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Preface
On behalf of the Steering Committee and the Programme Committee of the
PATAT (Practice and Theory of Automated Timetabling) series of conferences,
we would like to welcome you to the sixth conference here in Brno. The PATAT
conferences, which are held every two years, bring together researchers and
practitioners in all aspects of computer-aided timetable generation. This in-
cludes university timetabling, school timetabling, personnel rostering, trans-
portation timetabling, sports scheduling and other areas of the subject. The
programme of this year’s conference features seventy presentations which repre-
sent the state-of-the-art in automated timetabling: there are 4 plenary papers,
17 full papers, 41 extended abstracts, and 8 system demonstrations. We are
particularly pleased to welcome system demonstrations which are introduced
at PATAT this year for the first time.

As was the case in previous years, a post-conference volume of selected and
revised papers is to be published in the Springer Lecture Notes in Computer
Science series. This volume will be rigorously refereed by our Programme Com-
mittee. The plenary papers and the 17 full papers will automatically go into
the reviewing process for this volume but authors will (if they so wish) have the
opportunity to revise their papers in the light of feedback from the conference.
The authors of the 41 extended abstracts and the 8 system demonstrations are
invited to extend their articles and to submit a full paper for publication in
this book.

We would like to express our gratitude to the large number of people who
have contributed to the organization of the conference. The Steering Commit-
tee ensures the ongoing success of the series and the Programme Committee
works very hard to referee conference submissions. We are, of course, very
grateful to all authors and delegates. We would particularly like to thank the
Faculty of Informatics at Masaryk University for hosting the conference. Spe-
cial thanks should go to Adam Rambousek for his support and for granting us
the permission to use his conference management system. We would also like to
express our gratitude to Jakub Mareček and Tomáš Černý for their assistance
with type-setting, and to Lenka Bartošková, Dagmar Janoušková, Iva Krejčí
and Petra Křivánková for their administrative help. Particular thanks should
also go to Emma-Jayne Dann for her administrative support. Last but not
least, we would like to thank the conference sponsors: ORTEC bv, eventMAP
Ltd. and CELCAT, and the Ministry of Education, Youth and Sports of the
Czech Republic for their support under research intent No. 0021622419.

We are very happy to welcome you to Brno. We hope you enjoy your
stay here and that you get a chance to explore the city and the surrounding
area during your visit. We wish you an informative, useful, and interesting
conference. Enjoy it!

July 2006 Edmund K. Burke
Hana Rudová
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Physician Scheduling in Emergency Rooms

Michel Gendreau1,2, Jacques Ferland1,2 Bernard Gendron1,2, Noureddine Hail1,
Brigitte Jaumard1,3, Sophie Lapierre1,4, Gilles Pesant1,4, and Patrick Soriano1,5

1 Interuniversity Centre for Research on Enterprise Networks,
Logistics and Transportation (CIRRELT)

Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, Canada, H3C 3J7
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3 Concordia Institute for Information Systems Engineering, Concordia University

4 Département de mathématiques et génie industriel
École Polytechnique de Montréal

5 Service d’enseignement des méthodes quantitatives de gestion, HEC Montréal

Abstract. We discuss the problem of constructing physician schedules
in emergency rooms. Starting from practical instances encountered in
six different hospitals of the Montreal (Canada) area, we first we pro-
pose generic forms for the constraints encountered in this context. We
then review several possible solution techniques that can be applied to
physician scheduling problems, namely tabu search, column generation,
mathematical programming and constraint programming, and examine
their suitability for application depending on the specifics of the situa-
tion at hand. We conclude by discussing the problems encountered when
trying to perform computational comparisons of solution techniques on
the basis of implementations in different practical settings.

1 Introduction

Constructing schedules (rosters) is not an easy task to accomplish in settings
where work must be performed 24 hours per day and 7 days a week, such as
in police and fire departements, or in emergency rooms of hospitals. The prob-
lem that one is faced with is to generate “good schedules” that satisfy many
complicated rules, including ergonomic rules as defined by Knaunth [20, 19]. As
mentioned by Carter and Lapierre [11], ergonomic constraints are very impor-
tant in order to manage the circadian rhythm of the staff and it is critical to
take them into account when building schedules.

In this paper, we focus on the problem of the scheduling of physicians in
emergency rooms (ER) in health care institutions where work is continuous. It
is known that ER are a very stressful place for physicians, but it is also great
challenge for them to work in such a place. According to Lloyd et al. [23], 24.5% of
physicians in Canadian ER are not satisfied with their jobs. Consequently, mak-
ing a “good” schedule for physicians in ER is very important. A good schedule
for a physician is a schedule that satisfies a large number of the requests he or

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 2–14. ISBN 80-210-3726-1.



she may have regarding different issues: total amount of work to be performed,
specific timing of shifts, sequencing of shifts, etc.

As already mentioned, building such schedules is quite difficult and it may
take up to several weeks for a human expert to generate an acceptable solu-
tion [3]. In order to reduce time and efforts, an automated approach is therefore
imperative.

Besides the biological and psychological effects involved in the scheduling of
physicians, one must also pay careful attention to the fairness of the schedules
among physicians. This important aspect is unfortunately very difficult to ad-
dress because there are usually many individual requests and several of them
turn out to be conflicting.

In this paper, we give an overview of the typical constraints that may be
encountered in physician scheduling by building on the lessons learned from five
practical cases encountered in hospitals of the Montreal (Canada) area: Jewish
General Hospital (JGH), Charles-Lemoyne Hospital (CLH), Santa-Cabrini Hos-
pital (SCH), Sacré-Coeur Hospital (SaCH), and Côte-Des-Neiges Hospital (CNH).
An important purpose of the paper is to formalize the specific constraints of these
five settings into “generic constraints” that could be used to describe problems
in other practical contexts. We also review major approaches for solving the
problem: mathematical programming, tabu search, constraint programming and
column generation.

The remainder of this paper is organized as follows. In Section 2, we define
more precisely the problem of scheduling physicians in ER and review the rele-
vant literature. In Section 3, we propose the generic constraints that capture the
essence of the various constraints encountered in the five physician scheduling
case studies. Section 4 is devoted to solution approaches. Finally, we conclude
in Section 5.

2 Problem Definition and Literature Review

In the health care area, there are two important types of scheduling problems
that involve medical staff: nurse scheduling problems and physician schedul-
ing problems. In the first category of problems, nurses work under collective
agreement while in the second category, there are no such rules for physicians.
Moreover, in the nurse staff problem, one has to maximize their individual satis-
faction and minimize the cost of salaries, whereas in the physician staff problem,
one only cares about the maximization of their individual satisfaction. Despite
these differences between nurse and physician problems, their mathematical for-
mulation are not quite different. Indeed, according to Gendreau et al. [26], a pure
mathematical approach given by Berrada et al. in [5, 4, 34] for the nurse schedul-
ing problem can successfully be applied to the physician scheduling problem.

The physician scheduling problem can be described as the preparation of
a rostering for physicians for a given planning period, such that every shift of
every day must be assigned to exactly one physician. To achieve this goal, we
have to deal with some rules that are divided into two categories : compulsory (or

Physician Scheduling in Emergency Rooms 3



hard) rules and flexible (or soft) ones. These rules are often in conflict with one
another, therefore some of them have to be violated in order to have a complete
schedule for all physicians. Carter and Lapierre [11] note in their investigation
that some flexible rules in some hospitals might be compulsory in others and vice
versa. This classification depends in general on the preferences of the hospital
and on the physicians’ flexibility.

The set of shifts that must be covered is specified for each day of the week.
In many situations, the weekend shifts are quite different from week days shifts.
In general, we have three kinds of shifts: days , evenings, and nights. A week
usually begins on Monday, by the first day shift and ends Sunday with the last
night shift. The planning period can be quite long (up to 6 month) or fairly
short (between 2 and 4 weeks). The physicians who work in emergency rooms
are divided into two categories: full-time doctors and part-time doctors. A full-
time doctor works an average of 28 hours per week, part-time physician works
on average between 8 and 16 hours.

The physician scheduling problem can be summarized as follows: given a set
of doctors, a set of shifts and a planning period, one seeks to find fair schedules
for all physicians in order to maximize their individual satisfaction.

As we have mentioned above, this problem has not received very much at-
tention. There are, however, some software packages that have been used suc-
cessfully in this context [11]:

– Tangier Emergency Physician Scheduling Software, by Peake Software labo-
ratories [30];

– Epsked, by ByteBloc Medical Software [9];
– Docs for Windows, by Acme Express [1];
– Physician Scheduler 4.0, by Sana-Med.

These software packages have been sold to emergency departements in thousands
of copies, but the research community did not benefit from the fundamental work
that led to these products. The only academic works that we are aware of are
some works on cyclic rostering [8, 21] and some on acyclic rostering [2, 3, 8, 10, 11,
14, 26, 31]. The solution methods developed in these references will be examined
more closely in Section 4.

3 Physician Scheduling Problem Constraints

In this section, we propose generic forms for the constraints encountered in the
five case studies mentioned in the introduction. As we have already mentioned,
in the physician scheduling problem, we have to find a roster for every physician
such that a large number of constraints are satisfied. Some constraints are applied
for every physician and others only for some physicians. There are two types of
constraints: hard and soft. A constraint is called hard if it must be satisfied; it is
called soft if it can be violated. In this study, we have classified the constraints
of the physician scheduling problem into four categories:

1. Supply and Demand Constraints

4 M. Gendreau et al.



2. Workload Constraints
3. Fairness Constraints
4. Ergonomic Constraints

The first category of constraints deals with the availabilities of the physicians
and the requirements of the emergency rooms that must be opened every day and
24 hours a day. The second category deals with the workload (number of hours
or number of shifts) that is assigned to physicians during a week, a given period
or the whole planning period. The third category controls the distribution of
different kinds of shifts during the whole planning period. The fourth category
of constraints covers various rules ensuring a certain level of quality for the
schedules produced.

3.1 Supply and Demand Constraints

Two kinds of constraints are encountered in all physician scheduling problems.
First, a sufficient number and variety of shifts must be staffed throughout the
scheduling horizon in order to guarantee minimum coverage. Second, a given
physician, according to his seniority, full/part time status, outside responsibili-
ties, and planned vacations, is not available at all times.

Constraint 1 (Demand) During the overvall planning period, every shift must
be performed by exactly one physician.

Whereas in other contexts such as nurse scheduling, the number of staff members
covering a shift must lie in a certain interval, for physician scheduling this number
is almost always exactly one. This constraint is considered a hard constraint
and it is encountered in all the hospitals listed in the Introduction. Carter and
Lapierre[11] identify three variants of this situation, but we restrict our attention
here to the two main ones.

1. Uniform case: the required number of physicians is the same for every day
in a week, i.e., we have the same number of shifts for every weekday, even
for Saturday and Sunday.

2. Non-uniform case: the required number of physicians is the same for ev-
ery weekday expect for Saturday and Sunday. In this case, the number of
physicians required on Saturday is the same as on Sunday.

Constraint 2 (Availability) During the planning period, all the requests of
every physician should be satisfied. There are four types of requests:

1. Preassignments,
2. Forbidden assignments,
3. Vacations,
4. Preferences or aversions.

Each one of these types of requests is considered a hard constraint except for
the last one, which is a soft version of the first two. That last type occurs for
example in the context of religious practices at JGH: some physicians want to
be off for the evening and the night shifts on Friday [8].

Physician Scheduling in Emergency Rooms 5



3.2 Workload Constraints

This category of constraints deals with the workload (number of hours or number
of shifts) that is assigned to physicians during a week, a month or the whole
planning period.

Constraint 3 (Limits on workload) During a given period, a physician should
be assigned an amount of work that lies within a specified interval.

Example 1. In the SaCH case study, a physician who is supposed to work 28
hours a week could accept to work up to 32 hours.

Example 2. At JGH, at most four shifts are assigned to a physician on any given
week.

This constraint is common to all the hospitals we considered. It is often speci-
fied over disjoint subsets of the planning period, either because of the terms of
a contract or to encourage a uniform workload. Sometimes a target workload
with the interval may be given: it can be viewed as a soft constraint. Another
constraint encouraging uniform workloads is the following.

Constraint 4 (Limits on the number of shifts of the same type) During
a given period (e.g., a month), the number of shifts of the same type that are
assigned to a physician cannot exceed a certain value.

Example 3. At SacH, no physician should work more than three night shifts in
a four-week period.

3.3 Fairness Constraints

This category of constraints ensures the fair distribution of different types of
shifts among physicians with the same experience.

Constraint 5 (Distribution of Types of Shifts) During the planning period,
shifts of the same type (e.g., evening, night, weekend) should be distributed fairly
among physicians with the same level of experience.

Example 4. At SaCH, all physicians with more than four years of experience
have to work the same number of night shifts during the planning period of six
months.

Example 5. Again at SaCH, physicians should not work more than five weekend
shifts in a four-week period. In this hospital, a working weekend can include up
to three shifts.

6 M. Gendreau et al.



3.4 Ergonomic Constraints

This is the largest and the most heterogeneous category of constraints. Various
rules ensure a certain level of quality for the schedules produced and may be
specified either globally for the staff or only for certain individuals. In his work
on ergonomics, Knauth [20, 19] has shown the impact of work schedules on the
circadian rhythm of workers. He proposed several rules, which we summarize
below:

– minimizing permanent night shifts;
– reducing the number of successive night shifts to a maximum of two or three;
– avoiding short intervals of time off (less than 11 hours) between two consec-

utive shifts;
– shift systems including work on weekends should provide some free weekends

with at least two consecutive days off;
– long work sequences followed by four to seven days of mini-vacations should

be avoided;
– forward rotations (day shifts followed by evening shifts followed by night

shifts) are preferred;
– individual schedules with few changes over time are preferred;
– shift lengths should be adjusted according to task intensity;
– shorter night shifts should be considered;
– a very early start time for the morning shift should be avoided;
– preference should be given to flexible working time arrangements among

workers.

