09-3. This diagram was generated in PostScript by KTS.

The second neighbourhood takes pairs of meetings that contain the same
preassigned resources (typically student group resources) and swaps blocks of
their times of equal width. Since this can disrupt the regularity of a timetable,
these swaps are only accepted if they reduce problems with resources, and indeed
are only tried at times where there are such problems.

4.5 Resource assignment

Resource assignment is the assignment of particular resources to the resource
slots of meetings. The solver does this after times are all assigned.

Each resource group may be assigned independently of the others, apart
from a slight connection caused by ‘follows’ requirements. For each resource
group in turn, in an order influenced by the presence of ‘follows’ requirements,
preassignments are first converted to assignments, then assignments arising from
‘follows’ requirements are made, then all remaining unassigned slots are assigned.
Some preassignments may fail to convert owing to resource unavailabilities and
workload limits; their slots remain unassigned and become defects in the solution.

The resource assignment problem comes in two versions, depending on how
acceptable split assignments are. Typically, split assignments are undesirable
when assigning teachers, but acceptable when assigning rooms, provided classes
do not have to change rooms part-way through a time block.
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T4 |R3 |R4

Gibbons
Kassab
Kidd
Prasad
Saule
Smith
|U11assigned

F6 |F7 |F8 T8

Gibbons Sport StaffMe

ExecutiveMeeting
Prasad

Saule
Smith

Unassigned

Fig. 7. Planning timetable showing the teacher assignment for the Science faculty of
the bghs98 instance. (The resource assignment algorithm assigns all faculties simultane-
ously, but it is convenient to analyse its results faculty by faculty.) The second column
gives the remaining unused workload of each teacher. Split and partial assignments are
shown in italic font. There are three unassigned tixels. This diagram was generated in
PostScript by KTS.

Room assignment is not difficult. The solver assigns each time block of each
meeting, largest blocks first, choosing a qualified resource whose use does not
increase the number of resource problems at any of the block’s times (the usual
bipartite matching checks this condition), and preferring a resource which has
already been assigned to another block of the meeting. If a block of two or more
times is encountered for which this is not possible, it is split into blocks of width
1; if a block of width 1 cannot be assigned, it is passed over and becomes a defect
in the solution.

The teacher assignment algorithm tries much harder to avoid split assign-
ments (Figure 7). It is based on the alternating path method familiar from bi-
partite matching and similar problems, used as a heuristic, since the optimality
guarantees that usually accompany it are absent.

Choose a currently unassigned teacher slot of maximum width. If there is a
qualified teacher able to fill this slot (i.e. without causing clashes or exceeding
workload limits), assign that teacher and move to the next widest slot. Oth-
erwise, see if there is a teacher who could fill the slot if only some one of the
assignments currently given to that teacher were deassigned and given to some
other teacher able to fill it. If so, make the indicated chain of two assignments
and one deassignment, and move on. If not, look for a longer chain, and so on.
At each moment when there are no workload overloads or clashes, compare the
whole set of assignments with the best so far, and replace it if it is better.
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Table 1. The six instances tested, showing the number of times, resources, and meet-
ings in each.

Instance Times Student Groups Teachers Rooms Meetings

bghs93 40 23 53 46 155
bghs95 40 27 52 48 147
bghs98 40 30 56 45 152
tes98 30 11 33 20 95
tes99 30 13 37 26 86
sahs96 60 20 43 36 131

Two methods of controlling the size of the search are used. One is the tradi-
tional one of marking each possible assignment and deassignment wvisited when
it is first considered, and refusing to reconsider it during the course of the search
(it becomes available again when we move to the next slot). The other method is
to allow revisiting but to strictly limit the depth of the search, to the empirically
determined value of 5 (three assignments and two deassignments). The searches
are repeated until there is no improvement.

At each slot, in addition to searching for ordinary assignments, the solver
finds a qualified resource which is available for as many times as possible, and
generates all split assignments which have that resource and those times as the
first branch, and one other qualified resource with the remaining times as the
second branch. The alternating path search continues down the second branch.
A single partial assignment is also generated, holding the first branch as before
but omitting the second.

5 Results

This section analyses the performance of the solver on six instances taken from
three high schools in Sydney, Australia. Statistical descriptions of these instances
appear in Table 1, run times are given in Table 2, and the quality of the solutions
is summarized in Tables 3, 4, and 5. The solver always assigns the correct number
of times to each meeting, never introduces student group clashes, and prefers
to leave teacher and room slots unassigned rather than introducing teacher and
room clashes and workload overloads. So the possible defects are time assignment
problems (wrong block structure, meeting spread over too few days, etc.) and
unsatisfactory room and teacher assignments (split, partial, and missing).

The sahs96 instance has a two-week cycle, and all its teacher slots are pre-
assigned. These two factors make time assignment very slow. It is encouraging
that only 3.1% of these preassigned teacher tixels could not be assigned (Table
5), given that the solver is not optimized to handle instances that are highly
constrained in this way. However, the solver’s desperate attempt to satisfy all
these preassignments leads to a quite irregular timetable.

The other instances are more typical of the solver’s intended domain of appli-
cation. Run times are under ten seconds. Block structure defects are somewhat
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Table 2. Run times in seconds for the major stages and in total. The tests used a
3.2GHz Pentium machine running Linux. Run times are as reported by the Linux time
command, which is accurate to one second. Column layout time was always 0.0 seconds
so has been omitted. Time assignment includes time adjustment by hill climbing, never
more than one second. The times given for resource assignment essentially measure
teacher assignment only, since room assignment is very fast. Total times were checked
against wristwatch time.

Instance Tile construction Time assignment Resource assignment Total

bghs93 0.0 3.0 3.0 6.0
bghs95 0.0 1.0 7.0 8.0
bghs98 0.0 1.0 6.0 7.0
tes98 1.0 1.0 0.0 2.0
tes99 0.0 1.0 0.0 1.0
sahs96 1.0 31.0 0.0 32.0

Table 3. Evaluation of time assignments, showing the absolute number of meetings
with defective block structure, uneven spread through the cycle, and more than one
undesirable time, plus this number as a percentage of the total number of meetings.

Instance Block structure Spread Undesirable times

bghs93 8 (31.0%) 51 (31.2%) -
bohs95 20 (13.6%) 44 (29.9%) 7 (4.8%)
bghs98 5 (33%) 31 (21.1%) 0 (0.0%)
tes98 36 (37.9%) 22 (23.2%) 2 (2.1%)
tes99 37 (43.0%) 27 (31.4%) -
sahs96 2 (1.5%) 74 (56.5%) 18 (13.7%)

high (Table 3). This problem awaits analysis but should be correctable. Time
conditions defects are probably acceptable now, given their relative unimpor-
tance, although there is room for improvement.

Resource assignment can be evaluated either in terms of the number of de-
fective assignments (split, partial, or missing), or the number of unassigned in-
dividual tixels (a tizel is one resource at one time, either supplied or demanded).
Some tixels are inevitably unassignable given a particular time assignment — for
example, if the time assignment requires five Science laboratories to be avail-
able at some time, but the school has only four. These are shown in the fourth
column of Tables 4 and 5, while the number of unassigned tixels after resource
assignment is shown in the fifth column.

Room assignment (Table 4) is virtually perfect. The room assignment algo-
rithm always assigns every room tixel that time assignment permits, because it
breaks time blocks up into individual times if necessary, and, using a bipartite
matching between room demands and rooms at each time, it never allows the
number of unassignable rooms at any time to increase. This is why the fourth
and fifth columns of Table 4 are equal. The fact that only two split assignments
were ever introduced shows how easy this problem is in practice.
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Table 4. Evaluation of room assignments, showing the absolute number of split assign-
ments, partial and missing assignments, unassignable tixels after time assignment (1),
and unassigned tixels after resource assignment (2), plus this number as a percentage
of the number of room assignments or tixels demanded. In this table, a split assignment
is one in which a class has to change rooms part-way through a time block.

Instance  Split  Partial/missing Tizels (1) Tizels (2)

bghs93 0 (0.0%) 7 (3.1%) 15 (1.2%) 15 (1.2%)
bghs95 0 (0.0%) 6 (2.9%) 9 (0.7%) 9 (0.7%)
bghs98 0 (0.0%) 5 (21%) 7 (0.5%) 7 (0.5%)
tes98 2 (22%) 5 (5.5%) T (15%) 7 (1.5%)
tes99 0 (0.0%) 5 (3.7%) 7 (1.3%) 7 (1.3%)
sahs96 0 (0.0%) 27 (11.2%) 15 (1.0%) 15 (1.0%)

Table 5. Evaluation of teacher assignments, showing the absolute number of split as-
signments, partial and missing assignments, unassignable tixels after time assignment
(1), and unassigned tixels after resource assignment (2), plus this number as a percent-
age of the number of teacher assignments or tixels demanded, as appropriate. In this
table, a split assignment is one in which a class is taught by two teachers.

Instance  Split  Partial/missing Tizels (1) Tizels (2)
bghs93 3 (0.7%) 7 (1.5%) 5 (0.3%) 9 (0.6%)
bghs95 17 (3.7%) 15 (3.3%) 7 (0.5%) 27 (2.0%)
bohs98 24 (54%) 10 (2.3%) 8 (0.5%) 17 (1.2%)
tes98 7 (3.8%) 13 (7.1%) 14 (3.0%) 14 (3.0%)
tes99 2 (1.1%) 9 (5.1%) 9 (1.7%) 9 (1.7%)
sahs96 0 (0.0%) 27 (11.2%) 47 (3.1%) 47 (3.1%)

Unassigned room tixels typically request specialized laboratories whose de-
mand is very tight. This problem is quite common in high schools and is not of
major concern, since, given its low relative frequency, it is not difficult to ensure
that no class meets in an inappropriate room for more than one of its times,
and the teacher would organize the classroom material accordingly. An option
to assign inappropriate rooms where necessary, spreading them fairly among the
classes affected, could easily be added.

Split teacher assignments and unassigned teacher tixels (Table 5) are the
main areas of concern. How acceptable these results are it is hard to say. Hand-
generated timetables also have these problems. Split assignments are quite rou-
tine. Unassigned tixels are handled in various ways: by excusing a teacher from
a faculty meeting, having an available but unqualified teacher supervise a class,
and so on. Unlike other defects, every unassigned teacher tixel is a real problem
requiring the attention of the timetable planner.

One unassignable tixel in a teacher slot spoils the assignment of the entire
slot. This suggests that finding time assignments with fewer unassignable teacher
tixels would be more helpful than improving the teacher assignment algorithm.
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6 Conclusion

This paper has presented KTS, a freely accessible web-based system for high
school timetabling which produces good timetables in a few seconds.

The fast response time makes KTS well suited to exploring alternative sce-
narios and incorporating late changes to requirements. However, KTS does not
yet address the problem of making minimal changes to a published solution in
response to changes in requirements.

The data model is mature, except perhaps in its treatment of time, and the
overall structure of the solver is quite successful. It seems likely that future work
will focus on improving the existing solver components, rather than radically
redesigning the solver. The time assignment stage is the obvious next target
for improvement. In fact, since this paper was written, the author has designed
and implemented a more flexible approach to time assignment and adjustment
which should allow the algorithms described here to be varied and generalized
in several interesting ways [7].

In parallel with these efforts, the KTS system will be promoted to Australian
high schools. At the time of writing, 60 accounts have been created, but only
a few are active. More users will bring a larger and more diverse set of test
instances, which should lead to further progress.
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Abstract. A hierarchical timetable is one made by recursively joining
smaller timetables together into larger ones. Hierarchical timetables ex-
hibit a desirable regularity of structure, at the cost of some limitation
of choice in construction. This paper describes a method of specifying
hierarchical timetables using mathematical operators, and introduces a
data structure which supports the efficient and flexible construction of
timetables specified in this way. The approach has been implemented in
KTS, a web-based high school timetabling system created by the author.

1 Introduction

The basic timetable construction problem is to assign times and resources (stu-
dents, teachers, rooms, etc.) to a set of meetings so that the resources have as
few timetable clashes as possible. To this basic problem many other constraints
are typically added, such as that the times allocated to a meeting be spread
evenly through the week, that workload limits placed on some resources not be
exceeded, and so on. Timetable construction is an NP-complete problem with
an extensive literature [3-7].

Informally, a regular timetable is one in which a pattern may be discerned
which makes the timetable easy to understand and remember. Regularity may
take many forms, but this paper will be chiefly concerned with regularity in the
choice of times. For example, North American universities commonly require all
courses to occupy three hours per week, offered in one of the sets of time slots
Mon-Wed-Fri 9-10am, or Mon-Wed-Fri 10-11am, and so on, producing a very
regular timetable.

Even when such a strict rule as this is not possible, still some regularity
might be achievable, perhaps by attempting to minimize the number of pairs of
meetings that share at least one time, in addition to the usual objectives.

Regular timetables are easy to assign resources to. For example, in the North
American university system, each meeting can meet in the same room for all
three of its times. This point is particularly significant in high school timetabling,
where teachers are assigned as well as rooms. Teacher assignment is the main area
where the author’s previous work in high school timetabling [8,10] is deficient.
Thus, regularity is more than just an aesthetic consideration.

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 196-208. ISBN 80-210-3726-1.
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This paper introduces a method of specifying regular timetables hierarchi-
cally, using timetable expressions analogous to algebraic expressions, and a data
structure, the layer tree, which represents these expressions and efficiently sup-
ports the basic assignment and deassignment operations on which most timetable
construction algorithms are built. This author’s KTS timetabling system [11, 12],
a free, public web site for high school timetabling, uses layer trees. They are par-
ticularly effective when sets of meetings can be identified that must be disjoint
in time. In high school timetabling, each set of meetings attended by a given
student group satisfies this condition.

Our focus is on the efficient implementation of the basic assignment and
deassignment operations, rather than their use with any particular timetable
construction algorithm. If these operations are efficient, many algorithms, in-
cluding construction heuristics, tree searches, and local searches, become avail-
able. Although efficiency is a key goal, it has not been considered useful to report
running times, since the operations to be presented are all polynomial time, and
running times say more about the algorithms built on these operations than the
operations themselves. KTS typically produces a good timetable in about ten
seconds [12], showing that layer trees can support practical timetabling.

Much of this paper is concerned with constraint propagation, but the empha-
sis here is on the efficient implementation of a particular set of constraints rele-
vant to timetabling, rather than the use of a general-purpose constraint program-
ming system to solve timetabling problems. Some of the algorithms used here, for
example weighted bipartite matching, do not seem to be available in any exist-
ing constraint programming system [2, 9], although some recent research into the
all_different constraint [13], which implements unweighted bipartite matching, is
a step in that direction.

The algorithms used here have appeared in previous timetabling work by
the author and others [8,10, 14]. This paper’s contribution is to show how these
algorithms can be incorporated into a flexible, efficient, hierarchical constraint
framework. Section 2 introduces timetable expressions, and Section 3 introduces
the layer tree data structure. Section 4 analyses the problem of efficiently prop-
agating constraints related to time through this data structure as assignments
and deassignments occur, and Section 5 does the same for resource constraints.
Section 6 surveys some other, less fundamental features implemented in KTS.

2 Timetable expressions

The idea of using an expression to specify a problem is well known in logic.
Consider a Boolean expression such as

(x1 Vaa VT3) A (T2 V x3)

The expression defines an instance of the satisfiability problem, for which a so-
lution consists of an assignment of values to the variables which satisfies the ex-
pression. In the same way, timetable expressions will be used to specify timetable
construction problems.
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The simplest kind of timetable expression is the time variable, a variable v
whose domain is some subset of the set of available times T'. This domain may
change as solving proceeds; its value at some moment will be denoted tdom(v),
and its initial value, specified when the variable is created, will be denoted
tdomg(v). For example, if v may be assigned any time, then tdomg(v) = T;
if v is preassigned to a specific time ¢, tdomg(v) = {t}. Other initial domains
may constrain times to be during the mornings, or on Mondays, and so on.

The ultimate aim is to assign an element of T to every time variable, just as
the aim is to assign a Boolean value to every variable when solving satisfiability
problems. However, it turns out that in hierarchical timetabling a more useful
basic operation is the unification of one time variable, v, to another, w, with the
meaning that v’s value is constrained to be equal to w’s. Unifying two variables
expresses the idea that two meetings are to occur simultaneously, without having
to say when.

Thus, our system offers two basic operations: unifying a variable v to one
other variable w, and removing the unification of v to w. A variable may be
unified to at most one other variable at any moment; but that other variable is
free to be unified to a third variable (or not), and many variables may be unified
simultaneously to one variable.

Two timetable expressions e; and e; may be joined using the concatenation
operator, written ejes, meaning that the times assigned to the variables of e;
must be disjoint from those assigned to the variables of e;. For example, a
meeting requesting four times may be expressed by the timetable expression
v1V9U3V4, Where vy, vo, v3, and v4 are time variables. Concatenation specifies
that the times assigned to these four variables must be distinct, as required.

If two meetings request the same resource, and it is a hard constraint that
that resource may have no clashes in its timetable, then the expressions rep-
resenting those two meetings may be concatenated. This is fundamental in the
high school timetabling work which motivates this paper: each student group is
such a resource, and the meetings it appears in must be disjoint in time.

Two timetable expressions e; and es may be joined using the alternation
operator, written e; 4+ es, meaning that e; and e; are to appear in the same
timetable, but there are no time constraints between their variables. In the high
school timetabling application, e; might represent the meetings attended by one
student group, and es; might represent the meetings attended by some other
student group. These two sets of meetings have no time interdependencies, so
joining them with + is appropriate. If there is a meeting that both student groups
attend, then its expression (vqvovzvy or whatever) will appear in both subex-
pressions, and its variables must be assigned times disjoint from those assigned
to the variables its expression is concatenated with in both subexpressions.

These operations are named by analogy with the corresponding operators of
regular expressions: e; +es signifies that e; and es are alternative activities, while
ejes signifies that one activity must follow after the other. In timetable expres-
sions, however, both operators are associative and commutative. A distributive
law, (a 4+ b)c = (ac + be), also holds.
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Finally, there is the restriction operator, written
wiwe ... W - €

where wyws . . . wy, is a concatenation of time variables called restriction variables,
and e is a timetable expression. This specifies that each variable in e must not
appear outside e, and must be unified to one of the w; (which themselves must
be assigned disjoint times), restricting e to a timetable using at most k times.

Restriction introduces abstraction into a timetable expression. The expres-
sion e may be timetabled into wiws . .. w; independently of the rest of the prob-
lem, after which these variables are indistinguishable from an ordinary concate-
nation of variables describing a meeting.

Typically, the outermost level of a timetable expression is a restriction expres-
sion which limits the timetable to the available times. Letting T' = {t1,t2,...,t,}
be the set of available times, this expression would have the form

wiwe ... Wy - €

where tdomg(w;) = {t;} for all i. Although the operation of assigning a particular
time ¢; to a variable v is not offered, unifying v to w; is effectively the same thing.

Variants of the timetabling problem exist in which the exact number of avail-
able times is not given; instead, a timetable with as few times as possible is
sought, consistent with other requirements. The restriction notation could easily
be extended to cover such problems. However, the algorithms appearing later in
this paper assume a fixed number of variables, so any such ‘extensible restriction’
would have to be solved (or at least, its number of variables determined) before
incorporation into a larger timetable, forcing a bottom-up solution order.

An example of a small timetable expression appears in Figure 1.

3 The layer tree data structure

A timetable expression such as
(e1 +e2)(es3 + eq)

is difficult to handle, since it is not clear how many of the available times should
be allocated to e; + es, and how many to ez + e4. While cases of this kind do
occur, they are beyond the scope of this paper, and we will now exclude them.

A simple timetable expression is one in which each alternation expression
e1+ -+ e, is immediately enclosed in a restriction expression. In such expres-
sions it is easy to determine how many times to allocate to each subexpression.
Furthermore, a simple timetable expression can be analysed into a tree (or forest
if the root is a concatenation expression) of expressions of the form

wWLwWe ... Wy (611612 e €l + -t emilme - - .emkm)

called a restricted sum of products. Here m may be 0, in which case the expression
just denotes a sequence of variables wiws . .. w,. Each e;; is a restricted sum of
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t, t, ts t, tg
7A [ 7AB-Mathematics | 7A-Hist

e

(a) A small timetable, or tile, occupying two student groups (7A and 7B) for five times
tl, t2, t3, t4, and t5.