The constraints below address some of these ergonomic concerns.

Constraint 6 (Length of work sequences) The number of identical shifts
(or of shifts of the same type) in a sequence of consecutive days must lie within
a given interval.

Example 6. In the work of Carter and Lapierre [11], there must be at least two
and at most four consecutive identical shifts.

Example 7. At SaCH, the interval is [1, 4] for shifts in general.

Example 8. In each of the hospitals studied, the number of consecutive night
shifts lies between one and three.

Example 9. AT SaCH, a physician requires at least 14 days between two night
shifts belonging to different work sequences. This can be recast as a constraint
on the length of sequences of non-night shifts.

Constraint 7 (Patterns of Shifts) Over a given number of consecutive days,
a set of patterns of shifts describes what a physician is allowed to do or not to
do.

Physician Scheduling in Emergency Rooms 7



Example 10. There must be a minimum number of hours of rest between two
consecutive shifts. Consequently, certain patterns of shifts over two consecutive
days are forbidden.

Example 11. At SaCH, a set of restrictive patterns govern weekend work. For
instance, a physician working the 8 AM regular shift on Saturday must also cover
the 10 AM trauma shift on Sunday; working the 4 PM regular shift on Friday
requires working the 4 PM trauma shift on Saturday and the 4 PM regular shift
on Sunday as well.

Example 12. A physician should work at most one night shift in every sequence
of three consecutive work shifts.

Example 13. A physician should not work a non-homogeneous sequence of four
consecutive work shifts.

Constraint 8 (Patterns of Sequences of Shifts) This is similar to the pre-
vious constraint, except that patterns are expressed not over a fixed number of
consecutive days, but rather over a fixed number of sequences of consecutive work
shifts.

Example 14. At JGH, every two consecutive sequences of work shifts should
satisfy the forward rotation principle.

Constraint 9 (Patterns of Sequences of a Given Length) Patterns are ex-
pressed over both the type and the length of sequences.

This has the flavour of the previous constraint and of the first ergonomic con-
straint.

Example 15. After coming back from a vacation, no physician should work a
night shift for the first two days.

Example 16. At SaCH, there must at least three days off after a sequence of
three night shifts.

Table 1 presents a summary of these generic constraints.

4 Four Optimization Techniques for the Physician
Scheduling Problem

In this section, we present general descriptions of four solution techniques for
the physician scheduling problem. These methods are completely different from
one another, as we shall see later:

1. Mathematical programming
2. Column generation
3. Tabu search
4. Constraint programming

8 M. Gendreau et al.



Table 1. Generic constraints in the five hospitals studied

Constraints CNH CLH JGH SaCH SCH

Demand X X X X X
Availability X X X X X
Limits on workload X X X X X
Limits on shifts of the same type X X X X
Distribution of types of shifts X X X X X
Length of work sequences X X X X X
Pattern of shifts X X X X X
Pattern of sequences of shifts X X
Pattern of sequences of given length X

4.1 Mathematical Programming

Beaulieu et al. [3] have proposed a mixed 0-1 programming formulation of the
physician scheduling problem where the objective function is the sum of penalties
associated to some constraints, called deviation constraints. This formulation
was also used by Forget[14] in the context of Santa-Cabrini Hospital (SCH).
In these case studies, constraints are classified in three categories: ergonomic
constraints, distribution constraints and deviation constraints. After obtaining
the mathematical formulation of problem under study, Beaulieu et al. [3] first
considered using branch-and-bound on this formulation to find a solution, but
this approach had to be dropped, unfortunately, due to the huge dimension (large
number of variables and constraints) of some instances. The solution technique
that was applied is a heuristic approach based on a partial branch-and-bound,
instead of a complete branch-and-bound, which requires more computational
time. Moreover, branch-and-bound was not applied to the original formulation,
but to a modified one. Indeed, as mentioned by Beaulieu et al., it was quickly
realized that there was no feasible solution to the original formulation. This was
due to the presence of some ergonomic constraints that were conflicting and led
to an infeasible problem. The solution technique proposed by the authors is to
solve the model with a subset of constraints which contains all hard constraints
and some soft constraints that are not in conflict with each other. Afterwards,
they modified some of the soft constraints and introduced them one by one in
an iterative process, which can be summarized as follows [3]:

– Identify the rules that are violated in the current schedule.
– Add the corresponding constraints to the model.
– Use the branch-and-bound method to identify a new schedule, which hope-

fully improves over the previous one(e.g., satisfies more rules).

This process is repeated until the branch-and-bound cannot find any feasible
schedule.
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4.2 Column generation

The column generation technique [12, 25] is an exact method that relies on the de-
composition principles of mathematical programming; it is usually used to solve
large and complex problems, such as the cutting stock problem. This method was
successfully applied to solve the nurse scheduling problem and a software called
IRIS was produced [22]. In the column generation method, each new column is
generated by solving an auxiliary problem (or subproblem). For instance, in the
cutting stock problem, a knapsack problem is solved to find a new cutting pattern
for rolls. In the nurse scheduling problem, a new column is obtained by solving a
shortest path problem with ressource constraints on a directed graph [32]. The
ressources correspond to the following constraints:

– The constraint dealing with the workload of every nurse for a given period
(e.g., 2 weeks);

– The constraint that controls the vacation periods of every nurse;
– The constraint that deals with the succession of shifts of the same type;
– The constraint that is associated with the distribution of weekends.

The formulation of the master problem for the nurse scheduling problem includes
the hard constraint that gives the required number of nurses for every shift of
every day. Moreover, the objective function is given by the sum of penalty costs
associated with the contraints not explicitely taken into account in either the
auxiliary problem or the master problem.

This solution technique can be applied to the physician scheduling problem
after some minor modifications. First, one can use the same auxiliary problem
as for the nurse scheduling problem. Indeed, the constraints that define the
ressources are also present in the physician scheduling problem. Second, the
constraint dealing with the requirements (number of nurses per shift), which is
used in the master problem for the nurse scheduling problem, is also present
in the physician scheduling problem (one physician for every shift). One then
simply has to modify the formulation of the objective function and define in it
penalty costs for the remainder of the constraints that one wishes to consider.

4.3 Tabu Search

Tabu search is one of the most effective solution techniques for solving hard com-
binatorial problems. Originally proposed by Glover [18], it has been succesfully
applied to a wide variety of application contexts, such as vehicle routing [16],
machine scheduling [28], maximum clique problem [17], quadratic assignement
problem [27, 29]. This method has also been applied to the nurse scheduling
problem[7, 13], as well as the physician scheduling problem. In the case of physi-
cian staff, the solution technique was used to generate two kinds of schedules:
cyclic schedules [21] and acyclic schedules [8].

Generally speaking, tabu search is a local search (LS) technique, i.e., an itera-
tive search procedure that, starting from an initial feasible solution, progressively
improves it by applying a series of local modifications. The key ingredient of any
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LS technique is the set of modifications (or moves) that it considers: the richer
this set, the better the solutions that one can expect to obtain, but also the slower
the method. While classical LS methods stop when they encounter a local opti-
mum w.r.t. to the modifications they allow, tabu search continues moving to the
best non-improving solution it can find. Cycling is prevented through the use
of short-term memory structures called tabu lists (see [15] for a comprehensive
introduction to the topic).

Buzon’s tabu search method for acyclic schedules [8] is in fact an extension
and a generalization of previous work by Labbé [21]. In this approach, a solution
S corresponds to a set of schedules: one for each physician. The solutions exam-
ined by the search have the property that they satisfy the demand constraints,
i.e., all shifts are covered, but other constraints may be violated. The cost c(S) of
solution S is the sum of the costs of all schedules in S. If there are n physicians,
then the cost of a solution S is

∑n
p=1 cost(Schedulep), where cost(Schedulep)

is the cost of the schedule for physician p. The cost of a physician schedule is
also the sum of all penalties that are associated with the unsatisfied constraints.
There is exactly one penalty for each constraint. For example, suppose that
physician p wants to work only 2 unbroken weekends. If the schedule associated
with this physician in the current solution contains 3 unbroken weekends and 1
broken weekend, then the penalty associated with the weekend constraint would
be (3-2).PNBW + 1.PBW , where PNBW (respectively PBW ) is a certain value as-
sociated with one extra unbroken (respectively broken) weekend. Proper values
for these penalty weights are not easy to determine; unfortunately, the quality
of the solution that one can expect to find is quite sensitive to them [8].

Buzon’s method considers several different types of modifications to solu-
tions (neighborhoods) of increasing complexity. The simplest one involves sim-
ply re-assigning a shift on one day to a physician currently off on that day.
More complex neighborhoods involve swapping portions of schedules between
two physicians. See [8]for further details.

4.4 Constraint programming

Constraint programming is a solution technique that is more and more applied
to various optimization and combinatorial problems. Its application to complex
problems like work schedules [24] is possible for each problem in which the set of
values (domain) of every variable is finite. The domain of each variable is saved
and updated during the progression of calculations by using the constraints
that involve this variable and others whose domain has been modified. These
constraints take part in the elimination of all the inconsistent values of a variable
from its domain; this is done by using some techniques called filtering algorithms.
This means that all infeasible solutions are removed and only feasible solutions
are effectively considered.

This method was applied for the physician scheduling problem by Cangini [10],
Rousseau et al. [26], Trilling [31] and Bourdais et al. [6]. The work of Rousseau
et al. [26] is about using constraint programming to define a general algorithm
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that takes into account two types of generic constraints: pattern and distribu-
tion constraints. We will not give more details about this general method, the
interested reader is referred to [26].

This algorithm was successfully applied to two hospitals: SCH and CNH. The
physician scheduling problem that is solved in [26] is formulated as follows:

Minimize f(W )

subject to Wds ∈ Ads

Distribution constraints
Pattern constraints

The set Ads contains the physicians who can work shift s of day d. The variable
Wds represents the physician who will be on duty on shift s of day d. As for the
methods presented earlier in this section, the formulation of objective function
f is the most difficult part of the solution scheme. In this case, f(W ) represents
the “cost” associated to the schedules that are generated for all physicians (one
schedule for each physician). The cost of the schedule for a given physician p is
the sum of the penalties associated with each constraint.

5 Conclusion

The physician scheduling problem is a challenging one. While we have proposed a
series of generic constraints to describe it, it must be understood that the specific
constraints that are in force in any given case study may vary wildly. This makes
it difficult to come up with solution methods that can be used in a wide range
of practical settings. It also greatly complicates the task of coming up with
fair comparisons of different methods, since they may have been developed for
settings that are quite different in nature. We have indeed attempted to compare
the four approaches described in the previous section and found out that just
creating a set of benchmark instances that would allow such a comparison was
in itself a very challenging task. We hope to be able to report on this comparison
at a later date.
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Abstract. As an academic in the School of Computer Science at Queen’s 
University, a visiting researcher to the Automated Scheduling, Opimisation and 
Planning (ASAP) group within the School of Computer Science and IT at the 
University of Nottingham and Managing Director of eventMAP Limited, a 
university technological spin out company, the author is in a unique position to 
provide comments on both the practice and theory of timetabling (automated 
and otherwise) within the university sector.  The study of the relationship and 
interaction between the work carried out in the academic literature and the 
requirements of university administrators is essential if ideas generated by 
research are to benefit every day users. Conversely, it is crucial the needs of the 
timetabling community influence the direction taken by research if high quality 
practical solutions are to be produced. A main objective of the work presented 
here is to provide up-to-date information which will enable researchers to 
further investigate the area of  timetabling research in relation to the generation 
of robust and flexible techniques which can cope with complexities experienced 
during implementation in ‘real world’ scenarios.  Furthermore, although not 
discussed here in detail, it is essential, from a commercial perspective, that 
these developed leading edge techniques are incorporated and used within 
general applicable timetabling tools.  The aim of this paper is to motivate the 
discussion required to bridge this timetabling gap by bringing timetabling 
research and educational requirements closer together. 

1 Introduction and Context 

EventMAP Limited was formed in 2002 to exploit the commercial potential of the 
educational timetabling research carried out by the Automated Scheduling, 
Optimisation and Planning (ASAP) group at the University of Nottingham and the 
Knowledge and Data Engineering (KDE) Group within the School of Computer 
Science at the Queen’s University of Belfast.  The Company is based in Belfast within 
the Institute of Electronics, Communications and Information Technology (ECIT) at 
Queen’s University. The Institute, which officially opened in May 2005, represents a 
new £40M world class centre with a unique focus on blue skies, strategic and 
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industrial research projects.  The Centre brings together internationally renowned 
research groups specializing in key areas of advanced IT, digital and communications 
technology. A key feature of the Centre’s overall remit is the “spinning out” of 
industrial based companies exploiting advancements made in research. 

The decision to form a company followed identification of the market need for a 
high quality research led software solution to the scheduling difficulties experienced 
within the educational sector. The focus of eventMAP Limited is to develop, market 
and sell examination, course scheduling and space management and planning 
software into the worldwide higher and further education sector.  The preface to the 
Selected Papers Volume from the Gent PATAT conference [6] stated that “The goal 
of developing interactive and adaptive systems that build on human expertise and at 
the same time provide the computational power to reach high-quality solutions 
continues to be one of the key challenges that currently faces the timetabling research 
community” This goal is very much shared by eventMAP Limited whose approach is 
to incorporate knowledge of the extreme complexity of timetabling problems with 
commercial skills and practical experience with the overall aim of developing and 
building upon the most recent research in Artificial Intelligence and Operational 
Research technologies.  

The Company aims to develop and implement new practical methodologies and 
associated algorithmic techniques to enhance the solution of educational timetabling 
problems across a wide range of real world scenarios. At this early stage of the 
company’s existence, consultancy has been provided and systems implemented in 
Europe, Australia, New Zealand and America.  The fact that work has taken place on 
a global scale at such an early stage in the company’s history is both promising and 
challenging from a company growth point of view. 