WIW2W3WaWs : M1Maha1€a1€q2 + M1M2es1es2hp1

(b) A timetable expression for which (a) is a solution. Here wqwawswsws represent the
five available times, h,1 represents TA-Hist, eq1e42 represents 7TA-English, and so on;
mims, representing 7AB-Mathematics, lies in two subexpressions.

WoW W W, W

(c¢) A layer tree corresponding to (b). Variables are shown as labelled boxes; + nodes
are shown as concatenations of their variables.

W W W W, W

(d) The layer tree of (c), showing unifications representing the timetable of (a). The X
nodes have been omitted for clarity.

Fig. 1. Timetables, timetable expressions, layer trees, and unification.

products. Some of the e;; may be shared, i.e. some e,, and e,; may be the
same subexpression. To solve a restricted sum of products is to unify each of the
restriction variables in each e;; to one of the w;.

One way to solve a timetabling problem represented by a simple timetable
expression is to solve its restricted sums of products in bottom-up order. This pa-
per aims for more flexibility, however, in allowing unifications and de-unifications
within each restricted sum of products at any moment. For example, this would
permit the timetable of a small component to be adjusted (by local search, per-
haps) after that component is incorporated into a larger timetable. To achieve
this we need a data structure which represents the entire tree of restricted sums
of products, with the current state of the unifications of each.

The data structure we will use, which we call a layer tree, is essentially just
the expression tree corresponding to a simple timetable expression. A layer tree
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has two types of nodes: + nodes representing restricted sums of products and
containing their restriction variables, and x nodes representing concatenations.
Nodes of both types may have any number of children. Figure 1 gives an example
of converting a restricted sum of products into a layer tree.

Without loss of generality, we may assume that in every layer tree the root is
a + node, its children are x nodes, their children are + nodes, and so on, with
the node type alternating between + and x at each level. To bring an arbitrary
layer tree into this form, first use the associativity of concatenation to replace
every X node whose parent is a X node by its children. Then insert a x node
immediately above every + node whose parent is a + node. Finally, if the root
is a x node, remove it and solve each of its children independently.

Each variable v within each 4+ node other than the root node requires unifi-
cation with a variable w in the + node two levels above it. Each such unification
is represented by a pointer in v to w (Figure 1d). Eventually, when all these vari-
ables are unified in this way, every variable may be said to have been assigned a
time, obtainable by following the chain of pointers to its end.

Any set of variables requiring distinct times is called a layer. The variables
lying in any + node form a layer; the variables lying in all the children of any
x node also form a layer.

For example, the author’s KTS system builds a layer tree with several levels.
Each meeting may contain submeetings which have to be timetabled into the
times of the meeting; each such meeting becomes a restricted sum of products.
Then small groups of compatible meetings are timetabled together, producing
tiles such as the one in Figure la; each tile is the solution of a restricted sum
of products whose child layers contain meetings. Finally, the times of the week
form a restricted sum of products whose child layers contain tiles.

4 Time constraints

This section explains how constraints on time assignment are propagated through
the layer tree, so that at any moment it is clear for each variable exactly which
variables it may be unified to without violating any time constraints.

Since each variable is unified to at most one other variable at any moment,
the unifications form a directed forest with edges pointing towards the roots.
The current unification of a variable v will be denoted p(v) (‘parent of v’) when
present, and the variable at the root of the tree of unifications containing v
(possibly v itself) will be denoted r(v). A root variable is a variable w such that
r(w) = w. Every variable in the root node of a layer tree must be a root variable,
but other variables may also be root variables: root variables are just variables
that are currently not unified to other variables.

Recall that each time variable v has its initial domain tdomg(v) of times that
it may be assigned initially, and its current domain tdom(v) of times that it may
be assigned to at the current moment. We require

tdom(v) C tdomg(v)
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since otherwise the original constraint has been lost.

Each time variable v has a second kind of domain, its wvariable domain
vdom(v), which is the set of variables that v may be unified to. Again, vdomg(v)
will denote the initial value of vdom(v), and we require vdom(v) C vdomg(v).
For each variable v;; in the restricted sum of products

wiwy ... Wy, - (1}111112 e Utk + -+ Un1Um2 - .- Umkm)

we have vdomg(vi;) C {w1,wa, ..., W}
The two domains are related by the condition

w € vdom(v) = tdom(w) C tdom(v)

(= is implication). For example, this prohibits a preassigned variable from being
unified to an unpreassigned one; in general, it prevents w from being assigned a
time not acceptable to v.

The following formulas show how tdom(v) and vdom(v) may be kept up to
date as variables are unified and deunified:

tdom(v) = tdomg(r(v))

and
vdom(v) = {w € vdomg(v) | tdom(w) C tdom(v)}

These follow easily from the discussion so far. Note that vdom(v) is only needed
at moments when v is not unified.

When a variable v is unified to another variable w, the variable domains of all
variables concatenated with v need to be reduced by removing w, since unifying
any of them with w would violate the constraint that concatenated variables
must be assigned distinct times. An efficient method of doing this is as follows.

Let the set of variables lying in the children of one x node be v1,...,vm;
these variables form a layer which we call L. The variables in the parent of that x
node form another layer, which we call p(L). The variables of L must be unified
to the variables of p(L).

For each v;, define the child layer set, cl(v;), to be the set of x nodes which
are the parents of the + node containing v;. (As explained earlier, a + node may
have several parents, typically because the meeting it represents contains several
preassigned resources.) For each w;, define the parent layer set, pl(w;), to be the
union of the child layer sets of all variables unified directly to w;. Parent layer
sets must be maintained dynamically as unifications are done and undone.

Now modify the definition of vdom(v) given above to

vdom(v) = {w € vdomg(v) | (tdom(w) C tdom(v)) A (cl(v) N pl(w) = D)}

This excludes w from vdom(v) when some other variable that shares a layer with
v is currently unified to w. The set operations may be implemented efficiently
using bit vectors.
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Fig. 2. An example of an unweighted bipartite matching graph between the variables
of a child layer L and its parent layer p(L), shown as dashed edges. One unification is
already present, from v to ws, ensuring that L € pl(ws) and thus excluding ws from
vdom(v) for all other v € L. This particular matching could arise when vs and w4 are
preassigned to the same time (tdom(vs) = tdom(ws) = {t;} for some t; € T), and
the other variables are free to be assigned any time. Note that w4 € vdom(v1) but no
maximal matching would unify vi to ws.

Given current values of vdom(v) for all variables v in some layer L, the next
question is whether it is possible to unify all the currently un-unified variables of
L to variables in p(L). Since the unifications must be to distinct variables, this
is an unweighted bipartite matching problem between the currently un-unified
variables of L and the variables of p(L), with edges defined by the current values
of the domains vdom(v) of the currently un-unified variables of L (Figure 2). We
will see in the next section that there are reasons for preferring some unifications
to others, converting the unweighted bipartite matching into a weighted one.

5 Resource constraints

In addition to requests for times, meetings contain requests for resources. These
may be for particular resources, called preassigned resources, or for any resource
of a certain type, such as a Science laboratory.

A typical meeting requests one preassigned student group resource, one teacher
which may or may not be preassigned, and one room, usually not preassigned.
However, it is very common for a whole collection of meetings to be required to
run simultaneously, to give the students a choice of activities. Such a collection
is modelled as a single large meeting with many resource requests.

A basic question which can be asked of any set of meetings is whether the
institution has sufficient resources to allow those meetings to run simultaneously.
For example, if the school has only two Music teachers and two Music rooms,
then at most two Music meetings may run simultaneously. As is well known, this
question can be answered using an unweighted bipartite matching model, called
a resource sufficiency matching [8], as follows.

For each request for a resource in each of the meetings involved, create one
node called a demand node. For each resource in the instance of the timetabling
problem being solved, create one node called a supply node. Connect each de-
mand node to those supply nodes capable of satisfying that demand. For exam-
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ple, a demand node for a particular student group resource would be connected
to just the supply node representing that resource; a demand node for a Sci-
ence laboratory would be connected to every supply node representing a Science
laboratory. The meetings may run simultaneously if a maximum matching in
this graph touches every demand node. The matching defines an assignment of
resources to requests which satisfies as many requests as possible.

This model allows supply nodes which are capable of satisfying several kinds
of demands: teachers who teach both English and History, rooms which are Sci-
ence laboratories but are usable as ordinary classrooms, and so on. The obvious
simpler method, of comparing the total number of demands of each type with
the total supply of resources of that type, fails to handle such cases.

We turn now to the implementation of these ideas within the layer tree.
Associated with each time variable is a set of demand nodes, which we call a
demand chunk. For example, a Music meeting might request student group 7C,
one Music teacher, and one Music room for four times, and then there will be
four variables, each with an associated chunk containing three demand nodes.
These chunks happen to be identical, but they are copies, not shared.

Any time variable may have a demand chunk, whether or not it derives from a
meeting. The variables of the root layer, for example, have chunks that express
resource unavailability: if resource r is unavailable at time ¢;, then the chunk
associated with root layer variable w; will contain a demand for r.

The layer tree treats time constraints as hard constraints, in that it is not
designed to track the number of violations of these constraints, merely to prohibit
them. For resource constraints however we have a free choice of whether to treat
them as hard or soft constraints, and we will follow the K'T'S implementation in
treating them as soft constraints. The aim is therefore not to fail when resources
are insufficient, but rather to report the number of unmatchable demand nodes.
This is calculated by having one bipartite graph for each root variable, in which
all the demand chunks of all the variables unified to that root variable directly
or indirectly are accumulated (since the unifications have caused these demands
to be simultaneous), and supply nodes for all the resources of the instance as
usual, and finding a maximum matching in each of these graphs.

The standard algorithm for unweighted bipartite matching has some useful
properties which permit matchings to be calculated in an incremental manner.
Briefly, one can push and pop demand chunks onto and off a matching graph in
stack order (last-in-first-out) without recalculating the matching from scratch.
The supply nodes remain constant throughout. Thus, when a unification of v to
w is made, one can simply push the demand chunks from v’s subtree (that is,
the chunks associated with v and every variable currently unified to v, directly
or indirectly) onto r(w)’s matching graph; when a de-unification of v to w is
made, one must pop chunks off r(w)’s graph until all v’s subtree’s chunks are
popped, then push back onto r(w)’s graph all chunks that were popped off
during this process that were not from v’s subtree. The KTS implementation
uses lazy evaluation, merely recording requests for pushes and pops, and not
doing anything until a request for the number of unmatchable nodes is received,
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at which point one sequence of pops followed by one sequence of pushes brings
the matching up to date.