In the recent international review of Operational Research in the UK 
(commissioned by the Engineering and Physical Sciences Research Council), a major 
identified weakness in the current approach to Operational Research is described as 
follows, “a gap still remains between the output of a successful research project and 
what is needed for direct use by industry” [1]. In general, the area of educational 
timetabling is one such area. The Company has an important role to play with respect 
to this ‘gap’ as it is in a unique position to integrate leading edge research techniques 
with the requirements of the user base in the provision of timetabling solutions. One 
of the primary overall aims of current efforts within the Company is to implement 
software which acts as an enterprise recourse planning tool as well as a management 
information service, informing on strategic ways forward for the need for, use of and 
allocation of resources within an institution.   A major aspect of the adopted strategy 
for achieving this is to highlight the important aspects of institutional requirements to 
researchers in the field while continually updating algorithmic techniques within the 
software, thus enabling solutions to be produced which are both workable and of a 
high quality.  The intention of this paper is to focus on the initial part of the strategy 
by reporting on the needs of educational institutions from a practical point of view in 
terms of two of the main areas which the company is involved with i.e. examination 
and course timetabling. In each area, a number of challenges are detailed which are 
based on experience of working in the area from both an academic and practical view 
point. It is stressed that these challenges certainly do not represent all of the issues 
that require work from researchers, rather they represent a selection of key themes 
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which will help bridge the gap and move the area of educational timetabling to a new 
level both in research and practical terms. 

2 Examination Timetabling 

The examination timetabling problem, studied in numerous papers in the PATAT 
conference series [2,4,5,6,7], is characterized by a set of students taking a set of 
exams over a specified time period within the context of various constraints. The 
quality of the timetable is normally measured as a function of best spread of 
examinations per student though some notable exceptions do occur [8,9]. Various 
algorithms have been used with their effectiveness being measured in relation to a 
standard set of benchmark data. An up-to-date review is provided in [10]. In addition 
to the PATAT Conference series, many papers have been published on specific 
techniques along with reporting of various surveys [11,12]. It is worth noting that 
research in this area has been instrumental in the continued development of the field 
of search methodologies and, in particular, metaheuristics. Although it is not intended 
to provide a general commentary on the approaches adopted to date it is possible to 
argue that the nature of the gap between research and practice has not been aided by 
the simplicity of the current datasets e.g. the lack of substantial bench mark data with 
sufficient room, constraint and solution modelling data. It is expected that the release 
of six new datasets [13] along with a dedicated web service to the research 
community via the web site at http://www.cs.nott.ac.uk/~rxq/data.htm will go a long 
way to remedying this situation.  This service will also act as a repository of 
information relating to techniques and solutions generated and will enable researchers 
to easily and accurately test and compare approaches. 

From a Company perspective, the latest version of it’s flagship examination 
product, Optimexam, was released in January of this year.  An earlier version of the 
software was presented at the PATAT conference in Konstanz, 2000 [2].  The 
additional functionality made available through this new version will be discussed at 
the conference during a software presentation [14]. In general, the aim of improving 
Optimexam is to make the system as intelligent and intuitive as possible, providing 
maximum information to the institutional administrator, allowing informed strategic 
and managerial decisions to be made.  This has been achieved through the inclusion 
of the user in all stages of the ‘examination modelling’ process. It is important to note 
that although not described in detail here, the ‘gap’ between the needs of the user and 
the provision of software is also being tackled within the company by the 
development of a close working relationship with users. Feedback from this process 
which is relevant to researchers includes modelling aspects of the information, 
algorithmic and solution development, all of which represent significant challenges 
for the research community. The following discussion is concentrated around this 
reported examination modelling process. 

2.1 Building the Institutional Model 
The development of examination timetables within institutions is a multi phase 
procedure that is dependent on varying criteria at each stage. Firstly, a structure has to 
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be decided on before exams and students are assigned e.g. the length and format of 
the time period together with the ‘diet’ of rooms which are to be made available.  
Secondly, data on exams and associated constraints have to be added before the 
student information is considered. The stage and degree of automation is highly 
dependent on the procedures adopted within the institution.  This multi-stage process 
is referred to here as building the ‘institutional model’.  This process encompasses 
two main aspects i.e. information and solution modelling. 

 2.1.1 Information Modelling 
Information modelling can be divided into data and constraint modelling. The base 
examination data from which a workable solution is achieved is composed of student 
enrolment, exam and space data. In addition, the construction of an overall solution is 
phased due to the information environment within which the examination process 
takes place.  In practice, a solution is often attained based on a percentage of the 
actual data due to incomplete and inaccurate data from the student administration 
systems.  Ultimately the algorithms applied must therefore construct solutions 
working with a degree of uncertainty.   The inadequacies of the data set up therefore 
represent the first challenge to the timetabling community. It is suggested that there 
are two possible approaches to solving this problem i.e. either solutions are sought 
with associated repair mechanisms or robust optimisation techniques are used which 
produce solutions that are ‘good’ for an agreed range of input values.  Under this 
scenario, a solution would be sought that remains feasible for all potential input data 
values. Although some work is evident in the literature in relation to the first of these 
approach in relation to educational timetabling [15, 16], little attention has been paid 
to the second. 

Constraint modelling involves setting up a range of criteria which effectively 
describes the boundaries within which a solution should be constructed.  Constraints 
used in institutions have been reported in 1996 [17].  Since then, in the UK in 
particular, there has been a steady increase in complexity regarding this issue with the 
implementation of increasingly flexible modular course structures by many 
universities. The central production and coordination of the associated examination 
timetable has become increasingly difficult with more examination offerings having 
to be timetabled in such a manner so as to offer students maximum spread throughout 
the session while ensuring space usage is maximised. In addition, many new 
constraints have been added to the overall problem to accommodate all types of 
special needs of students. An example of this was reported in the Times Higher in 
March of 2006 where students from a Muslim background require Fridays free of 
examinations [18]. This and other additional soft constraints further complicate the 
modelling process and the scope of potential solutions. It is essential these are 
documented and incorporated into the modeling process as, for example, at our 
leading implementation site, 9% of students in the 2004/05 academic year had special 
needs with regards to their examination requirements.  The second challenge is 
therefore to redefine the problem in terms of recent identified changes. This can be 
achieved by getting access and reporting on practical examples of constraints and the 
processes involved. The PATAT conference series and the close link with eventMAP 
limited is of particular relevance here as practical issues as well as datasets can be 
added to the research base on a continual basis. Another important aspect of 
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constraint modelling is the structure of the examination session i.e. session modelling.  
Two features of this are detailed below. 

In establishing an institutional model for the examination process, one of the 
major issues for many institutions is the potential relaxing of a constraint which has 
hitherto been considered ‘hard’ i.e. the imposing of certain time periods within the 
day structure. For example, a day may be split into two periods of three hours in 
length, one beginning at 9am and the other beginning at 2pm. Analysis of various 
solutions produced by eventMAP has shown that this is the single biggest factor in 
relation to poor usage of time and space and hence a major contributory factor to poor 
overall solutions. This is chosen here as it is an excellent example of a hard constraint 
which needs to be changes to move the examination timetabling forward from a 
practical point of view.  Before leaving the established ‘period based’ approach to one 
side, it is essential to understand the required needs and the extent of ‘non period’ 
based timetabling.  The period based nature of the problem needs to be investigated to 
establish a model where examinations can be scheduled during any part of the defined 
day.  This issue is related to recent work with respect to a redefinition of the nurse 
scheduling problem [49] where metaheuristic techniques which have been used to 
manage this time interval coverage have produced the best results so far on the 
presented data. Due to the similarity of the nurse rostering and examination 
timetabling problems it is considered appropriate that these techniques are 
investigated. The concept of ‘time interval’ was introduced, where instead of 
formulating the staff requirements as the number of personnel needed per shift type 
for each day of the planning period, time interval requirements allowed for the 
representation of the personnel requirements per day in terms of start and end times of 
personnel attendance. As with the nurse scheduling example, an updated formulation 
would enable the provision of a greater number of time slots and would reduce the 
amount of unproductive time currently in existence.  

It is clear that institutions involved in the process of carrying out the initial stage 
of the institutional modelling process often do so blindly.  That is to say, they base the 
timetable on new data but attempt to superimpose this on existing models of how the 
examination sessions should progress.  For example, an existing model for a 
particular institution may be a certain number of periods over a designated time 
period with a certain number of rooms. This, in part at least, is related to inadequate 
methods which allow users to understand how solutions are being created. For 
example, space considerations are often an afterthought with the primary aim being 
the actual creation of a timetable. No help is afforded to the users in directing them 
towards a solution which is ‘right’ for the Institution. Before going on to the 
important issue of solution modelling in the next session it is important to note that 
the investigation of similarity of data to previous datasets from the same or indeed 
other institutions is important if efficient and effective models are to be found. 
Continuing on from recent work [21,22] on similarity measurements between 
datasets, novel techniques need to be investigated to establish how changes in 
individual data sets from year to year effect the nature of the examination set up and 
ultimately the algorithmic methods applied. 
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2.1.2 Solution Modelling 
Solution modelling is concerned with the construction of a solution in terms of what 
is deemed important to the institution. Currently, the majority of the work in 
evaluating a solution is based on the production of a single solution from each 
execution of the algorithm whose value is measured by a single objective weighted 
sum of soft constraints.  There are some exceptions though, for example, in paper [9], 
the quality of a constructed timetable is considered in terms of the average penalty per 
student and the highest penalty imposed on any one student. Although research has 
been carried out in modelling the problem as a multi-criteria/objective problem [54, 
55] this work has not yet been implemented into a generalised tool.  The 
responsibility is currently on the user to model the problem accurately at the 
constraint modelling phase and subsequently ‘leave’ it to the algorithm to produce the 
‘best solution’.  This has the effect of the user feeling ‘frozen’ out of the solution 
construction phase and gives the impression that this is the best solution based on the 
constraint set up process.  Of course, this is not the case with many solutions being 
possible which ‘best’ fit the constraints set up. Paquete et al [19] carried out work in 
which individual constraints were given preference at various stages of the process.  
This is similar to how the process of solution construction is carried out in a number 
of institutions with, for example, the effectiveness of a solution being measured as the 
‘number of students with two examinations in a day’.  It is clear that the user requires 
a number of solutions to be presented with the differences explained intuitively, thus 
allowing the user to decide on what solution is the ‘best’ to meet the institutions 
needs.  It is suggested here that this could be achieved by a combination of techniques 
incorporating pareto optimization and fuzzy techniques e.g. the user chooses the 
characteristics of the solutions they would like to see from a number of fuzzy sets.  
This could possibly be translated into a choice function for discriminating between 
the non dominated pareto solutions generated by a multi objective algorithmic 
technique.  It is stressed that this is only one possible approach which could be used to 
address this important issue. More work is required on how the quality of solutions 
are measured. The challenge for researchers is the provision of a solution where the 
user understands the trade offs between the original objectives. 

Once a solution is being generated, it is normal to have a construction phase 
followed be an improvement phase. In both cases there have been many heuristic 
techniques applied (see [11]).  Recent work has shown promise in relation to using a 
combination of heuristics in relation to the initial construction [20].  Results on the 
benchmark datasets have got increasingly better over the years as more and more 
metaheuristic techniques have been applied and domain specific knowledge has been 
increasingly incorporated into the approaches [10, 1l]. One criticism of this approach 
is that the developed techniques have become specialised in relation to the benchmark 
datasets at the possible cost of generality i.e. techniques which can produce ‘good’ 
results when applied across a wide range of other real world scenarios. Recently, in 
terms of metaheuristics, it has been shown that changing the neighborhood structure 
has been effective.  It is felt that Hyperheuristics approach (heuristics to choose 
heuristics) [56] undoubtedly offers promise as this methodology is based on raising 
the level of generality by aiming to automatically apply the correct heuristic or 
metaheuristic at the correct stage of the problem be that in the construction or indeed 
the improvement phase. Currently, Optime enables the timetabling algorithm to be 
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varied depending on the user algorithmic modelling process. These observations are 
the result of a close working relationship with five principal users in the UK and they 
currently represent the basis of further research [13].  Currently the combinations of 
algorithmic structures available are Saturation degree (Heuristic Method) [25], 
Adaptive [26] and Great Deluge during an additional improvement cycle [27]. The 
algorithm set up thus enables the user to have control over the time spent on various 
aspects of its operation. This is a first step in involving the user at a higher level of the 
algorithmic modelling of the problem and is in response to the observation that 
various algorithmic set ups perform better on different datasets.  It is important to 
understand why various metaheuristic and combination of metaheuristics work better 
in particular situations.  One challenge to the research community is therefore to 
explore how new search methodologies can underpin the development of more widely 
applicable timetabling systems. Indeed this is one of the main motivating factors for 
the current level of interest in hyperheuristic research [74].  

3 Course timetabling 

The University course scheduling problem is concerned with groups or classes of 
students following a particular defined pathway or course which has associated events 
that require the allocation of time and resources. Recent definitions of the course 
timetabling problem can be found in [12,29]. As with the university examination 
problem, a solution requires a number of hard and soft constraints to be satisfied.  
Similarly, the central production and coordination of the course timetable is essential 
as more modules and associated events have to be timetabled in such a manner as to, 
firstly, offer students maximum flexibility of choice, secondly, to provide flexibility 
for staff and, thirdly, to ensure that teaching space is used effectively. Universities, 
struggling with rising student numbers, have increasingly relied upon the automation 
of this task to produce efficient timetables which satisfy these constraints [11]. Much 
of the software assistance that is currently available is either a commercial product or 
has been designed specifically for the institution in which it was developed 
[30,31,32]. In both cases the timetabling process often involves significant human 
interaction which, in practice, can turn the process into a room booking exercise 
[33,34]. Therefore, the construction of a solution is often categorised by finding any 
timetable that satisfies all of the constraints [12]. From a software point of view, any 
solution is often seen as a good solution and, indeed, the notion of an ‘optimised 
solution’ is usually not a main objective of incumbent university administrators.  The 
reasons for this are diverse and complicated. One issue is that as too much assumed 
and incomplete knowledge surround the entire process and their exists many staff, 
with differing view points involved.  The data required for the process is often 
difficult to obtain and, as with the examination process, it is often ‘sketchy’ [45,64].  
From a staff point of view, fixed views exist on when and where teaching should take 
place within a predominantly ‘territorialism’ culture [34]. These issues will be further 
explored in the remainder of the paper with challenges presented as to how this area 
can be moved forward from a research point of view.  It is important to note that, 
within the majority of universities which use automated systems, the process of the 
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production of a workable timetable remains firmly with a combination of lecturing 
and administrative staff rather than the sole use of the automated component. Recent 
years have seen significant research efforts to improve this situation.  The following 
papers represent a small selection of these contributions [16,29,31,33,34,35,41,42,45].  
Carter [42] stressed the importance of taking into consideration and dealing with the 
human factors associated with the process of constructing an institutional wide 
timetable. However, when dealing with the issue of course timetabling, it is often the 
case that many of the papers ignore the human factors all together, choosing to deal 
with ‘sculpted’ data sets in order to evaluate particular techniques and approaches. 
Some real world aspects have been discussed in the literature but these tend to be in 
conference abstracts (as a small selection, see [40,63,64,66,67]) rather than full 
papers. If one of the strategic goals of timetabling research over the next few years is 
to close the gap between theory and practice then these issues have to gain more 
prominence in the mainstream literature. 

Although many advancements have been made with respect to the development of 
search techniques on bench mark data sets [29,36,41,57,58], there is not much 
evidence that the work has been translated into actual implementations within a 
significant number of institutions. Indeed Carter and Laporte [31] comment that they 
were “somewhat surprised to discover that there are very few course timetabling 
papers that actually report that the (research) methods have been implemented and 
used in an institution”.  Although this was reported almost a decade ago, the situation 
largely remains unchanged. They go on to say that they expected to see a number of 
implementations in the near future.  Once again unfortunately this has largely not 
been the case. 

In relation to this area in general, it is suggested here that, there has been 
insufficient investigation of real world issues and therefore understanding of the 
methodologies used by expert timetablers. More work needs to be carried out on the 
formulation and modeling of the problem. This latter issue is particularly challenging 
because different institutions must satisfy a range of different constraints in 
generating an institution-wide timetable [35, 31] which means that a generally 
applicable solution to this complex problem is extremely difficult.  Given the 
complexities of real world course scheduling, many researchers have developed 
approaches which rely on various simplifying assumptions in modelling the problem. 
While it can be argued that this is valid as an initial research test bed, which has 
resulted in useful and powerful search techniques, such an approach needs to be 
supplemented by methods which addresses the true complexities of the problem that 
must appear in real world applications. By way of illustrating this point,  recent work 
carried out on practical course timetabling by the Metahueuristic network [36] used 
generated datasets. It was stated that 

”The problem we are studying in the Metaheuristics project is one that is closely 
based on real world problems, but simplified. We are not entirely happy about using a 
simplified problem, but the reasons are two-fold:   We want to be able to see more 
clearly what is going on in algorithms designed to solve the problem. Real data is too 
complicated, and real problems have too many soft and hard constraints to allow 
researchers to properly study the processes and; The large number of soft and hard 
constraints in real data (and the differences between them at different institutions) 
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make it a long process for researchers to write code to solve them, or to adapt 
existing programs to be suitable.”   

Although this has been useful, from a practical point of view, the results obtained 
do not seem relevant in practice. In addition, the impression is often that benchmark 
course timetabling datasets [36,57] are seen as data which can be used in addition to 
examination data sets to prove that certain search techniques are of benefit. Although 
successful in this regard the gap between research techniques and the software 
required for actual implementations is much wider than that seen with examination 
timetabling.  Whereas this paper has spent the opening sections detailing challenges 
which will help narrow the gap in relation to examination timetabling, the rest of the 
paper will concentrate on describing course scheduling from a practical point of view 
with the hope of identifying what is required if a relevant and comprehensive 
formulation of the problem is to be reached. It is felt that this view of the course 
timetabling problem will better serve the purpose of making timetabling research 
more relevant to real world practice. It is stressed that the contribution of timetabling 
research must address more wide ranging issues than the tuning of algorithms to work 
well on particular datasets. Rather, the modelling issues related to the complexity of 
real world implementations must be recognized and dealt with. The most realistic 
formulation of the problem which currently exists can be found at [24].  Further work 
is required to build on this to allow the full complexities of the problem to be 
explored and to narrow the current gap. With this aim in mind, it is essential that more 
comprehensive representative benchmark datasets are made available along with 
information on the aims of the associated institution.  

3.1 A Very Different Timetabling Problem 

University course timetabling is often reported in the literature as a variance of the 
related examination timetabling problem [12]. Indeed it is the author’s impression that 
many pieces of research default to talking about examination timetabling when they 
are talking about university timetabling in general. Although some of these issues are 
further described in subsequent sections of the paper it was felt worthwhile to draw 
out the major differences between the two types of timetabling at this early stage in 
the discussion. The reported difference is often the addition or removal of particular 
constraints e.g. more than one event cannot take place in the same room and lectures 
should be avoided in the last period of the day [41]. In addition, the term ‘best spread’ 
of events has an entirely different meaning.  

A major difference with the examination timetabling process is the environment 
in which the construction process is carried out.  This is a dynamic, multi-user 
distributed environment with various cohorts of schools and departments who often 
operate quite autonomously.  Although issues in relation to this have been studied, for 
example [64,69,70,71], much more work is required on understanding the issues 
involved and the interplay between user interaction and managing the information 
with the goal of producing a workable solution and the extent to which techniques can 
be used in an automated process. These issues will be discussed further at various 
places under the heading of ‘building the institutional model’. 
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Another difference that is often overlooked is, as with the examination problem, 
course timetabling does not take place at the module or course level.  The following 
presents a discussion on the effects of this. Consider the module ‘Introduction to 
Computer Science’ with associated module number 110CSC101.  The associated 
examination for the module will normally take place at the end of the semester in 
which the module is given and will be timetabled by the rules employed by the 
institutional examination officer which are generally those governing the body of 
research which has taken place over the last decade or so.  Therefore, in this case the 
‘gap’ which exists between what is required by the institution and the techniques 
researched from an academic sense, is small. The course timetabling issues with the 
module 110CSC101 are more complicated.  The module can be broken into a series of 
events which require timetabling e.g. lectures, seminars, tutorials, practical classes 
and laboratory classes.  A subset or indeed all of these ‘event types’ require 
timetabling in a manner which provide the group of students associated with the 
module, firstly, a feasible solution and secondly, a ‘good’ timetable.  A feasible 
solution is achieved by ensuring that individual students can attend all event types 
associated with each of the modules that constitute the overall pathway they are 
enrolled on e.g. year one of BSc in Computer Science.  Secondly a ‘good’ solution is 
one which satisfies the soft constraints as defined by the institution e.g. Lectures 
should be in the morning in a particular time or room.  It is clear that these soft 
constraints require a higher investigation as they can vary from one institution to 
another and indeed from one event type to another belonging to the same module. 
Furthermore, in setting up the problem, these events have different individual 
requirements, ordering and constraints.  The following section outlines some of the 
associated issues. 

The simplest example is that particular event types are usually associated with 
certain types of space e.g. a computer laboratory class must take place in a computer 
laboratory. Also, lecture events represent the entire group of students on the module 
whereas the other event types represent subgroups as students are divided into smaller 
groups for different types of study. This issue of event subdivision is further explored 
in the following section. From an ordering perspective, it is often the case that 
particular orders of events over a defined time period e.g. a week, are defined to 
achieve the desired combination of teaching and learning skills. It is also often the 
case that particular events are related to each other in relation to the time which 
separates them in this ordering e.g. seminar classes should be timetabled in the 
afternoon following the lecture activity. In addition there is an associated hierarchy 
with the event types e.g. lectures are timetabled as a priority in the first instance to 
ensure that the entire group can be brought together.  It is often the case that this 
situation means that lectures will be timetabled first with all other events timetabled 
after week one of the semester.  Of course, there are many variations of this related to 
when the timetable is produced in relation to student enrolment i.e. pre enrolment or 
indeed post enrolment. Event types may also have a particular life span associated 
with then throughout the semester. Whereas the lecture event may run in a particular 
format throughout the entire semester, other event types may begin and end in 
particular weeks.  In addition they may have an associated pattern which is individual 
to the event type e.g. lectures may run twice a week for 12 weeks whereas lab classes 
may begin in week three and run for a three hour afternoon slot every two weeks for 
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six weeks. Currently, research does not take these considerations when either defining 
the problem or applying techniques to help solve the problem.  This has been 
detrimental to the overall practical area and has meant researchers, in many cases, 
have been working on oversimplified problems. 

Course scheduling, much more the examination timetabling, must be seen in the 
wider context of the use and availability of institutional space either existing or in the 
planning stage.  This linkage allows measured and improved utilisation while 
identifying the needs for particular types of space across the Institution.  The 
Company aims to model how increases in course delivery, through effective 
timetabling, can affect the overall nature and structure of the campus.  Ultimately, this 
would allow for strategic decisions to be taken in relation to room types, sizes and 
quantities across all space types within the Institution.  The course timetabling system 
is therefore a fundamental part of the strategic computing systems within the 
institution. 

Another major difference with the examination timetabling problem is not only 
related to differences in the nature of the information and constraints but in the style 
in which the solution is constructed. Overwhelmingly in all consultancy and 
implementation undertaken to date within the Company, the timetable is constructed 
prior to student enrolment and therefore optimised on projected student numbers 
taking particular combinations of modules. In many cases the goal of optimisation is 
sacrificed for the sake of getting a solution which is workable.  Student clashing is 
related to defined course structures as opposed to the examination counterpart which 
is based purely on student enrolment to assessment events.  Regarding soft 
constraints, the emphasis is on the ability to offer as many options as possible as 
opposed to best spread across a particular examination session. Administrators 
employ heuristics that suggest what modules should be made available to particular 
courses and which ones should not.  Indeed, this information can often be inferred the 
from previous year’s data or obtained directly from members of particular schools. 
Because the timetable is constructed pre enrolment, inefficiencies occur which are 
allowed to ripple throughout the rest of the year. Based on the initial construction and 
space utilisation, potentially the problem could be is reshuffled or indeed amended 
based on a different measure of optimisation. This optioned is not presently favoured 
by institutions due to the disruption that would be caused. There are a number of 
reasons timetabling pre enrolment; if it were left entirely to student choice there is no 
guarantee that a feasible timetable could be constructed and secondly, more and more 
emphasis on opening access to universities dictates that students with busy lives need 
to know timetables before choosing optional parts of the course. Many universities 
used a phased approach which is a combination between pre and post enrolment.  
More work is required to understand the issues involved and where, what and how 
search techniques and indeed what measures of optimisation can be used. 

It is clear that the improvement of solutions will come about through the 
combination of high level heuristics and optimisation techniques. The research 
challenge is therefore identified as the requirement for detailed studies of how the 
aims, objectives and practicalities of timetabling within institutions interlink.  

University Timetabling: Bridging the Gap between Research and Practice 25



3.2  Building the Institutional Model 

As with examination timetabling, the timetable construction process can be broken 
down into a series of information and solution modelling. Even more so than with the 
examination problem, this process is complicated.  As stated, this is related to the 
number of interested parties and diversity of the data requirements. Attempts have 
been made to provide a general framework to aid this situation. For example, work 
has been carried out proposing a generic architecture for the production of a timetable 
by examining the full range of procedures and the associated characteristics [64]. Also 
in [65], a framework was presented allowing the researcher to combine many 
different solution methods in arbitrary ways in the solution of a single problem. Such 
contributions have provided an important platform upon which we can build. A more 
complete description to enable understanding of the specific needs of the modelling 
process is required.  The following impacts on a number of key issues. 

In the case of course timetabling, information modelling can be broken into data, 
constraint and course structure modelling with solution modelling being dominated by 
factors related to optimisation and evaluation.  Although it is an important issue, 
algorithmic modelling is not discussed here because the focus of this discussion in 
concerned with highlighting the high level challenges that need to be addressed if the 
gap between theory and practice is to be closed. In many respects, the key to 
narrowing this gap in relation to course scheduling is related to the modelling of the 
entire problem, thus identifying where and when in the process search techniques may 
be of use. 

3.2.1 Information Modelling 
In terms of information modeling, the main differences with examination timetabling 
is the much more incomplete nature of the data requirements [45,64] which are much 
more substantial. Data is required on events, course structures, the estate and the 
lectures / instructors availability and expertise.  From the author’s experience, it is 
evident that a combination of poorly implemented information strategies and 
reluctance of staff within the sector has led to a position where this information is 
difficult to obtain. This situation inevitably leads to significant changes in the 
timetable formulation at the beginning of the period in which it is required. Work has 
been carried out on ensuring a changed solution is close as possible to the initially 
modeled solution after changes in the original definition. For example see [45]. 

In many instances, expert timetablers have dealt with the initial construction by 
adopting a series of high level heuristics. For example some institutions use a 
centralised approach initially, timetable a percentage of the required events in a 
percentage of the available centrally ‘owned’ rooms thus allowing individual schools / 
departments to ‘fill in the blanks’ in the remaining rooms or indeed in departmentally 
‘owned’ rooms [34]. Many such high level heuristics are used within institutions 
during the construction process, little of which (to the author’s knowledge) have been 
reported in the literature. In general, these relate to space usage and decomposition 
within both the information and solution modelling process.  This emphasises the fact 
that an important challenge for the research community is therefore to review real 
applications of course scheduling techniques and software with the aim of identifying 
the major themes which will facilitate the construction of robust initial solutions. High 
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level heuristics need to be identified, analysed and modeled in terms of constraints 
and evaluation. In general these usually relate to student and staff preference and 
space usage.  