We return now to the unweighted bipartite matching problem mentioned at
the end of the preceding section, between the un-unified variables of a layer L and
the variables of its parent layer p(L). For each un-unified variable v of L, we saw
that the current domain vdom(v) determines which edges to place in the bipartite
graph. Now with each such edge, from v to w say, we can associate a cost: the
number of additional unmatched nodes that would occur if v was unified to w,
calculated by matching the chunks of v’s subtree and r(w)’s subtree together
without actually making the unification. A maximum matching between L and
p(L) of minimum total cost will give a lower bound on the number of additional
unmatched demand nodes that will occur when the un-unified variables of L are
unified to variables of p(L). This model has been called weighted meta-matching
in [10], where it provides a valuable forward check.

The KTS implementation recalculates edge costs only when changes to the
demands at either end make that necessary. It calculates weighted matchings
lazily on demand, but not incrementally. Although a well-known algorithm exists
which can do this, by finding negative-cost cycles in the residual graph, it is
slow since it requires the use of the Bellman-Ford shortest path algorithm rather
than Dijkstra’s [1]. Fortunately the graphs are small, since the number of nodes
per layer is at most the number of times in the week (typically about 40), so
calculating these weighted matchings from scratch is not time consuming.

6 Other features

In this section we briefly survey some other features of the KTS layer tree. They
serve as examples of how the basic ideas can be extended.

Time blocks. A sequence of times that follow each other chronologically with-
out a break is called a time block. For example, the first four times on Monday
might form a time block. Then after a lunch break there might be four more
times followed by an end-of-day break. In K'TS, meetings may request that their
times have a particular block structure. For example, a meeting with 6 times
might request two doubles (blocks of two times) and two singles.

The KTS layer tree allows time variables to be grouped into blocks. The time
variables of a layer of meetings are grouped into blocks defined by the meetings’
block structure requests; the time variables of the root layer (representing the
times of the week) are grouped into blocks representing the sets of times between
the naturally occurring breaks.

An initial problem is to determine whether the time blocks of some layer
can be packed into the time blocks of the week, allowing for the fact that (for
example) a block of four times on Monday morning can be split into two doubles,
or one double and two singles, or whatever is required. This is an NP-complete
bin packing problem, but real instances are small and easily solved.

Once such a packing has been found, and the large blocks of the week bro-
ken down into smaller blocks that exactly match the meetings’ block structure
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requests, the layer tree implements a weighted meta-matching between blocks
rather than individual variables. Two blocks are connected by an edge if they
have the same number of variables and corresponding variables within the blocks
would be connected by an edge in the unblocked matching. The cost of a block-
to-block edge is the sum of the costs of the variable-to-variable edges it replaces.

The layer tree offers a heuristic algorithm which simultaneously carries out
the bin packing and builds the blocked matching. Initially the matching contains
all the parent layer blocks as supply nodes, and no child layer demand blocks.
The child blocks are introduced into the matching one by one in decreasing width
order. If a child block fails to match, a series of repair operations is tried on the
parent blocks: larger blocks are split, variables not yet in any block are merged
into blocks, and so on. For each type of repair, all possible repairs of that type
are tried, and the one which produces a blocked matching of minimum cost is
accepted; or if none of them succeed in producing a matching which touches
every demand block, the algorithm proceeds to the next, less desirable, kind of
repair. As a last resort, one demand block (usually the one just introduced) is
dropped and replaced by its variables.

The decisions about how to split parent blocks made by this algorithm depend
on the state of resource sufficiency in those blocks’ variables. Consequently it is
not useful to build a blocked matching for every child layer of a restricted sum
initially. Rather, the usual unblocked matchings are built for each child layer,
then a child layer’s unblocked matching is replaced by a blocked matching as the
first step in assigning that layer. The blocked matching is a temporary structure,
only in existence while its layer is being assigned.

Blocked matchings suffer from an awkward problem. Suppose a meeting re-
quires one double and one single block. The matching unifies the double to the
first two times on Monday; it unifies the single to the third time on Monday. The
result is a triple, not a double plus a single. Finding a minimum-cost matching
which avoids this problem appears to be NP-complete. KTS’s weighted meta-
matching algorithm discourages such unifications by artificially increasing the
cost of augmenting paths that would produce them. The implementation has
been done with care, and runs in time which is often a small constant, and at
worst is proportional to the length of the augmenting path being considered.
The idea is purely heuristic, to be sure, but it seems to work well.

Many other conditions besides time blocks may be imposed on sets of times.
A meeting’s times may be required to be spread evenly through the week, the
times of the meetings attended by a student group may be required to be compact
(contain no gaps within any day), and so on. The author has not yet attempted
to support such conditions within the layer tree.

Regularity. The layer tree supports regularity by supporting hierarchical
timetable construction, but this does not of itself encourage regularity between
the child layers of each + node. We mentioned earlier a straightforward way to
do this, by partitioning the variables of the parent layer into sets, called columns,
whose size is a typical meeting size, and assigning meetings to entire columns
wherever possible. This was the North American universities’ approach.
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Columns are supported by the layer tree by allowing temporary reductions in
vdom(v). An algorithm might restrict the domains of the variables of a meeting
to one column, then check the total resource sufficiency badness of the entire
layer tree; if it has not increased, assigning that meeting to that column may be
good. The layer tree also maintains, for each set of variables representing one
meeting, a count of the number of distinct columns that that meeting’s variables
are assigned to. The total of all these counts measures the current irregularity.

Evenness. It is desirable for demand for a particular type of resource to be
spread evenly across the week, not concentrated at particular times. This is be-
cause resource assignment struggles at times when every resource of a particular
type is required: there are enough resources, perhaps, but there is little freedom
of choice. This property we call evenness.

Evenness, like resource sufficiency, depends on the resource demands made
at each time, so the layer tree’s support for it is very similar to its support for
resource sufficiency. (There does not seem to be any efficient way to extract
evenness information from the resource sufficiency matchings themselves.) The
total demand for each type of resource is maintained in root variables. The sum
of the squares of these totals is an effective and easily updated overall measure
of unevenness. For example, two root variables each demanding a quantity a
of some type of resource contribute 2a® to total unevenness. If the timetable is
changed so that one demands quantity a — 1 and the other demands a + 1, these
less even demands contribute 2a? + 2 to unevenness. Demands from the same
faculty (e.g. Junior English and Senior English) are considered to be the same
type of demand, since they typically have many resources in common.

Overall badness. For the convenience of algorithms that use the layer tree,
the KTS implementation offers access to the current total badness of the tree,
as a triple whose first component is the number of resource sufficiency defects
implied by the current state (the total number of unmatched nodes in resource
sufficiency matchings, plus the total cost of all meta-matchings), and whose
second and third components are the irregularity and unevenness, measured as
just described. Each data structure responsible for calculating any badness value
at any point in the tree also takes responsibility for reporting any change to this
global badness object, or at least reporting itself as out of date and needing
recalculation the next time a badness value is requested.

7 Conclusion

This paper has defined a form of hierarchical timetable specification and shown
how support for it can be implemented efficiently using the layer tree data struc-
ture. Time assignments and deassignments may be carried out at any point in
the tree, and an efficient constraint propagation algorithm updates the domains
of the variables and reports the consequences for resource sufficiency at each
time. Extensions to the basic framework, supporting block structure, regularity,
and evennness, have been implemented in the author’s KTS system.
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Future work will try to add more features to the layer tree without com-
promising its efficiency. It may be possible to incorporate information about
workload limits into the resource sufficiency matchings, for example. A second
goal is to design new timetabling algorithms that fully exploit the flexibility of
this innovative data structure.
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Abstract. The planning of surgical operations forms a substantial el-
ement of hospital management. It is characterized by high complexity,
which is caused by the uncertainty between the capacity offered and
the true demand. Also, as emergency cases occur the planning require-
ments change. A semi-automated dialog-based system is therefore pre-
ferred rather than either fully manual or fully automated systems. This
is because of the inability of the later to recognize the changes in a
high dynamic environment and to take the responsibility for decisions
made. As it has to be possible to add new tasks in the planning process
“on the fly” and to adequately plan new situations, we involve a human
planner in the scheduling activity. The planner acts as a “sensor” to
identify changes as they occur and integrates his knowledge as well as
his decision-making competence into the planning process. The propos-
als for the schedules are however made with the help of the heuristics.
In order for a schedule to be accepted by those involved, it should take
account of the interests and preferences of all the human actors. Existing
systems do not do this and therefore suffer from levels of non-acceptance
of their resulting schedules. In this paper we discuss suitable heuristics
for operating theatre scheduling, the limits to which preferences can be
considered in the scheduling process, and the validation of the approach
in an experimental set of hospital scenarios.

1 Introduction

Operating theatre scheduling deals with assignment of limited hospital resources
(rooms, doctors, nurses, etc.) to jobs (patient treatments, surgery, etc.) over the
time, in order to perform a set of tasks according to their needs and priorities,
and to optimize usage of hospital resources [13]. The whole process is restricted
by a whole series of constraints, limitations and preferences [2]. It is further
characterized by a high level of complexity due to:

1. the uncertainty of the relationship between the capacity offered and the true
demand,
2. the inability to predefine treatments’ workflow,

* This work was supported by the German Research Foundation in the research prior-
ity programme SPP 1083 — Intelligent Agents in Real-World Business Applications.
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3. emergency cases, causing disturbance in existing schedules and the need to
adapt as situation changes.

Typically, scheduling is currently done manually and involves specialized staff.
[9] discuss an example of an optimization that can be achieved using process au-
tomization for nurses rostering!. In the hospital considered, one person takes 3-5
full working days to produce the nurses’ schedule for the period of one month.
That is only to the level of assigning shifts. Similar results have been reported
in other studies [4]. Existing industrial schedulers usually assume a predefined
workflow. Furthermore, they do not take staff and patient preferences into ac-
count and so are not generally applicable to the hospital domain [2]. The current
methods in this domain are therefore: no planning, pen and paper, non-intelligent
tool-based. Fully automated systems are not accepted because of their inability
to give proper consideration to preferences and the need to show clear responsi-
bility for decision making.