3.2.2 Course Structure Modelling 
Modelling the course structure is a difficult and important aspect of the information 
modelling process.  This aspect is completely unnecessary in the examination 
counterpart. Course timetabling raises a variety of issues relating to when staff / 
rooms are available and what events should be timetabled with which others. The 
later of these issues becomes more difficult when, as discussed earlier, it is dictated 
that a timetable must be ready before student enrolment. The research challenge is 
therefore in identifying easy intuitive ways of representing constraints. Attempts have 
been made to specify a standard timetabling data format that is complete and 
universally applicable [51,52,53,68]. This work needs to be extended and made more 
readily available to enable users to identify and model constraints thus allowing the 
interface between users and researchers to become better defined. 

Another important issue is the division of students attending a lecture into sub 
events such as tutorial classes. In examining this in detail a number of key issues are 
explored.  Consider the case involving the separation of students enrolled on a 
particular course into tutorial classes. Consider, also, a lecture event which has x 
students. If the preferred size of tutorials is y, then it is trivial to calculate that x/y 
tutorial slots are required. The interesting research issue considered here, however, is 
in what way to split the x students into groups while ensuring that maximum 
flexibility is introduced into the timetable i.e. what are the best combinations of 
students to be timetabled in which slots. In addition this must be done in a manner to 
allow room usage to be maximized while ensuring that students are allocated 
throughout the week with cognisance taken of their existing commitments on events 
related to other courses.  This is often done manually by allowing students to self-
select particular slots from a set of pre-established time slots. In the course 
timetabling literature, the majority of influential work on course sectioning 
(sometimes termed ‘splitting’) has concentrated on timetabling courses, where 
lectures, tutorials and laboratories etc. are not distinguished between each other [42, 
37,31,39,62].  Apart from a few notable exceptions [40], courses or groups of students 
are subdivided into groupings for the purpose of offering student choice as opposed to 
reflecting the structure of events which constitute the structure of the course.  The 
objective is normally related to balancing the size of the groups while offering 
students maximum choice, this enabling them to enroll on their choice of modules.  

Within the UK in particular, universities subdivide students in line with course 
structures. The main problem with this current definition of course splitting is that sub 
events do not inherit parental clashing constraints [59], apart from where a lecture 
event is subdivided. There are also some work dealing with students sectioning 
problems dated back to 80s [39, 43]. Once again, this work is different from what we 
are considering here, where students are divided into sub-groups as opposite to multi-
groups.  More recently, Fuzzy algorithms have been used [44] to cluster students in 
large classes into groups which may later lead to the fewest possible conflicts in 
timetables.  Beyrouthy et al [59] considered the problem of splitting in relation to 
space objectives by investigating splitting of courses of same type event into sub 
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events of that type for the purpose of fitting into particular room profiles. During the 
years little has been done on partitioning the students into actual sub events as 
dictated by the course structure.  In [40], meta-heuristics are proposed to address the 
Availability-based Laboratory/Tutorial Timetabling Problem (ALTP).  This offers a 
very promising platform for further exploration into the automatic constructing of 
timetables while providing a solution which assigns students to the ‘best’ timeslot 
based on a defined week range.  In should be noted that in doing so, it is important 
that the needs of all parties need to be addressed. This raises the interesting concept of 
how an attained solution should be measured. When producing a course timetable 
within an institution, it is important that the timetable produced is seen to be fair and 
equitable to all interested parties. The challenge to research is investigation of these 
and other information modelling issues. This will be further discussed in the next 
section. 

Another aspect of course structure modelling is related to the timetabling of 
associated events together. It is important to provide the ability to link particular 
events under the notion of course structure and schedule them as a ‘package’.  This 
concept is similar to kemp chains in examination timetabling [46].  This macro event 
scheduling process will allow the basic building blocks of the course timetabling 
problem to be sustained throughout the process. This approach has the advantage of 
reflecting organisational and course make up.    In addition it may be possible to 
decide which events / courses have similarities and can be linked together when 
timetabling based on individual of indeed groups of characteristics.  For example, 
pathways within a particular school could be timetabled together at the same time 
using the same departmental space.  This mimics the construction process already in 
existence within an institution where the overall timetable is broken into a number of 
sub units which are timetabled at a particular time by a particular person.  This 
subdivision or decomposition of the timetabling is a challenging research aspect 
which needs further investigation.  Macro events may be based on a combination of 
course structure and clusters. Academic timetable problems tend to show signs of 
clustering related to the organisational structure. For instance modules from a Math’s 
school will clash other modules from that school.  Further to that those modules will 
tend to clash with other science subjects such as physics and chemistry.  What is 
required is a way of splitting such problems into smaller sub-problems in such a way 
that any crossover between events in different sub-problems is kept to a minimum.  

3.3 Solution Modelling 

Within the context of developing and delivering an institutional wide timetable, it 
must be clear what the optimisation issues are and how they are to be measured. The 
measurement of optimisation itself is quite different from the measure needed for the 
examination problem.  There is sometimes a view in the research community that it is 
possible to define the course timetabling problem by simply altering the optimisation 
function used within the examination timetabling problem. However, this formulation 
does not define how institutions view the quality measure of a particular course 
timetabling solution.  Institutions are interested in a combination of room usage, staff 
and student satisfaction.  The first of these is measurable by multiplying occupancy 
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by frequency e.g. how many students use a room how often. The measurement of 
utilisation is an average of multiplication of occupancy and frequency over a set 40 
hour week. Staff satisfaction is measured by the extent to which teaching duties can 
be ‘bunched’ together leaving time for research and other activities. In many cases, 
academic staff members insist on the concept of a ‘research day’.  As a further 
advantage, it is often considered advantageous if undesirable hours can be identified 
and minimised per member of staff. This is termed here as the ‘share bad hours’ 
heuristic and is an example of a new soft constraint to be considered when optimising 
the construction and improvement of an institutional course timetable. Student 
satisfaction can be measured by the spread of events and the availability of choice 
within a particular course structure. As already mentioned, ‘best spread’ has quite a 
different meaning in this context. A number of other issues are relevant to the overall 
construction problem but not the optimisation problem e.g. staff satisfaction can 
further be measured by the ease at which information is gathered from them.   

As previously stated, in many cases optimisation is sacrificed for the sake of 
getting a solution which is workable e.g. the definition of a ‘good’ solution is driven 
by the need to have any solution based on a subset of the actual event types which are 
required [47].  This has the effect of meaning that a feasible solution is judged at an 
early stage in the construction process as opposed to answering the question as to 
whether or not the solution is actually workable e.g. can all additional events not 
timetabled be accommodated after student enrolment. When students arrive and 
populate the skeleton structure of the timetable, solutions to individual problems of 
over subscription are obtained through negotiation and compromise.  The overriding 
factor which makes the entire process workable is the fact that currently universities 
utilise on average about 30 percent of their space effectively [61,63].  One 
explanation for this is that space utilisation is low because of the inherent flexibility 
within the timetable i.e. staff and students have a lot of choice.  Unfortunately, this is 
not always the case as timetabling concerns rate highly in both student and staff 
surveys [38]. Further evidence of the inflexible nature of the course timetable is the 
fact that universities are not able to accommodate more students easily or indeed plan 
new or change existing course delivery.   The author’s view is very much like that of 
Carter [42] e.g. More work needs to be completed to understand the relationship 
between space usage, staff flexibility and student choice.  It is therefore essential that 
metrics are produced to measure the effectiveness of timetables from all perspectives. 

It is suggested that the optimisation function used to measure the quality of the 
problem solution must be constructed in such a manner as to take in the multi criteria 
associated with each area. Whereas, optimisation is relatively easily defined for 
examination scheduling, it is difficult to define for course scheduling.  From the 
author’s experience, it can be defined as a balance between keeping all the 
stakeholders happy e.g. student choice, staff flexibility and room usage. Therefore, to 
aid with the automation of the task, the construction and optimization of the solution 
must take into consideration three distinct areas as an absolute minimum.  In addition,  
in evaluating a given solution to the course timetabling problem within an institution, 
the users need to understand the situation in terms of the outcomes of individual 
constraints associated with all identified areas. The multi-objective approach has 
received significant recent [48,49,50] interest with respect to timetabling and, with 
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respect to course timetabling, will be able to better express and illustrate the features 
of a solution to a problem.   

4 Conclusion 

This paper outlines the major challenges which face those researchers working in the 
area of university exam and course timetabling.  While not trying to exhaustively 
referencing the literature, detail is provided of the relevant research in both areas.  
The challenges are presents from the perspective of the author’s experience and 
experience of working closely with the educational sector.  The intention is to 
stimulate debate in the literature by providing opinion based on practical 
implementations.  The aim is the improvement of techniques and hence software tools 
available to the sector to help with this most difficult and time consuming aspect of 
university administration. 

In relation to examination scheduling the identified challenges to researchers in 
the area include the following; 
 
 (i) New datasets becoming available on a regular basis encompassing more real 

world requirements.  

(ii) The development of robust techniques which are able to deal with the 
information poor environments within which examination timetables are often 
developed. 

(iii) Investigation of a reformulation of the problem, including new hard and soft 
constraints which better reflect the real world environment. 

(iv) Identification and comparison of key dataset characteristics and potential 
linkages with the likely best search approach to be taken. 

(v) The investigation of all aspects of solution quality in the provision of the ‘best’ 
solution for the institution. 

(vi) The exploration of new search technologies in establishing how developed 
systems can be made more general.  

(vii) Investigation of how to incorporate user interface design with the inherent 
complexity of the problem.  

(viii) Wide ranging Investigation of different neighbouhood structures and fitness 
landscape within the context of real world problem solving environments.  

 

In relation to course timetabling, the following research themes are highlighted; 
 

(i) Investigation of techniques to deal with the distributed, information poor  
environment in which course timetables are produced. 

(ii) Standardisation of datasets, constraints and modeling languages influenced by 
real world scenarios. 

(iii) Investigation of the role in user interaction in the design of decision support 
system for course timetabling.  
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(vi) Investigation of the need for the reformulation and modeling of the problem. It 
should be need that this represents a far greater challenge within the context of 
course timetabling than it does for examination timetabling. 

(v) Identification and adaptation of high level policies and practices that are 
employed by administrators within institution to construct of initial solutions. 

(vi) Experimentation related to heuristic approaches to subdivision of events. 

(vii) Investigation of the effect of pre and post enrolment production of the timetable 
on the approaches taken to optimisation e.g. penalty used. 

(viii) Undertake an investigation into the delivery of more sophisticated models 
which capture the complexity and multi-objective nature of timetable evaluation 
in the real world. 

(ix) Investigation of the important linkage between space usage and flexibility 
within the academic timetable. 

(x) Investigation of approaches involving decomposition and ‘macro event’ 
timetabling. 

 

In summary, this paper has outlined a number of significant research challenges 
which provide a rich area for research into automated search methodologies for 
educational timetabling. Moreover, by addressing these demanding research issues, 
the scientific community will be taking a step towards closing the gap between theory 
and practice which has existed for so long. 
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Abstract. We describe the use of very large-scale neighborhood search
(VLSN) techniques in examination timetabling problems. We detail three
applications of VLSN algorithms that illustrate the versatility and po-
tential of such algorithms in timetabling. The first of these uses cyclic
exchange neighborhoods, in which an ordered subset of exams in dis-
joint time slots are swapped cyclically such that each exam moves to the
time slot of the exam following it in the order. The neighborhood of all
such cyclic exchanges may be searched effectively for an improving set
of moves, making this technique computationally reasonable in practice.
We next describe the idea of optimized crossover in genetic algorithms,
where the parent solutions used in the genetic algorithm perform an op-
timization routine to produce the ‘most fit’ of their children under the
crossover operation. This technique can be viewed as a form of multivari-
ate large-scale neighborhood search, and it has been applied successfully
in several areas outside timetabling. The final topic we discuss is func-
tional annealing, which gives a method of incorporating neighborhood
search techniques into simulated annealing algorithms. Under this tech-
nique, the objective function is perturbed slightly to avoid stopping at
local optima. We conclude by encouraging the timetabling community to
further examine the promising potential of these techniques in practice.

1 Introduction

1.1 Timetabling Problems

The scheduling of classes and examinations is a key practical problem that is
faced by nearly all schools and universities. Substantial effort has been devoted
to developing effective timetabling procedures over the last thirty to forty years.
The problems tackled by such procedures include examination timetabling, in
which a set of exams is to be scheduled over a set of time periods, and course
timetabling, where a set of courses must be scheduled over the length of an entire
semester.
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Timetabling problems are often complicated by numerous constraints; for
instance, in the examination timetabling problem, students should not be sched-
uled to take two exams at the same time. These constraints are typically divided
into hard constraints, which must not be violated (in the course timetabling
problem, a hard constraint might be that no teacher is scheduled to teach two
classes at once), and soft constraints, which possess a penalty for being violated
(in the examination timetabling problem, a soft constraint might be to minimize
the number of students who take two exams back-to-back). Because of the num-
ber and variety of constraints, such timetabling problems typically constitute
NP-hard problems that are quite difficult to solve manually. This in turn has led
to an increased emphasis on finding effective automated timetabling algorithms.

Recent surveys on automated timetabling (see [21, 23, 24, 43]) illustrate the
wide array of methods that have been applied to timetabling problems. Tradi-
tional techniques tested in timetabling include direct heuristics [34], which fill up
the timetable one event at a time and resolve conflicts by swapping exams, and
a reduction to the graph coloring problem [38], where events are associated with
vertices of a graph and edges with potential conflicts. More modern heuristics
include memetic [20] and genetic algorithms [19, 27, 30], which use techniques
inspired by evolutionary biology; simulated annealing algorithms [18, 46], where
nonimproving solutions are permitted with progressively decreasing probability;
tabu search heuristics [26, 42], where a list of recently visited timetables are for-
bidden to be visited; and constraint logic programming approaches [25], which
are based on applying declarative logic programming systems to constraint sat-
isfaction problems.

In this paper, we address the application of very large-scale neighborhood
search techniques (see Section 1.2) to timetable scheduling problems, includ-
ing one approach based on genetic algorithms (Section 3) and one that resem-
bles simulated annealing (Section 4). Neighborhood search has long been used
in timetable scheduling, from the swap (2-opt) techniques used in the direct
approaches to the variety of forms of neighborhood search used in genetic al-
gorithms. However, the area of very large-scale neighborhood search has only
recently been investigated with respect to timetable scheduling [1, 13, 33] (see
Section 2). We believe there are many untapped possibilities for useful algo-
rithms in this context.

1.2 Very Large-Scale Neighborhood Search

Neighborhood search algorithms (also known as local search algorithms) are a
class of algorithms that start with a feasible solution and attempt to find an
improving solution in the neighborhood of the current solution. The neighborhood
structure may be defined in a variety of ways, typically so that all solutions in
the neighborhood of the current solution satisfy a set of prescribed criteria. In
very large neighborhoods, the size of the neighborhood under consideration is
extremely large (typically, exponential) in the size of the problem data, making
it impractical to search such neighborhoods explicitly.
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A very large-scale neighborhood search (VLSN) algorithm is one that searches
over a very large neighborhood, giving an improving solution in a relatively
efficient amount of time. Such algorithms tend to search implicitly over the
neighborhood rather than explicitly, since the quantity of solutions precludes
performing an exhaustive search.

There are three main categories of very large-scale neighborhood search al-
gorithms that are outlined in [5]. The first of these is variable depth methods,
which partially search an exponentially large neighborhood by using heuristics.
The second kind are network flow-based methods, which use network flow tech-
niques to search over the neighborhood and identify improving neighbors. The
third main category consists of neighborhoods based on restrictions of NP-hard
problems that are solvable in polynomial time. Ahuja, Ergun, Orlin, and Punnen
[5, 6] provide a thorough exposition of the algorithms in these categories in their
surveys on the topic.

Very large-scale neighborhood search techniques have been applied to a wide
range of problems in combinatorial optimization. These include the traveling
salesman problem [28, 35, 39], the quadratic assignment problem [7], vehicle rout-
ing problems [2, 29], the capacitated minimum spanning tree problem [10], the
generalized assignment problem [50, 51], and parallel machine scheduling prob-
lems [3]. In several of these problems, the VLSN search algorithms give the
strongest known computational results, making the development of such algo-
rithms desirable in practice.

The design of a successful VLSN search algorithm depends on the choice of an
appropriate neighborhood function and the development of an effective heuristic
method to search the neighborhood for improving solutions. VLSN search tech-
niques may also be combined within the framework of other heuristic methods,
such as tabu search [32, 33] and scatter search [41], to provide further computa-
tional improvements. See [5, 6] for a comprehensive discussion of techniques for
developing strong VLSN search algorithms.

1.3 Contributions of this Paper

We describe three applications of very large-scale neighborhood search tech-
niques to timetabling problems. For simplicity, we consider the examination
timetabling problem in each of these instances, but our approaches can be mod-
ified to apply to classroom timetabling problems as well.

In Section 2, we describe the cyclic exchange neighborhood and how it may
be applied to timetabling problems. In this neighborhood, an ordered subset of
exams in disjoint time slots are swapped in a cyclic fashion such that each exam
moves to the time slot of the exam following it the order. We consider recent
applications of the cyclic exchange neighborhood in the timetabling literature,
and relations to other neighborhood search techniques in timetabling.

We discuss the idea of optimized crossover in genetic algorithms in Section
3. In an optimized crossover, the parent solutions used in the genetic algorithm
perform an optimization routine to produce the ‘most fit’ of their children un-
der the crossover operation. This can be viewed as a form of very large-scale
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neighborhood search, where the neighborhood is defined over both of the par-
ent solutions. We discuss problems for which the optimized crossover has been
applied, and how a heuristic for optimized crossover could be incorporated into
genetic algorithms for timetabling problems.

In Section 4, we review a new metaheuristic algorithm known as functional
annealing that combines neighborhood search techniques with a type of simu-
lated annealing algorithm. This algorithm allows the application of very large-
scale neighborhood search techniques within an annealing framework, which was
not previously practical due to the random selection of solutions in simulated
annealing. We discuss how this algorithm has the potential to be very useful in
timetable scheduling problems, on which simulated annealing algorithms have
performed well in the past.

2 Cyclic Exchange Neighborhood

2.1 Definition

The cyclic exchange neighborhood is defined for partitioning problems. We pre-
sent the problem here in terms of scheduling a set of exams over a collection of
time periods, where potential conflicts between the exams are implicitly encoded
in the objective function. However, it should be noted that this neighborhood
extends to any problem that can be expressed in terms of partitioning the mem-
bers of one set, so long as the cost of a partition is the sum of the cost of its
parts.

Let E = {e1, e2, . . . , en} be a set of n exams, and let P = {p1, p2, . . . , pm} be a
set of m time periods in which we wish to schedule the exams. Suppose that S =
{S1, S2, . . . Sm} is a partitioning of the exams in E into m sets, such that each
exam belongs to exactly one set in S, and each set Si corresponds to the collection
of exams scheduled in period pi. Let c(S) denote the cost of solution S. We
assume that any conflicts between students and exams are implicitly encoded in
the objective function c(S), so that any valid partitioning of the exams represents
a feasible solution to the problem. This is similar to the approach taken by
Abdullah, Ahmadi, Burke, and Dror [1].

Consider a sequence ei1 , ei2 , . . . , eik
of exams in E such that exam eij is

contained in set Sj , for each j. Suppose we switch exam eij from set Sj to set
Sj+1, for all j = 1, . . . , k−1, and we switch exam eik

into set S1. We call such an
operation a cyclic exchange. We can also think of the exams as forming a cycle
ei1 − ei2 − ei3 − . . .− eik

− ei1 , such that each exam switches to having the time
slot of the exam following it in the cycle. An illustration of a cyclic exchange is
given in Figure 1. In the figure, the sequence e1 − e4 − e10 − e13 of exams forms
a cycle; exam e1 switches from S1 to S2, exam e4 switches from S2 to S4, exam
e10 switches from S4 to S5, and exam e13 switches from S5 to S1. The set S3 is
not included in the cyclic exchange, so its exams are not changed.

In the case where k = 2, this operation is equivalent to the 2-opt operation,
where a single pair of exams switch time slots. Neighborhoods defined over the
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Fig. 1. The cyclic exchange neighborhood.

2-opt operation have been studied previously in the timetabling community by
Alvarez-Valdez, Martin, and Tamarit [12], Colorni, Dorigo, and Maniezzo [26],
and Schaerf [42], among others. If instead we do not require exam eik

to move
into set S1, then we call the operation a path exchange, which can be described
by the path of exams ei1 − ei2 − ei3 − . . . − eik

. We can show mathematically
that path exchanges may be modeled as a special case of cyclic exchanges, by
adding dummy nodes as appropriate [10].

We define the cyclic exchange neighborhood of solution S as all partitions
T = {T1, T2, . . . , Tm} that can be obtained from the sets {S1, S2, . . . Sm} via a
cyclic exchange operation. The size of this neighborhood is exponential in m, the
number of periods; for a fixed value of m, the total number of cyclic neighbors
of a given solution is O(nm). Since the size of this neighborhood is enormously
large, the neighborhood structure will only be useful in practice if we have an
effective search method for finding improving solutions. Fortunately, Thompson
and Psaraftis [49] and Ahuja, Orlin, and Sharma [9, 10] have identified several
methods of finding such solutions.

2.2 Searching the Cyclic Exchange Neighborhood

We use the concept of an improvement graph, introduced in Thompson and Orlin
[48] and further examined by Thompson and Psaraftis [49]. Rather than explic-
itly searching over each possible solution in the neighborhood, the improvement
graph allows us to implicitly search the neighborhood for improving solutions.
This helps dramatically reduce the amount of required computations.

For a feasible partition S = {S1, S2, . . . Sm} of the exams, the improvement
graph G(S) is a directed graph with n nodes, each corresponding to one of the
exams in e1, e2, . . . , en. The arc (ei, ej) represents the transferring of exam ei
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from the subset S[i] ∈ S that contains it to the subset S[j] ∈ S containing exam
ej , with exam ej becoming unassigned. More formally, if we let S[i] denote the
subset in S containing exam ei, we can define the edge set as {(ei, ej) | S[i] �=
S[j]}, with the interpretation of each arc as previously described. The cost of
arc (ei, ej) is set to cij = c({ei} ∪ S[j]\{ej})− c(S[j]). This is exactly equal to
the cost of adding exam ei to set S[j] and unassigning exam ej from S[j].

We say a cycle W in G(S) is subset-disjoint if the exams in E that correspond
to the nodes in W are all scheduled in different time slots in S. (In other words,
for every pair of nodes ei and ej in W , we have S[i] �= S[j].) Thompson and
Orlin [48] showed that there exists a one-to-one correspondence between cyclic
exchanges in S and subset-disjoint directed cycles in G(S); most importantly,
they both have the same cost.

This result suggests that to effectively search the cyclic exchange neighbor-
hood, we need only to identify negative cost subset-disjoint cycles in the improve-
ment graph. Unfortunately, although the problem of finding a general negative
cost cycle is solvable in polynomial time [8], the problem of finding a negative
cost subset-disjoint cycle is NP-hard [47, 48]. However, Thompson and Psaraftis
[49] and Ahuja, Orlin, and Sharma [10] have identified effective heuristic al-
gorithms that produce negative cost subject-disjoint cycles quickly in practice.
Thompson and Psaraftis’s heuristic begins by initially searching for only small
negative cost subset-disjoint cycles (i.e., 2-cycles or 3-cycles), and uses a variable
depth approach to increase cycle length and cost improvement. Although their
algorithm generates and searches only a portion of the graph G(S), it was found
to be effective in practice. Ahuja, Orlin, and Sharma’s heuristic is a modification
of the label-correcting algorithm for the shortest path problem, which restricts
every path found by the label-correcting algorithm to being a subset-disjoint
path. They found that on test instances, the time to identify a negative cost
cycle was less than the time needed to construct the improvement graph.

Hence, the idea of an improvement graph can be efficiently exploited to allow
searching of the cyclic exchange neighborhood. Using the algorithms of Thomp-
son and Psaraftis and Ahuja, Orlin, and Sharma, improving solutions in the
neighborhood can be found successfully in practice. This suggests that the cyclic
exchange neighborhood is a valuable network structure to consider in solving
timetabling problems.

2.3 Cyclic Exchange in the Timetabling Literature

Cyclic exchange neighborhoods have been investigated only recently in the time-
tabling literature. For this reason, we believe this is a potentially fruitful area
for research in timetabling. We now outline a couple of the studies in which the
cyclic exchange neighborhood has been incorporated.

Abdullah, Ahmadi, Burke, and Dror [1] initiated the first study of the cyclic
exchange neighborhood in examination timetabling problems. To identify neg-
ative cost subset-disjoint cycles, they used the heuristic of Ahuja, Orlin, and
Sharma [10]. They additionally introduced an exponential Monte Carlo accep-
tance criterion (see [14]) for accepting nonimproving moves. In this way, their
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algorithm is less likely to become stuck at a local optimum. Tests of the algo-
rithm against other timetabling algorithms on common benchmarks showed that
the performance of their algorithm is comparable to that of the best currently
known timetabling algorithms.

Jha [33] has also recently studied the usefulness of cyclic exchange neigh-
borhoods in timetabling problems. His algorithm uses a dynamic programming
aproach to identify negative cost subset-disjoint cycles. He also combines the
cyclic exchange heuristics with a tabu search framework, to avoid the problem
of halting at local optima. In terms of implementation, he found that the VLSN-
tabu search combination produced robust solutions in a reasonable amount
of time. Compared to approaches using integer programming or neighborhood
search alone, he found that the VLSN-tabu search algorithm performed better
on larger test instances.

Together, these two studies suggest that the combination of cyclic exchange
techniques with other suitable timetabling heuristics can make for especially
strong algorithms. Whether the methods used are Monte Carlo acceptance tech-
niques or tabu search, the combination of the VLSN methodology with the ex-
isting algorithms can be used to produce a more effective algorithm overall.

2.4 Relation to Other Techniques in the Literature

As mentioned in Section 2.1, the 2-opt operation is a special case of the cyclic
exchange operation, where each cycle has length equal to 2. This is occasionally
referred to as the swap operation, since it consists of swapping the time slots
of a pair of exams. The 2-opt neighborhood is defined as the set of all possible
solutions that can be reached from a given solution by performing a single 2-opt
move.

Many papers in the timetabling literature have used neighborhood search
over the 2-opt neighborhood to refine timetabling solutions, though not neces-
sarily using that name and most often in conjunction with other techniques.
Alvarez-Valdes, Martin, and Tamarit [12] used 2-opt moves combined with tabu
search in finding solutions for timetabling problems in the Spanish school system.
Schaerf [42] combined tabu search and the randomized nonascendent method
with 2-opt neighborhood search techniques in solving high school timetabling
problems. Colorni, Dorigo, and Maniezzo [26] used 2-opt techniques along with
simulated annealing, tabu search, and genetic algorithms for problems from Ital-
ian high schools; they found the combination of genetic algorithms with tabu
search to be especially powerful. Carter [22] addresses the scheduling of classes
at the University of Waterloo by decomposing the problem into several subprob-
lems, which are then solved using a greedy procedure including 2-opt moves.