Existing solutions consider only sub-problems such as: nurse rostering, coor-
dination, or surgery planning. Most tools provide only GUI for manual schedul-
ing, although some check the validity of completed schedules, and some of the
more advanced generate draft schedules (however, preferences are not taken
into account). Some examples of such systems are Medico//S, ORBIS?, MEDI-
CUS [14], CARE2X3.

This paper presents a problem, based on real-world requirements. In the fol-
lowing section we present our approach for semi-automatic, dialog- and preference-
based scheduling in hospital scenarios. Then, after introducing the scheduling
problem to be considered, the domain of discourse and the made assumptions in
Section 2, we describe the problem decomposition, the discussion of the devel-
oped heuristics for each of the identified subproblems and provide a complexity
analysis for the developed heuristics. In Section 3 the experimental context is
described and an evaluation of the results presented. We finalize the discussion
with conclusions based on the evaluation and look forward to further challenges.

2 Scheduling Heuristic

We divide the operating theatre scheduling problem into the four sub-problems:
preference-based personnel assignment to shifts, preference-based building of
teams in a shift, preference-based task (operation) assignment to teams and
room assignment to tasks. For each of the sub-tasks we have developed a heuris-
tic. Furthermore, we have implemented suitable problem-solving methods and
evaluated the implementation by the means of simulation. The heuristics pro-
duce a proposal for the schedule. It is however up to the human planner whether
to accept it in its entirety, accept parts of it, or to reject it completely. We
propose a semi-automated dialog-based approach for the rostering.

! rostering and scheduling are used as synonyms here
2 http://www.sieda.com/
3 http://www.care2x.com/
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In this section we discuss the heuristics for operating theatre scheduling ac-
cording to the division of sub-tasks as described above. We assume that the
preferences of the actors involved that need to be taken into account are pro-
vided in a frame-based representation, and that their context will be valid in the
context of the domain: shift, team, task, and room [10].

Based on the nature of the preference, we distinguish between static (coworker,
treatment) and dynamic (shift) ones. Each preference has a value from the closed
domain {willingly, undecided, unwillingly}. We define the preference domain
range as

D = {w7 u? w}?

where w stands for “willingly”, u for “undecided” and w for “unwillingly”.
Each employee is able to specify a preference x; € D for another employee
expressing his/hers willingness to work together with that employee. In the same
way it is possible to specify preferences for shifts. If the preference is not specified
it has the value u (undecided) by default.

There are basically two approaches for the staff rostering problem: cyclic*
and non-cyclic [1]. In the first one, several sets of schedules are generated that
satisfy the demand requirements. Staff are then rotated from one set of sched-
ules to another in consecutive planning horizons. So for example, the schedule
may be repeated every week or with a two week interval. Although it is easy
to implement, cyclic schedules impose inflexibilities, and there is therefore less
acceptance of the resulting outcome. We therefore use a non-cyclic algorithms.

It is also important to note that there are two possible approaches for team
continuity: first one based on the static team assignment, that means a team
remains unchanged until the end of the duty; the second one allows the reassign-
ment of members to other teams (build new ones) when no job is assigned to the
current one, in order to achieve continuity of occupation. Static assignment is
less flexible, but has much less computational complexity since there is no need
to search for the common time gaps across all team members. Furthermore, in
the second, there may be individual time gaps that will not be filled in the future
with any tasks.

2.1 Preference-Based Adaptive Assignment of Personnel to Shift
Preference-based assigning of personnel to shift considers:

— hierarchical position (senior physician, assistant doctor, anaesthetist, nurse);
— contract work hours (treated as soft-constraints);
— shift preferences (that have dynamic character since prefered working time
can vary from day to day);
— hard-constraints:
e minimum/maximum number of personnel in the shift (day, shift and
qualification dependent);

4 sometimes also called rotational
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e maximum duty duration;
e minimum inter-duty pause;
— fulfilled wishes quota.

The heuristic selects personnel so as to avoid hard-constraint violations for
each qualification in the following order of preference value:

willingly = undecided ~ unwillingly.

The best and simplest case is when the number of actors that work gladly in the
shift is within the bounds of the hard-constraints and maximum working time
is not exceeded. This means that they can all be selected for the duty and it
can be continued with the next lower position in the hierarchy of the depart-
ment. Unfortunately the hard-constraints often prevent this. So, for example,
the number of available personnel that would work “willingly” or “undecided”
in the shift may be smaller than the minimum staffing level required. In this
case all of the actors with these preferences have to be selected and those with
the lower preferences have to fill the gaps. It may also happen that only some
of the actors with the preference “unwillingly” for the current shift have to be
selected. So those that are not selected will be in a better position compared
to the selected ones. Furthermore, in the case of selecting only some with the
“willingly” preference, those that are not selected will find themselves in the
worse condition compared to the others. The selection procedure therefore con-
tributes to placing some actors in a worse condition, compared to the others.
Such a decision has to be memorized in order to achieve a degree of fairness in
the scheduling. That means that an additional measure has to be introduced in
order to keep track about the number of actor’s wishes that have been, respec-
tively have not been taken into account. The measure is mapped to the actor’s
weight. This weight is then used to influence further selection decisions of the
form “some from many” in order to achieve fairness of the scheduling and give
due consideration to the wishes of individual actors. It should also be considered
that medical personnel are usually contracted to work for a certain amount of
hours per week. The selection process therefore also needs to take into account
that physicians that have not yet completed their weekly contract hours should
have higher priority in getting a shift than those that are already on overtime.
The weight (importance) of the choice for an actor can be determined with the
help of the following weight function:

Weight; =RemainingW orkShifts - PositionWeight - o
+ Weight;_1 - stimulus - (1 — @)

(1)

where

— 0.5 < a < 1 coefficient that determines influence of the previous weight
value. It is assumed, that the remaining working time has more influence
on the weight function than whether wishes have been complied with, or
rejected;
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PositionWeight weight, determined by the position of the actor;
— RemainingW orkShifts quota regular working shifts stated in the contract
as represented by the soft-constraints;
— Weight;_1 previous (old) weight value;
stimulus determines the weight adjustment manner:
> 1 in case of dissatisfying selection;
= 1 if no preference was specified;
< 1 in case of taking into account a wish.

PositionWeight is used in the weight function since it is assumed that du-
ties may require personnel with some qualification, independent of the position.
However, the wishes of the physician with a higher position in the ward hierarchy
are given a higher significance.

Defined as above, the stimulus effect decreases the weight function in the case
of selecting an actor with the preference “willingly” or by not selecting one with
the preference “unwillingly”. The value increases by selecting with “unwillingly”
or by not selecting with “willingly”. The adjustment strategies of the weight
with respect to stimulus can be seen in Table 1.

|preference value||stimulus for selection|stimulus for rejection

“willingly” <1 > 1
“undecided” =1 =1
“unwillingly” >1 <1

Table 1. Weight Adjustment Strategies

The preference “undecided” is treated as neutral and does not influence the
stimulus, but the weight function changes in case of selection because of the
adjustment of remaining work shifts. At the beginning of the week the weight is
initialized as:

Weighty = contractualWorkShifts - PositionWeight (2)

The weight is always adjusted each time the person is selected for the shift (since
the Remaining WorkShifts number changes) and also, for all those actors with a
preference € {willingly, unwillingly} that were able to take the duty (i.e. caused
no hard-constraints violation). For not selected actors only the stimulus will have
an impact on the weight. If the Remaining WorkShifts reaches the value zero, the
weight function update decreases significantly if the actor is selected (since it is
treated as an undesired overtime):

Weight; = Weight;_1 - stimulus - (1 — «) (3)

In case of rejection, for those actors with a preference € {willingly, unwill-
ingly} only the stimulus has an influence on the weight:
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Weight; = Weight; 1 - stimulus (4)

All relevant constraints and their characteristics are given in Table 2.

The minimum and maximum number of personnel required in the shift has a
dynamic character since these values depend on the day (e.g. regular week day,
weekend, etc.). Where more than minimum required personnel with a preference
willingly are available, they are all selected up the to maximum allowed number
by the hard-constraint. In the case of preferences € {undecided, unwillingly}
only the minimum number stated in the constraints are selected. The heuristic
therefore satisfies the wishes of as many actors as possible. It is important to
mention, that the personnel requirements have following restrictions:

max required senior physician < min required assistant doctor
max required assistant doctor < min required nurse
max required assistant doctor < min required anaesthetist

Where there is a need to make a selection decision “select some from many”,
those with the higher value of the weight function are chosen. This contributes to-
wards fairness, since higher values mean that there are more contractual working
hours still unused in the current week, a higher position in the ward’s hierarchy
or smaller number of preferences already taken into account.

In view of the linear simplicity of the heuristic we do not discuss the com-
plexity analysis for shift assignment.

2.2 Preference-Based Building of Teams in a Shift

After the staff selection for the duties, the available personnel in the hospital
department is determined for each shift. As tasks arrive, there is a need to group
the shift personnel into teams in order to perform those tasks. Requirements
for personnels’ qualifications, resources, specializations of the involved actors in
each treatment have to be considered. In order to increase the acceptance of
the planning system in the hospital, it is also important to take into account
personal preferences of the involved actors. So, for example, the doctor “Z” may
prefer to work better with nurse “Y” than with the nurse “X”.

| Constraint || Type |Character|

shift preference preference dynamic

max shifts per duty ||hard-constraint| static
min inter duty pause ||hard-constraint static
min required personnel ||hard-constraint| dynamic

max required personnel||hard-constraint| dynamic

contract work hours || soft-constraint static
Table 2. Constraints for Shift Assignment
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The problem can be formalized as follows: given S, D, E, N - sets consisting
of senior physicians, assistant doctors, anaesthetists and nurses having duty in
a shift, so that:

|S|=s, |ID|=d, |[E|=e, IN|=n with s <d < e <n.
This means that there are always more nurses in the shift than anaesthetists and
more anaesthetists than assistant doctors, and more assistant doctors than senior

physicians. Each employee can specify a preference with respect to another,
expressing his willingness to work with them:

Vai,ajGSUDUEUN, Z?é] HPaj(ai):scij,
zi; €D, i,je(l,s+d+e+n).

Every employee is also characterized by the weight, that depends first of all
on the hierarchical position of the person:

Yae SUDUEUN 3 g(a) > 0.