It should be noted that while 2-opt moves can be done efficiently in the
improvement graph (since there are only O(n2) possible such moves), they are
inherently a lot weaker than cyclic exchange moves. For this reason, it would
be interesting to apply the cyclic exchange neighborhood to the same classes
of problems. This presents a fruitful, and largely unexamined, avenue for new
research.
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3 Optimized Crossover in Genetic Algorithms

3.1 Overview of Genetic Algorithms

Genetic algorithms are an optimization technique based on the mechanisms of
evolution and natural selection [37]. In applying genetic algorithms to time-
tabling problems, we assume (as in Section 2) that any valid partitioning of
exams into a timetable T represents a feasible solution, and that potential con-
flicts between the exams are implicitly encoded in the objective function. (It
should be noted that it is also possible to extend the following definitions to the
constrained version of the problem.) There are a wide range of ways to implement
genetic algorithms. We describe a classic approach.

In each iteration of a genetic algorithm, a population of solutions is main-
tained, which represent the current set of candidate solutions. At time t = 0, a
population of timetables {T 0

1 , T 0
2 , . . . , T 0

K} is generated randomly from the set of
all possible solutions. In further iterations, the population {T t+1

1 , T t+1
2 , . . . , T t+1

K }
is generated from the population at time t according to the fitness of each of the
candidate solutions T t

i , along with crossover and mutation operations.
The fitness function is a problem-specific measure of how good a timetable is.

One obvious candidate for the fitness of a solution is its objective function value.
(However, in problems for which calculating the objective is time-consuming,
alternative methods of fitness can be formulated.) In selecting a set of candidate
solutions at time t to produce the next generation at time t + 1, the algorithm
begins by assessing the fitness of all timetables at time t. Next, K individuals
of the population are randomly selected, based on a weighted randomization
scheme; the ‘fitter’ a solution is, the more likely it is to be selected.

The crossover operation functions by taking two of the selected timetables
Ti and Tj and combining them to form a new timetable. The selected timetables
are referred to as the parent timetables, and the new timetable is called the child
timetable. In what follows, we assume that the parent timetables are represented
in the form (pk

1 , pk
2 , . . . , p

k
n), where pk

� represents the time period in which exam
e� is scheduled in timetable Tk.

The crossover operation can take several forms, of which the fixed point
crossover is very common. In this situation, a given position � ∈ {1, . . . , n−1} is
selected; the child solution is created by concatenating the first � periods in the
timetable of the first parent with the last n − � periods in the timetable of the
second parent. Hence, if Ti and Tj are the first and second parents, their child
solution will have the form (pi

1, . . . , p
i
�, p

j
�+1, . . . , p

j
n).

Another frequently used crossover scheme is the two-point crossover, where
two random positions �1 and �2 (�1 < �2) are selected; in this case, the child
is formed by taking the periods of the first parent in the intervals (1, �1) and
(�2 +1, n) and the periods of the second parent in the interval (�1 +1, �2), giving
a solution of the form (pi

1, . . . , p
i
�1

, pj
�1+1, . . . , p

j
�2

, pi
�2+1, . . . , p

i
n). Similarly, we can

define multi-point crossovers by first generating a random number N , arbitrarily
determining N crossover positions, and then creating the child by taking each
odd interval from the first parent and each even interval from the second parent.
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The mutation operation is used to ensure diversity of the timetables gener-
ated. In this operation, a given position � in timetable Tk is selected with some
(small) probability Pm, and exam e� is reassigned from period pk

� in which it
is currently scheduled to another randomly selected time period. This has the
effect of ‘mutating’ the �th exam period from its original value. In this way, time
periods that are not a part of the set of parent timetables can be present in the
successive generation, which occasionally leads to better solutions.

3.2 Optimized Crossover

In the previous section we discussed the crossover operation in genetic algo-
rithms. One striking feature of this method is that the crossover points are
determined randomly, and the resulting child is created without regard to the
objective function. Hence occasionally the fitness of a child can deviate quite
widely from the fitness of its parents. Aggarwal, Orlin, and Tai [4] suggested
instead choosing the best child from all possible children, building on an idea of
Balas and Niehaus [15] in the area of graph theory.

The set of all possible children Tij from two timetables Ti and Tj can be
written as {Tij | p�

ij = p�
i or p�

ij = p�
j , for all � = 1, . . . , n}. Thus, the period in

which any exam is scheduled in Tij will either be the same as the period in which
it is scheduled in Ti, or else the same as the period in which it is scheduled in
Tj . The problem of finding the best child is then the problem of choosing from
among the O(2n) possible children the one with the best objective function.

We can think of solving the optimized crossover problem as a type of very
large-scale neighborhood search. In this case, the neighborhood is defined over a
pair of parent solutions, instead of a single solution. This is a somewhat unusual
use of the term ‘neighborhood,’ but we claim the concept is plausible since the
neighborhood is well-defined. For each pair of solutions Ti and Tj , the crossover
neighborhood is defined as the set of all possible children Tij that can be pro-
duced from Ti and Tj. The problem of finding the best child can be viewed as that
of finding the child with the best objective value in the crossover neighborhood.

The idea of optimized crossover has not been previously used in genetic
algorithms for timetabling problems, and we believe it is an excellent candidate
for study. In the next two sections, we detail a few of the areas in which optimized
crossover has proven to be useful, followed by comments on the feasibility of the
method on timetabling problems in particular.

3.3 Previous Applications of Optimized Crossover

Aggarwal, Orlin, and Tai [4] were the first to apply the concept of optimized
crossover to genetic algorithms. They studied the independent set problem, for
which they gave an effective method of combining two independent sets to obtain
the largest independent set in their union. This was based on a related technique
of Balas and Niehaus [15]. Their resulting genetic algorithm incorporated this
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optimized crossover scheme, and was shown to be superior to other genetic algo-
rithms for the independent set problem. This approach was further verified by
Balas and Niehaus [16].

Ahuja, Orlin, and Tiwari [11] later extended the idea of optimized crossover
to genetic algorithms for the quadratic assignment problem. They presented
a matching-based optimized crossover heuristic that finds an optimized child
quickly in practice. This technique can also be applied to other assignment-type
problems, as it relies on the structure of the problem rather than the objective
function.

Most recently, Ribeiro and Vianna [40] have applied the idea of optimized
crossover to genetic algorithms for building phylogenetic trees, which are trees
showing evolutionary relationships among species with a common ancestor. Their
algorithm outperforms the best algorithms currently available. Lourenço, Paixão,
and Portugal [36] have also used a type of optimized crossover heuristic in their
study of bus driver scheduling. They solve a set-covering subproblem to de-
termine the best child solution; their algorithm outperforms other algorithms
tested, albeit at a higher computational cost.

3.4 Optimized Crossover in Timetabling Problems

As mentioned in Section 3.2, for an optimized crossover to be effective in practice,
it requires a method of quickly obtaining a best (or very good) child solution
from two parents. The problem of finding the optimized crossover explicitly in
timetable scheduling problems is unfortunately NP-hard, via a transformation
from the Minimum Set Cover problem (see [31]). Hence, the best we can hope
for is to find a strong heuristic for obtaining a good crossover. We now describe
how this can be accomplished in timetabling problems.

The algorithm we consider here is a greedy algorithm, which starts with the
two parent solutions Ti and Tj . First it randomly selects an order to consider the
exams in. The algorithm proceeds through the exams in order, where for each
exam ek it places the exam in either slot T k

i or T k
j according to which one gives

the smallest increase in the objective function. The result will be a scheduling
of exams that (hopefully) gives a low objective value. (Many other variations in
the greedy algorithm are possible.)

This algorithm will perform quickly in practice, as once the ordering is de-
cided upon there are only two choices for each of the exams. The quality of the
solutions produced by the algorithm may vary depending on the quality of the
ordering.

Thus we have given a heuristic for solving the optimized crossover problem in
genetic algorithms for timetabling problems. Though this method has not been
tested in a timetabling context, we believe the strong results obtained for the
crossover method in other problems (see [4, 11]) make it an attractive avenue to
pursue in the area of timetabling.
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4 Functional Annealing

4.1 The Functional Annealing Algorithm

The functional annealing method is a relatively new metaheuristic for combi-
natorial optimization problems. Proposed by Sharma and Sukhapesna [44, 45],
it combines the attractive components of both a neighborhood search method
and a simulated annealing algorithm. As simulated annealing algorithms have
been extensively examined in the timetabling literature (see, for instance, [18]
and [46]), we believe this method should be greatly appealing to the timetabling
community. In this subsection and the next two, we outline the functional anneal-
ing algorithm and its properties, followed by a discussion of applying functional
annealing techniques to timetabling problems in particular.

The main idea of the functional annealing method is to introduce a stochastic
element into the objective function, while employing an efficient neighborhood
search strategy. The stochastic element is given in terms of an annealing function,
which tends to the original objective as the number of iterations increases. The
perturbed objective allows the algorithm to escape efficiently from local optima,
while the neighborhood search heuristic provides for a more effective search of
the feasible space.

We now describe the algorithm more formally, following the structure of
Sukhapesna [45]. Suppose we are given a 0-1 discrete optimization problem
(such as a timetabling problem), with a cost function c(x) and a neighborhood
N(x) for each element x in the set F ⊆ {0, 1}n of feasible solutions. We let
c(x, w) = c(x) + w′x be our annealing function, where w is a random vector
in R

n with independent and identically distributed elements. The volatility of
w is determined by a control paramater U , such that w approaches zero as U
approaches zero. We assume we are given a sequence {Uk} of such control pa-
rameters, such that Uk > 0 for all k ≥ 0 and limk→∞ Uk = 0. Thus, the longer
the algorithm runs, the less stochasticity there is in the objective function. The
functional annealing algorithm is described in Figure 2.

As can be seen from the algorithm, the random vector wk is always chosen
so that the perturbation attempts to make the current solution worse than its
neighbors, which has the effect of forcing the algorithm to move away from
its current solution. Moreover, the magnitude of the perturbation vector wk is
such that the greater the number of iterations, the smaller the influence of the
perturbation. Hence for small values of k, the algorithm behaves similiarly to a
search for a random neighbor, and for large enough values of k, the algorithm
behaves more like a deterministic neighborhood search algorithm.

One of the appealing features of using a neighborhood search strategy in
tandem with the functional annealing approach is that the algorithm will not
spend multiple iterations at a solution that is not a local optimum, in contrast
to the standard simulated annealing algorithm. Another item of note is that in
the case of a linear objective, the algorithm is equivalent to a problem where the
data is perturbed to avoid lingering at local optimal solutions (see [17]).
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algorithm functional annealing
begin

choose an initial solution x0 in F ;
set k = 0;
while stopping criteria are not met, do

generate a vector wk such that wk(i) = ek(i) if xk(i) = 1
and wk(i) = −ek(i) if xk(i) = 0, where ek is distributed
exponentially with mean Uk;
using a neighborhood search algorithm, find a neighboring
solution y ∈ N(x) ∪ {x}, such that c(y, wk) ≤ c(x, wk);
set xk+1 = y;
set k = k + 1;

end;
end;

Fig. 2. The functional annealing algorithm.

4.2 Properties of the Algorithm

A natural question one might have about the functional annealing algorithm is
whether it is guaranteed to reach the set of optimal solutions. Indeed, Sharma
and Sukhapesna [44, 45] have shown that the algorithm is guaranteed to attain
the set of optimal solutions with probability 1, provided that the neighborhood
search algorithm is such that at any given step each improving solution is chosen
with positive probability. Moreover, the expected number of iterations needed
to reach an optimal solution is finite.

With respect to the choice of improving neighbors, the authors consider a ran-
domized first improvement strategy, in which improving solutions in the neigh-
borhood are selected with equal probability. If no improving neighbor is found,
then the current solution is kept for the next iteration. They show that the
chance of exiting from the current solution under such a strategy is not worse
than that of simulated annealing, and for large numbers of iterations the exit-
ing probability is about |N(x)| times greater than that of simulated annealing.
Thus the functional annealing algorithm is better in theory than simulated an-
nealing in terms of becoming stuck at local optima. They also show that a best
improvement strategy is also guaranteed to reach the set of optimal solutions
with probability one, though the time to find a solution takes longer than with
the first improvement strategy.

Sharma and Sukhapesna [44, 45] give a thorough computational study of func-
tional annealing algorithms applied to the quadratic assignment problem. They
show that the functional annealing algorithm performs significantly better than
both simulated annealing and neighborhood search algorithms on instances of
the problem, confirming the earlier theoretical results. This improvement holds
regardless of the size of the instance being considered. They also show that the
best improvement strategy tends to outperform the randomized first improve-
ment strategy on small instances, while on larger instances the difference is less
pronounced. They conclude by showing that incorporating a statistical learn-
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ing technique along with the functional annealing algorithm gives the strongest
computational results overall.

4.3 Functional Annealing and VLSN Search

Functional annealing provides a way to integrate very large-scale neighborhood
search techniques within the framework of annealing methods. Since the only
condition on the neighborhood search algorithm is that it should be able to
produce an improving solution in the neighborhood in a reasonable amount of
time, we can easily apply existing VLSN techniques to the functional annealing
algorithm.

For instance, the cyclic exchange neighborhood (see Section 2) can be incor-
porated into the functional annealing algorithm. This neighborhood is too large
to be of practical interest with the pure simulated annealing algorithm, since
the simulated annealing algorithm functions by comparing the performance of
random solutions in the neighborhood. The cyclic exchange neighborhood is so
large that there is no reason to believe that a random solution will perform well.
This problem is alleviated in the functional annealing approach, because it does
not rely on the generation of purely random solutions in the neighborhood.

Sharma and Sukhapesna [44, 45] incorporated the cyclic exchange neighbor-
hood in their analysis of functional annealing algorithms for the quadratic assign-
ment problem. They found that in small problem instances, algorithms using the
cyclic exchange neighborhood consistently outperformed algorithms based on a
2-opt structure (see Section 2.4). The results for large problem instances were
less dramatic.