The utility of team i, consisting of  actors is defined as

U = Zq(l17~~~,ak—17ak+17---7aﬁ (ak) : g<ak) (5)
k=1
where
1 if P, (a;) = w,
Ga;(ai)izj = (0 if Po,(a;) = u, (6)
-1 if Paj(ai) =w

is the value of the coworker preference of actor a; regarding the colleague a;.
Correspondingly, for a set of n coworkers a,...,a, it is defined as

day,...,a5—1,ak+1;--,05 (ak) = qa, (ak)+' “+Gay_, (ak)+qak+1 (ak)+' -+ as (ak)' (7)

The total utility of h teams in a shift, each with its own size of n; is defined
as

h 7y
Z/{total = Zuz = Z Z q{a1,...,ak,l,ak+1,...,a;1,}1 (aki) . g(aki)~ (8)

i=1 k=1

The goal is now to build teams in such a way, that the total utility function
(satisfaction of coworkers to work together) is maximized.



216 K. Krempels and A. Panchenko

Optimization Criteria. It is assumed that there exist two configuration pat-
terns for operation teams: those with four actors (senior physician, assistant
doctor, anaesthetist and nurse) and, for less complicated operations, consisting
of three actors (assistant doctor, anaesthetist and nurse). The goal is to find
teams, consisting of staff members from a shift, and maximizing the total utility
function.

So, for example, in case of preference and weight specifications as captured
in Table 3 the utility of the three-member teams is calculated as follows:

U< A B,C>)=qpc(A) 9(A) + qac(B) - g(B) + qas(C) - g(C) )
=(0+4+1)-80+(-14+1)-60+ (—140)-40 = 40.
The total utility is then the sum of weighted adjacent satisfaction of all
the team members. So, the advanced teams are built up for all available senior
physicians. For the rest ¢t = 1,...,d — s, assistants (where s = |S|, d = |D|)
smaller teams are built in a similar way, in order to facilitate treatment of another
(lower) complexity class. The maximum sum reflects the highest total utility of
all the teams involved and would be the optimal solution for the problem.

Complexity Analysis Discussion. To achieve the maximum utility value, it
is necessary to compare the sums of all the possible team configurations in the
shift. The total number of possibilities for a set of s teams of four members in

the shift is
s—1

Y (s —i)d—i)e—i)n—i),

=0

(10)

which requires a computational complexity of O(s-d - e-n), or O(n*).

It is important also to consider what happens when the team size is not fixed.
The complexity results are completely different. The problem can be represented
as a graph where each vertex represents a team configuration and an edge be-
tween two vertices exists in cases where they have at least one common actor.
The goal is to find maximum independent set in the graph. An independent set
in a graph G = (V, E) is a subset I C V, such that Vz,y € I, {z,y} ¢ E. The
independent set problem consists of finding a maximum (largest) independent
set in a graph. It is well-known to be NP-complete [7]. In natural integer pro-
gramming formulation the finding of the optimal solution with team weights w;

Employee|/Preference|Preference|Preference| Weight
x to A Pa(z)|to B Pg(z)|to C Pc(z)| g(x)
A - U w 80
B w - w 60
C w U - 40

Table 3. Example for Team Utility Calculation
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for j € V (V is a set of all possible team combinations in a shift), |V| = s-d-e-n,
is
Maximize 7| w;z;
subject to z; + x; < 1 (for every edge (¢,7) in the graph)
0<z;<1 (j=1,...,s-d-e-n)
x; integer (j=1,...,s-d-e-n)

Hochbaum([7]) gives a summarization of all the approximation algorithms
for the weighted independent set problem known to date. A guaranteed good
approximation is only possible if the graph has some special features such as
being planar (in this case it is possible to give an approximation guarantee of

%) In the general case it is of the —xir=, where A is the maximum degree of a

'| b
3
vertex in the graph. In the case of a teams graph where teams consist only of

four actors, the degree of each vertex is

s-d-en—(s=1)(d—-1)(e—1)(n—1)—1.

This is nothing other than a total amount of all possible combinations of teams,
having substituted those combinations, not having at least one common actor
with one selected team. If the hospital department consists of 25 members in
each position, the vertex degree A has the value 58848, considering only teams
of four actors. In this case the approximation degree of about 0.00005 or 5-10°
can be guaranteed with the complexity O(mA), which does not seem to inspire
much (m is the number of edges). Guo et al. ([6]) has experimentally compared
and found that using the simulated annealing heuristic to solve the set packing
problem (which is polynomially equivalent to the independent set problem [7])
outperforms previous approximation methods, and based on that heuristic ILOG
CPLEX obtains results within smaller timescales.

Heuristic. Now that the problem formally defined a feasible solution can be in-
troduced. Tt is guaranteed to be pareto-optimal (it is not possible to increase the
utility of one team, without decreasing the utility of another one), but not the
optimal in the general case, since long computations are required to handle the
very large numbers of different shift team combinations that need to be consid-
ered (see Formula 10). An obvious solution, in order to achieve pareto-optimality,
is to calculate for each shift the utility for each possible team combination, sort
it, and take those with the highest utility value. However, doing this dynamically
each time for each shift requires many computations and an extended waiting
time before seeing a proposed schedule. It can be improved by calculating the
utility for all possible team combinations in the department only once, since
the coworker preference bears a static character and is not changed often. The
complexity of such a computation is O(s-d-e-n) or O(n*) since n is the largest
of these four numbers. When any actor changes their preferences, the recalcula-
tions required are of O(n3). Having constructed the array of utilities it is sorted
into order so that teams with a higher utility are preferred over those with a
lower one. The heap sort is selected to facilitate the process. It is the slowest of
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the O(nlgn) sorting algorithms, but unlike the merge and quick sorts it does
not require massive recursion or multiple arrays to work. This makes it the most
attractive option for very large data sets of millions of items.

Every time teams for a shift are built, it is now sufficient to process the sorted
array in descending order of team utilities until all the senior physicians (in case
of building advanced teams) or assistant doctors (in case of building teams for
less complex treatments) are assigned. The heuristic checks if all of the team
members considered have a duty in the shift and are not yet members of a team.
If this is the case, the actors are assigned to work in one team, since no other
combination of available actors can produce a higher current team utility value
(remembering that the array is sorted). This yields a pareto-optimal solution.
In the worst case there is a need to go through all of the elements in the array.

Furthermore, the solution obtained can be improved with the help of a mod-
ified simulated annealing heuristic. It can often be the case that it is not optimal
in the sense, that another combination of teams may exist, so that the total shift
utility is higher, than that achieved with the pareto-optimal algorithm.

The maximum value of the team utility function will always be less than the
product of the greatest team weight and the number of teams that have to be
build (]D| = d). However, a better approximation can be reached taking the
sum of the first greatest d elements of the sorted teams weight array. Even this
yields a value that is not less than the optimal solution (since these d teams are
often not disjoint). It serves as a probabilistic termination criteria if the obtained
solution is close enough to the calculated bound. The heuristic itself starts on
the i-th iteration with the 2i-th element of the descending sorted array of the
actors present in the shift, and moves at first upwards, then downwards from the
2i-th element, checks whether the current team candidate members are not yet
assigned for a team, and in the case of positive outcome, selects them. At the
same time the utility function is calculated. If the current utility of the sum of d
teams is greater than the known maximum, then the current teams assignment is
chosen as a candidate for the shift assignment and it is continued with the next
iteration. If no improvement is achieved, the temperature value is decreased.

2.3 Preference-Based Task Assignment to Teams

After the preference-based resource allocation (planning phase, building teams)
it is now possible to proceed with scheduling. At first the problem analysis will
be given, afterwards the heuristic will be discussed.

Problem Analysis. The problem of scheduling we are faced with can be for-
mulated as follows: given a set of v teams, that have duty in the shift = as well as
the set of ¢ tasks, that are planned for that shift. Each task has an approximate
duration (since it is often not possible to forecast how long an operation will
take due to non-determenistic workflow), contributing to the uncertainty degree
of the schedules generated. It is also characterized by its priority in order to
distinguish between emergency and regular cases. The main component of each
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task is a patient, that is characterized by insurance (private or governmental),
preferred treatment time as well as a doctor preference. Each team is restricted
within the shift by the maximum working time allowed without a break and a
minimum break duration as stated in hard-constraints. It is also characterized
by the time it finishes its last task as currently scheduled. A graphic representa-
tion of the task scheduling problem is captured in Figure 1. The goal is to assign
those g tasks to v teams in such a way that no hard-constraint is violated and
the objective function gets the highest value.

> (Task (plannedShift X)) v x (Team (shiftStartSlot 7))
rduration - competency
I patient — )
. — HC: max work without pause
I~ insurance
private . .
— HC: min pause duration
social

— last job finish time slot

r doctor preference
— treatment preference

I preferred op time

= weight

L priority v<<(q
—k urgent

normal

Fig. 1. Task Assignment Problem

The scheduling problem is defined in the terms of the Graham’s notation
[12]:

| Constraint / Preference || Type |Character

max slots without pause hard-constraint| static
min pause duration hard-constraint| static
patient doctor preference preference static

patient preferred treatment time|| preference dynamic
doctor treatment preference preference static
team competency hard-constraint| static

task priority hard-constraint| dynamic
patient insurance soft-constraint static
shift end time hard-constraint static

Table 4. Constraints for Tasks Scheduling
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Rm | rj, M;, brkdwn | leijj +9227ﬂj2j

The first element of the triple - machine environment - refers in the case
of the operation theatre scheduling to the team environment. There is no exact
environment notation to express the situation faced with in the team scheduling.
That is why the most suitable environment is taken with the assumption noted
below. Rm stands for unrelated machines in parallel. Usually it is used if the ma-
chines have varying speeds and that speed of depends on the job being executed.
However, the speed of performing an operation is not the selection criterion for
the teams, and that is why it does not play any role here. Job j requires a single
operation and may be processed on any of the machines belonging subset M,
however, different machines (teams) yield different values regarding optimality
criterion due to the needs of taking into account team and patient preferences.
The processing restrictions include release dates (r;), machine eligibility restric-
tions (M), and breakdowns (brkdwn). The first means that the job j can not
start before its release date r;. So, for example, patients, planned to be operated
on some specific date, can not be scheduled before that date. Machine eligibility
restrictions mean that not all m machines (teams) are capable of processing job
Jj (some specific kind of operation). The set M; denotes the set of machines that
could process the job j. Breakdowns imply that machines (teams) are not con-
tinuously available (due to e.g. pauses, times for operation room preparation).
As the objective to be minimized is the total weighted tardiness (> w;T;) plus
the total weighted team (treatment type) and patient (senior physician) dissat-
isfaction (> w;Z;) chosen, since it conforms the requirements of the operation
completion times and team’s and patient’s wishes in the hospital. The composite
objective includes also weights #; and 0, for each of the two sub-objectives. So
the goal is to minimize the due date violations, where weight w; may be used to
specify the priority of the job e.g. urgent, normal, etc., as well as w; to specify
the importance of taking into account wishes of corresponding actors.

After having formally defined the problem, it is now possible to define its
complexity. It is made with the help of reduction to the 3-partition problem [5].
The 3-partition problem is well known to be strongly NP-hard [12]. Strongness
means that the problem cannot be optimally solved even by an algorithm with
a pseudo polynomial complexity. The proof idea can easily be derived from
Pinedo [12].

Since even a simplified scheduling problem with only one machine (team)
without any preferences and room considerations is NP-hard, the more general
problem with many teams with preferences for treatments, coworkers and time
consideration is therefore not less difficult.

Heuristic for Preference-Based Scheduling of Tasks. This heuristic se-
lects tasks that are planned for the shift considered and schedules first the urgent
ones, and then the regular ones. Scheduling the urgent tasks tasks before the
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regular ones matches the normal prioritization in a hospital department. The
schedule is developed with the help of dispatching rules.

The dispatching rule determines which task should be scheduled as next.
Every time a team becomes free and the time since the last index update exceeds
some A, the ranking index is recomputed for each remaining job. Their list is
then sorted and the jobs with the highest ranking index are processed first. This
ranking index is a function of the time ¢, at which a team with the earliest last
job finish time becomes free, as well a the patient weight w;, task processing
time pj;, task urgency u;, and the due date d; of the remaining jobs. The index
is based on [12] and defined as

j(t):'_'lj.efxiﬁ el (11)

wj is the patient’s weight, that is assigned to the task j;

i; is the insurance type of the patient from the job j;

p; is the task j processing time (duration);

d; is the due date - time, until the job has to be done;

t is the time, machine can begin processing at;

K is a scaling parameter;

p is the average of processing times of the remaining jobs;

u; is the urgency of task j.

The first part of the index ( y
for one slot of time for his task. The second two parts of it have exponential
character and represent the task urgency and the slack influence on the index.
K is the scaling parameter that can be found empirically and determines the
influence of the first exponent on the index function. The smaller K is, the higher
is the influence of the first exponent on the whole index. Sometimes K is also
called lookahead parameter. The slack of the job j is the time left before the
latest time point the job should be started, in order to do not exceed the due
date. It is less than zero if the job can no longer be finished before the due date.
This means that the smaller the value, the greater the due date violation. If the
slack is positive, the first exponent decreases the value of the index function.
Task urgency u; can be e.g. equal zero for regular tasks, have value greater than
zero for urgent ones, having the greater value the more urgent concrete task is.

After the weight calculation for tasks planned for the considered shift is
completed, the task list is sorted in the descending order of the weight. In this
order the tasks are further processed so that those with a higher weight get
scheduled first. The task under consideration is tested in order to determine
whether the patient has specified the preferences for the operation chief (senior
physician in case of teams having four actors, assistant doctor in case of smaller
teams consisting of three actors). If it is the case, we check whether the physicians
as specified by the patient preference are present on the shift. Those present
are then further categorized into sets with preference “willingly”, respectively
“unwillingly” (all other belong to “undecided”). Further, each of the sets is

Wj-1j

) determines the price that a patient is paying
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sorted in the ascending order of the teams’ last task finish time and stored to
an ordered list. This contributes to the attempt to schedule the currently less
occupied teams within a preference value first. Having finished sorting, the lists
Ly, Ly, and Ly are concatenated to the list £ in the following order of preference
value:

L =CON{Lw, Ly, Li}.

If the current task to be scheduled is an urgent one, the earliest possible starting
time is calculated without regard for the specified preference. Preferred teams
are only then considered if their starting time deviated from it by not more than
a small value ¢ since these tasks have to be executed as soon as possible:

currentTask:s — earliest Possible;s < e, &> 0. (12)

For regular tasks the physician preference has more influence than with the
urgent ones, since it is more important to take this preference into account, even
if the task will be scheduled later but still within the shift.

Next we process the ordered team list and select a team for the job. An
attempt is made to schedule the team for the next possible time. If this fails
because the team needs to take a break, the break is scheduled and we retry. If
it fails for the second time, the next team is considered. If the list is processed
to the end and if no team was chosen - the dialog-based scheduling mechanism
has to take over.

In case of success, the selected team is assigned to the appropriate position
in the list of shift teams, to keep it in ascending order of the finishing time of
the last task. Scheduling proceeds with the next job.

We introduce a function of the following arguments to handle the treatment
preferences of the team:

— doctor preference of the patient;
— last task finish time slot of the team;
— treatment preference of the team.

During the task scheduling, the function value is calculated for each team. The
teams are considered in order of the returned function value, rather than being
divided into three groups with patient preference values from D and sorting
regarding the last task finish time within the group.

Discussion. An important feature of the task scheduling mechanism proposed
is that it allows rescheduling on demand. The dynamic character of job arrivals
in a hospital environment causes disturbances to pre-existing schedules, making
reactive scheduling necessary. The plan is being adapted to new situations as the
changes occur. However, the emphasis is to keep as much as possible of the exist-
ing plan untouched. Rescheduling also takes place when an urgent task is added
to the system. In this case all tasks, that have already begun are kept unchanged.
In contrast, all un-started ones have their status changed to unscheduled and are
re-proceeded by the scheduler. Following, further possible improvements can be
considered for the job assignment:
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— if a hard-constraint is violated due to the maximum work time without a
pause, it is possible to search for a shorter task to fill the gap instead of
recommending a pause right away. This helps to minimize unneeded pauses;

— tasks, to which patients did not specified doctor preferences, can be post-
poned initially. Instead, the number of tasks with explicit preferences for
each team should be computed. Scheduling those tasks without preferences
to those teams that have less patients in queue would bring better overall sat-
isfiability of the proposed schedules. However, not specifying the preference
should not cause longer waiting times before processing;

— team rotation is an important feature for long and complicated operations.
In real life some treatments last longer than one team can complete either
due to the ending of the shift or due to exceeding the maximum allowed
hours without a break. In this case a team “handover” must be performed
during the task execution.

The proposed heuristic makes proposals for the task scheduling. However,
it is up to the human scheduler whether to accept or to reject it. The goal is
to minimize the manual rescheduling so that the proposed schedule is changed,
if at all, only slightly. Tasks, that were not able to be scheduled automatically
must be proceeded by the human anyway.

2.4 Room Assignment

The last stage in operating theatre scheduling covers the assignment of operating
rooms. This approach is subject to the condition that there are enough rooms
available in that their number at least equals the number of teams in the shift and
furthermore, the room, assigned to the team, has all the equipment and facilities
that the team may need for executing its tasks. In another case, if the teams
are kept only for operations and no rooms are available, personnel resources
are wasted. However, teams often pause between consecutive operations. Each
of these time gaps can be too small to reserve the room for another task, but
some optimization of these time windows is possible, such as maximizing the
available gaps between operations already scheduled. It is assumed that the
rooms considered for the optimization are all of the same type, so that it does
not matter which room is chosen from the proposed set, and it is not vital for
the personnel. Of course the hospital management goal is the full utilization of
the resources, but at the same time a reserve capacity is required in order to
handle emergencies and to deal with the device/room breakdowns. It is assumed
that all the team and time assignments are already made. The algorithm chosen
to facilitate the process comes from Kandler [8], who proposed it for scheduling
in a virtual enterprise. The important feature for the room assignment is that
the jobs are not shifted in time but retain their scheduled time slots unchanged.

3 Analysis and Comparison

In this section the proposed heuristics are evaluated in practice. The most in-
teresting criteria are the time needed to produce a valid schedule proposal as
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well as the quotient of regarded/disregarded wishes of the personnel, and its
comparison to existing schedules produced by human actors (here the random
assignment is used because this reflects reasonably well the reality in todays
world where preferences are not considered). All evaluations were performed on
an Intel Pentium 4 CPU 2.40 GHz with 512 MB RAM running SUSE Linux
with default kernel version 2.4.21. The experimental setup was built using the
multi-agent system JADE 3.2° and the rule-based expert system JESS 6.16.

3.1 Shift Assignment Evaluation

The measures for shift assignment are made for 20 different values for the per-
sonnel size in the department (from 10 to 200, with the step 10), each with four
different required staff quotients (specified as a hard-constraint) in the shift. The
quotient is 20%, 30%, 40%, 50% of the overall number of personnel.

The number of actors for each position is based on the figures given in Table 5.
For example, in case of 200 actors, 20 are senior physicians, 40 are assistant
doctors, 60 anaesthetists, and 80 nurses.

quote|| qualification
10% ||senior physician
20% ||assistant doctor
30% || anaesthetist
40% nurse
Table 5. Personnel Quote of Specified Position

Shift preferences are generated for all actors and shifts as follows: with the
probability % the preference for the considered shift is generated by an actor. If
it has been generated, it is assigned a random value from the domain D (each
with the equal probability of %)

The number of required personnel usually varies due to different days and
shifts. Thus, we distinguish between a shift { early, late, night} as well as the day
of the week (regular working day, weekend or holiday). Furthermore, for each of
the days and qualifications, hard-constraints regarding the required staff number
are usually set flexibly, e.g. between 8 and 10. That is, there must be at least 8,
at most 10 actors with some qualification in the shift. Following the heuristic,
the maximum number is only taken if all wish to work in the shift, no other
hard-constraint is violated and the contractual work hours are not yet exceeded
(soft-constraint). Otherwise, the lower number of personnel is selected. For the
simulation, however, the upper and lower bound are kept identical.

5 Java Agent Development Framework, http : //jade.tilabs.it/
6 Java Expert System Shell, http : //herzberg.ca.sandia.gov/jess/



An Approach for Automated Surgery Scheduling 225

Shift Assignment for One Month (4x7x3 = 84 shifts)
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Fig. 2. Shift Assignment Run-Time

For each qualification the maximum duty duration as well as the minimum
inter-duty pause hard-constraints were set to be equal to 16 hours. That is, it is
not allowed to work more then 16 hours consecutively, and between 2 shifts must
not be less than 16 hours. The soft-constraint that represents the contractual
work hours is set to 40 hours per week for each employee.

Shift assignment is performed for one month (4 weeks, each with 7 days, each
with 3 shifts that results in 84 shifts). The total number of staff in the hospital is
chosen as a parameter. Another parameter is the number of required personnel
per shift (four different configurations). The time required to produce such a
schedule grows linearly with the number of personnel, and the assignment for
one month takes less than a half of minute of computing time for 200 actors as
captured in Figure 2.

The important criterion for acceptance of the proposed plans by human ac-
tors is the degree to which their individual preferences are taken into account.
The presented simulations are made for the personnel of 200 actors selecting
10%, 30%, 50%, and 70% of total number for each shift for the period of one
month (84 shifts). Figure 3 shows the percentage of preferences met in each
shift. For a shift considered, the total number of preferences is calculated as the
number of actors that have specified a preference with a value from {willingly,
unwillingly} for the shift. It is important, that only those actors are playing a
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One Month Shift Assignment
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Fig. 3. Shift Assignment Fulfilled Wishes Quota

role here that are allowed to work in the shift (no hard-constraint violation). A
preference is treated as respected in case of

— selecting an actor with preference value willingly;
— not selecting an actor with preference value unwillingly.

For 30% of total personnel in each shift all wishes are almost always fulfilled.
In case of selecting 10% usually none of the unwillingly actors is scheduled for
work, but not all who would like to work are selected, causing a slightly lower
quotient of the preferences met compared to the previous case. Choosing the se-
lection rate to 50% and 70% respectively of total personnel in each shift causes
all the willing actors to be selected as well as some undecided and, eventually
some unwilling too. Furthermore, selecting these numbers of staff causes viola-
tions of hard-constraints in some shifts due to the days off need. This leads to
understaffing in these cases. Beyond that, often those who would like to work
in the shift can’t be even considered due to the above mentioned need for time
off. Therefore actors with other preference values are selected. This contributes
to the variation of the percentage of the preferences met. The amplitude of
this variation is greater when selecting 70% of the entire staff. Nevertheless, the
overall quote of preferences met is high and the proposed plans are likely to be
accepted by the personnel, as compare to those manual schedules produced by
human actors that usually disregard most wishes.
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3.2 Team Assignment Evaluation

We need to initialize the team utilities before we can begin with team building.
The initialization is done for the teams consisting of four and three actors. Due
to the fact that the number of team combinations grows exponentially with
the number of personnel, this is the most time consuming procedure in the
algorithms. However, in a real life scenario the initialization must be performed
only once. The changes are only needed if one decides to change one of his
coworker preferences. In this case only one dimension of the utility array has
to be recalculated. In Figure 4 the initialization and sorting times for teams
consisting of four actors are captured.

Teams of Four Members Utility Initialization

2500 T T — .
initialization phase —+—
initialization and sort phases ---x---
2000 4
— 1500 4
£
(]
£
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<
3
® 1000 | i
500 4
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Fig. 4. Teams of Four Members Utility Initialization Run-Time

As can be seen from the figure, most time is spent on the initialization of
the the team utilities and not on sorting. It is due to the need to query the
knowledge base for each of the possible team combinations for the preference
values of each actor regarding his coworkers. In case of three actors these are
3 -2 = 6 queries and 4 - 3 = 12 queries for teams of four actors. For teams of
four members, however, a significant deviation of the initialization time from
initialization and sorting time is visible if the personnel size is 200 (the number
of different team combinations is then 20 - 40 - 60 - 80 = 3.840.000). Repeated
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simulations provided the same outcome. Detailed analysis has shown that with
this number of combinations swapping occurred.

Simulation was performed in Java, instructing the Java Virtual Machine to
initially assign 72MB allowing up to 1GB. The total number of staff was chosen
analogously to the case of shift assignment. Coworker preferences are generated
as follows: about 50% of the actors are selected randomly to specify a coworker
preference. Each selected actor specifies preferences to roughly 20% of his random
coworkers. These preferences have values either willingly or unwillingly each with
the probability of % For team utilities calculation we used the weight values from
Table 6. For a ward with 200 actors the initialization and sorting time of the

weight|| qualification
100 ||senior physician
80 ||assistant doctor
60 anaesthetist
40 nurse

Table 6. Team Assignment Personnel Weight

team utility array for teams of 4 actors takes less then 40 minutes, for teams of
3 actors less then one and a half minute.

In contrast to the team initialization and sorting that has to be performed
only once, team building (assignment) is executed for each shift. In Figure 5
the time needed to build teams of four actors for one week is captured. The
worst case occurs if there is a need to go down to the last element in the list
of teams, sorted in descending order of team utilities. The other measures are
made for the actual time needed to assign teams, selecting 20%, 30%, 40%,
and 50% of the total personnel in each shift. Interesting questions that arise
analyzing the graphs are why the actual measures are well below the worst
case, and why it takes longer to assign less (selecting 20% of total) than more
teams (50%). The importance of a senior physician (represented by the weight)
is clearly greater than that of the other team members, leading to positioning
team configurations with his favored coworkers in the beginning of the sorted
team array. The more personnel is present in the shift, the higher the chances
that the people he prefers and that prefer him are also in the shift. The search
ends sooner due to the availability of teams that are located in the beginning of
the array. Even increasing the number of teams (the number of senior physicians
increases as well) does not contribute to longer run-times since in the beginning
senior physicians are iterated in the array due to their great influence.

Next, the question arises how much improvement the proposed team assign-
ment heuristic brings. It is not very obvious what kind of data should be taken
as a reference to compare with. On the one hand it is important to satisfy as
many coworker wishes as possible. On the other hand, the hierarchy has to be
taken into account, because the proposed team building heuristic may not be
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One Week’s Assignment of Four-Member Teams (7x3 = 21 shifts)
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Fig. 5. Assignment Time of Four-Member Teams (With Worst Case)

accepted in the ward if the wishes of e.g. two nurses have always more influence
on the decision than that of one senior physician. For demonstration purposes,
however, in order to be able to compare the number of preferences taken into ac-
count in the teams, the weight of each preference, independently of the position
and qualification of an actor, is set to be equal one:

Ya e SUDUFEUN, gla) =1.

As a reference for comparison, randomly built teams are chosen. Measures
are made for one week (21 shifts) and show the sum of team utilities within the
shift for the heuristic and random team building. The average values as well as
the number of teams in each shift are also captured in the diagram. Figure 6
shows the simulation results selecting 40% of total personnel in each shift for
building teams of four actors, with the size of the ward equal to 200 actors.

3.3 Task Assignment Evaluation

Last, but not least, job assignment is performed and evaluated for different
numbers of staff in the shift, for the period of one week. Tasks are generated in
such a way, that there are more jobs than the teams can perform in each of the
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One Week’s Assignment of Four-Member Teams (7x3 = 21 shifts)
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Comparison of Heuristic and Random Assignment

shifts. In case of dealing with teams consisting of four actors, there are 10% of
senior physicians in the department. Each shift has 32 slots (15 minutes one slot,
eight hours per shift), each operation or treatment lasts at least one time slot
(however, the duration of the operation is randomly generated from one to five
time slots long). The product of the senior physician number and the number
of slots within the shift gives the number of patients in the shift, for each of
whom a random task is generated. With the probability 0.2 the task is urgent.
Measures for the job assignment are captured in Figure 7 and performed for
different numbers of staff and shift selection quotient. Each team is restricted
by hard-constraints to operate a maximum of 4 slots consecutively (one hour)
and has to take at least 4 slots off afterwards. The more teams in the shift,
the longer the task assignment lasts. The higher number of possibilities for the
teams, task can be proceeded at, causes the increase in required calculations.
For 200 personnel in the ward the job assignment for one week (21 shifts) takes
less than 6 minutes with the proposed heuristic.

4 Discussion

All the techniques described are heuristics that do not guarantee to find an op-
timal result. Instead, they aim to find a reasonably good solution in a relatively
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One Week Job Assignment (7x3 = 21 shifts)
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Fig. 7. Job Assignment Time

short time. The presented algorithms facilitate shift assignment (choosing per-
sonnel to work in a shift), team assignment, task assignment as well as room
assignment. An important attribute of the heuristics is the consideration of the
preferences of the involved actors as well as fairness due to the introduced weight
functions.

Different heuristics could be developed in order to facilitate the scheduling
process. For example, another possible approach for team building could be to
use the features of an expert system by defining queries in order to find tuples of
team member that match with a given satisfiability value and are on duty in the
shift. The disadvantage of this approach is the impossibility to directly search
(match) for the team with the highest utility, since only preference values have
an influence on such a kind of pattern, not the weight an actor places on the
concrete preference. The number of queries required to fetch all possible team
preference combinations would be n™, where n is the number of team members,
and m is the number of possible preference values.

5 Conclusion

Staff timetables in medical departments are subject to lots of constraints, re-
strictions, and preferences [3]. Scheduling of hospital personnel is particularly
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challenging because of different staffing needs on different days and shifts, un-
certainty between the offered capacity and the true demand. Furthermore, it is
impossible to predefine a treatment’s workflow. As emergency cases occur (caus-
ing disturbance in existing schedules), there is a need of adaptation to situation
changes. Due to the complexity and uncertainty the applicability of traditional
(operations research and AI) methods from industrial scheduling to the opera-
tion theatres scheduling is problematic [11,2,10]. Usually a specialized person
is in charge of this task (medical director). Yet, this often does not takes into
account preferences of individual actors.

We have split the original problem into sub-problems and provided a preference-
based adaptive heuristics for each of them. The system makes a schedule proposal
and it is up to the responsible human actor either to accept, accept parts of the
proposition, or to reject the schedule. In this paper we show, that the required
time for shift, team, job and room assignment is within acceptable ranges for
a real-world ward size [10]. The comparison of the heuristic approach to the
random assignment was given. This allows to conclude that the proposed algo-
rithms bring a substantial improvement regarding the number of fulfilled wishes
of the actors, while planning and scheduling, and helps to save expensive human
resources that are currently used in hospitals for the manual scheduling process.
However, the preferences of the involved actors were randomly generated. It can
often be the case that e.g. some actors are preferred by most others. Heuri