4.4 Functional Annealing and Timetabling Problems

Functional annealing techniques can be applied to timetabling problems in much
the same way that simulated annealing algorithms are currently used. (See [18]
and [46] for details on the implementation of simulated annealing algorithms in
timetabling problems.) Typically, the only restriction on the format of the solu-
tions is that they are represented in such a way that the neighborhood search
subroutine can be performed adequately. In the case of the cyclic exchange neigh-
borhood, for instance, we could use the problem structure previously outlined
in Section 2.

A main advantage of the functional annealing algorithm is that it allows
us to use very large-scale neighborhood search techniques along with annealing
algorithms, which have already been used successfully in timetabling problems
(see [43] for a survey). For this reason, we believe that this algorithm has a
potential to be very valuable to the timetabling community.

5 Concluding Remarks

In this paper, we have discussed one application and two potential applica-
tions of very large-scale neighborhood search techniques in examination time-
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tabling problems. The applications range from one that has been used before in
timetabling problems (the cyclic exchange neighborhood), to one that has been
widely used in contexts other than timetabling (optimized crossover in genetic
algorithms), to a relatively new concept that we believe has a great potential for
timetabling problems (functional annealing algorithms).

Although these applications are presented in the context of examination
timetabling, the techniques are general enough to apply to a wide range of
timetabling problems. It is our hope that the timetabling community will make
use of these techniques and incorporate them into further studies in the time-
tabling literature. Based on the existing work, we believe that very large-scale
neighborhood search techniques may be very useful in the design of new time-
tabling algorithms.
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Abstract In this paper, we first illustrate the state-of-the-art in timeta-
bling research w.r.t. two important research qualities, namely measura-
bility and reproducibility, analyzing what we believe are the most impor-
tant contributions in the literature. Secondly, we discuss some practices
that, in our opinion, could contribute to the improvement on the two
aforementioned qualities for future papers in timetabling research.
For the sake of brevity, we restrict our scope to university timetabling
problems (exams, courses, or events), and thus we left out other equally-
important timetabling problems, such as for example high-school, em-
ployee, and transportation timetabling.

1 Introduction

Thanks mainly to the PATAT conference series, researchers on timetabling prob-
lems have recently started to meet regularly to share experiences and results,
more than in the past. This situation has the positive effect of generating both
a common language and a common spirit that is the base ground for cross-
fertilization of research groups in the timetabling community.

However, according to what we have seen in the recent PATAT conferences,
the road for timetabling to become a well-established research community is still
long. The main issue, in our opinion, is that most timetabling papers tend to
describe the authors’ specific problem and ad hoc solution algorithm without
taking enough care of neither the measurability nor the reproducibility of the
results. The reader is thus “left alone” to judge the quality of the paper, and to
understand what can be learnt from it.

This issue is, to some extent, common to all the experimental areas of com-
puter science and operations research, as clearly explained by Johnson in his
seminal and fundamental paper [14]. Nevertheless, we believe that this is partic-
ularly true in timetabling research, probably because of its shorter tradition as
a scientific community.

Regarding measurability (or comparability), we believe that several “research
infrastructures” are necessary in order to create the ground for truly measurable
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results. Specifically, they range from common formulations, to benchmark in-
stances, to instance generators, to solution validators, and others. Related to it,
but somewhat complementary, is the issue of reproducibility. To this aim, aside
the features just mentioned, it would be also necessary to create the conditions
for sharing code and/or executables among researchers.

In this paper, we try to describe the state-of-the-art with respect to these
crucial qualities of experimental research in timetabling, and we also present
some personal opinions on how to proceed to improve on them. For the sake of
brevity, we restrict our scope to university timetabling problems (exams, courses,
or events), and we left out other equally-important timetabling problems, such
as high-school, employee and transportation timetabling. Nevertheless, to some
extent, the proposed guidelines can have a broader application to all timetabling
domains.

In details, we first survey what, in our opinion, are the most important steps
that have been pursued so far in timetabling research in terms of either mea-
surability or reproducibility of results (Section 2) . Secondly, we propose our
personal “best practices” for improving these two qualities in the timetabling
research (Section 3). Our aim is to encourage both the authors to write research
papers of high level in these important aspects and the reviewers to demand for
it.

2 State of the art

In this section, we review the most remarkable contributions to the aim of creat-
ing the ground for the development of high quality measurable and reproducible
research in timetabling. We first discuss the “standard” problem formulations,
the benchmark instances (datasets), and the related file formats adopted. Next,
we move to the comparison methods proposed, such as competitions and statisti-
cal tools. Finally, we discuss the issue of the objective validation of the proposed
results.

2.1 Problem Formulations & Benchmark Instances

It is well known that timetabling problems vary not only from country to country,
but also from university to university, and even in different departments of the
same university the problem is not quite the same [23].

Nevertheless, throughout the years it has been possible to define common
underlying formulations that could be used for the comparison of algorithms.
In fact, a few basic formulations have become standards de facto, as they have
been used by many researchers. Needless to say, standard formulations allow the
researchers to compare their results and to cooperate for the solution. Further-
more, algorithms developed for more complex ad hoc formulations, can be tested
on the basic standard ones so as to asses their objective quality.

For the Examination Timetabling problem (ETTP), Carter et al [7] pro-
vide a set of formulations which differ to each other based on some components
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of the objective function. They also provided a set of benchmark instances [6] ex-
tracted from real data. Formulations and benchmarks by Carter have stimulated
a large body of research, so that many researches (see, e.g., [4,12,8]) have adopted
one of the formulations of Carter (or a variant of them, creating a new standard
as well), tested on the benchmarks, and also added new instances. For more
complex formulations, additional data have been added by other researchers, in
an arbitrary way. At present, all available instances and the corresponding best
results (up to 2003) are published on the Web [17].

We call Lecture Timetabling problem (LTTP), the problem of weekly
scheduling a set of single lectures (or events). This problem differs from course
timetabling (discussed below) because the latter is based on courses composed
by multiple lectures, whereas lectures are independent. In fact, when a course
is given in multiple lectures per week, some cost components are related to the
way the lectures are placed in the week. On the contrary, this concept is totally
absent in LTTP. The LTTP differs also from ETTP because it has completely
different objectives (e.g., no isolated event vs. spreading exams).

The LTTP has been discussed in [22] and it has been the subject of the time-
tabling competition TTComp20021 [21]. The formulation proposed for TTComp-
2002 has also become quite standard, and many researchers have used it for their
work (see, e.g., [16,9]). Twenty artificial instances were generated for the com-
petition, and they are available from the TTComp2002 web page. In addition, a
few other have been proposed (and made available via web) in [24].

As mentioned above, the Course Timetabling problem (CTTP), consists in
the weekly scheduling of the lectures of a set of university course. Unfortunately,
no standard formulation has emerged from the community for CTTP so far. Up
to our knowledge, the only formulation available on the Web [11] together with
a set of instances is the one proposed by ourselves in [13], along with 4 instances
coming from the real cases (suitably simplified and made anonymous) in our
university.

2.2 Data Format

For all the problems mentioned above, an important issue for the spreading in
the community of a formulation is the data format. For all the formulations
discussed above, the data format used is an ad hoc fixed-structure text-only one.
For example, for TTComp2002 the input data comes in a single file containing the
scalar values (events, rooms, room features, students), followed by the elements
of the input arrays, one per line. The output format follows the same idea. For
the ETTP the input format is also rather “primitive”, with a fixed grammar and
no formatting tags. Unfortunately, for this problem no output format has been
specified in the original web page and paper.

1 In the competition the problem is named CTTP, where C stands for course; but we
believe this is quite misleading, because it deals with isolated lectures/events, rather
than courses composed by many lectures. Therefore we prefer for this problem the
name LTTP
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The use of fixed-structure formats makes it easier to parse the input from
any computer language, and for any (naive) programmer, but may be more
difficult to be maintained and checked. For example, it happened that Carter’s
ETTP instances were replicated incorrectly on other web sites. This was due
to the presence of a few newlines added in the files, that led to different (less
constrained) instances. This unfortunate episode, that might have caused wrong
results in some papers, would have been avoided if a structured format had been
used.

On the other hand, a structured format, such as XML, would be more suitable
in terms of flexibility, extensibility, and maintenance. A few structured format
have been proposed in the literature, such as STTL [5,15] and TTML [19]. In [20],
the authors go even beyond the language, proposing a multi-layer architecture
for the specification and the management of timetabling problems. Up to our
knowledge, however, these proposals have received a quite limited attention so
far. This is probably due to the fact that researchers have normally little interest
in the advantages of a structured language, and they prefer the quick-and-simple
text-only version.

2.3 Comparison Methods & Competitions

The fair comparison of different algorithms and heuristics is well known to be a
complex problem, and it has no simple and straightforward solution. In fact, in
order to assess that an algorithm is “better” than another one it is necessary to
specify not only the instances used, but also on which features they are compared
(e.g., quality of the objective function, success rate, speed, . . . ). The question
gets even more complicated in presence of randomized/stochastic algorithms,
which add a degree on non-determinism in the solution process.

For the TTComp2002, the solution algorithms (provided as executables) were
granted a maximum CPU time for their execution (based on a CPU benchmark,
about 500 seconds on a recent computer) and they were evaluated only on the
value of the objective function, averaged upon the 20 proposed instances. Un-
feasible solutions where not considered, so that, in order to be admitted to the
evaluation, participants had to find a feasible solution for all instances.

For stochastic algorithms, the participant had to ensure that their solver
could produce the same solution when checked by the organization (by providing
the seed of the random generator). In this situation, it is not clear how to apply
the CPU time restriction and the choice of the organization was to grant the
maximum time for each single trial. This was done to ensure reproducibility,
although it had a drawback. The participants could take advantage of the so-
called Mongolian horde approach: run as many trials as you can with no time
limit and report only the best of all of them.

Up to our knowledge, the TTComp2002 has been the sole attempt in this
respect. All other comparison are based on results published in the literature,
which however often report only part of the necessary information (running
times, number of trials, . . . ).
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2.4 Result Validation

When some results are claimed in a research paper, the reader (or, more im-
portantly, the reviewer) generally has to trust the author without any actual
proof on the results. Although the possibility that the author is deliberately
claiming a fake result is rare, cases in which the claimed results turned out to
be wrong are relatively frequent. They are normally due to bugs in the code
or misunderstandings in the formulation of the problem, typically the objective
function.

For example, for the Graph Coloring problem, for the famous benchmark
instance DSJC125.5 a 12-coloring has been claimed (and published) in 2002,
whereas it has been successively proved that the minimum number of colors is
17.

Therefore the validation of the results claimed is clearly an important step
toward the full reproducibility of the results. For the LTTP, in the TTComp2002,
the validation of the results was done directly by the organizers, who asked all
the participants to supply an executable that accepts a set of fixed command-line
arguments.

For ETTP, unfortunately, no validation tool is available. Validation is cur-
rently based only on voluntary peer-to-peer interaction based on exchanges of
solutions and values.

For our formulation of the CTTP, we have developed a web page [11] that
allows the other researchers to download the problem formulation, the data
format, and the benchmark instances. More importantly, everybody is allowed
also to validate his/her own solutions, and to insert it among the results obtained
for that instance. All results are automatically published on the web site along
with the date and other information.

3 Proposals

In this section, we highlight some practices that, in our opinion, could contribute
to the improvement on measurability and reproducibility for future papers in
timetabling research. Part of what we propose here can be found also in [14],
although we try to extract the advices by Johnson that we believe best suit to
the current state of timetabling research.

3.1 Statistically Principled Comparison

One of the key issues of performance measurement (often underestimated) con-
cerns the methods to deal with the random nature of many methods for obtaining
a sound comparison of the different techniques. In the practice, this issue is often
neglected and just some tendency indicators of the stochastic variables like mean
values (and, more seldom, also standard deviations) in n runs (with n ≈ 10) are
provided. Furthermore, in a rather myopic view, these summary values are often
advocated as the final word on the clear superiority of a technique over their
competitors.
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However, as it is common expertise of other research areas, when dealing with
stochastic variables it is not correct to draw any conclusion only on the basis
of single estimates but a principled statistical analysis on the behavior of the
algorithm is needed (see, e.g., [1,27]). Even in the simplest cases of comparison of
two means the analysis should include some kind of hypothesis testing (e.g., the
t-test or the Mann-Whitney test for the parametric and the non-parametric case,
respectively), that at least provides the reader with a (probability) measure of
“confidence” in the result. For more complex settings further analyses could be
carried on and the statistical tool-case is plenty of methods for correctly coping
with several situations that arises in practice (see, e.g., [18]).

As an example, Birattari [2] has proposed a principled methodology for the
comparison of stochastic optimization algorithms, called RACE, which comes out
also as a software tool for the R statistical package [3]. This procedure, originally
developed for the purpose of selecting the parameters of a single meta-heuristic,
could be employed also in the case of the comparison of multiple algorithms
by testing each of them on a set of trials. The algorithms that perform poorly
are discarded and not tested anymore as soon as sufficient statistical evidence
against them is collected.

This way, only the statistically proven “good” algorithms continue the race,
and the overall number of tests needed to find the best one(s) is limited. Each
trial is performed on the same randomly chosen problem instance for all the
remaining configurations and a statistical test is used to assess which of them
are discarded.

It is worth to notice that the statistical comparison of algorithms outlined in
this section is based on the assumption of having access at previous results (or
better at the code) of the different techniques involved in the comparison. This
is clearly related to the issue of reproducibility of results that, in our opinion,
can be achieved observing the guidelines described in the following.

3.2 Formulation, Data Format, Instances, and Results on the Web

As already mentioned, many papers in timetabling describe the modeling and
the ad hoc solution of a new timetabling problem. For this kind of papers, in
general we cannot expect that the authors make all the steps for obtaining full
measurability and reproducibility such as, for example, publishing all the code. In
fact, this would be quite a big work that would probably be too time-consuming
for a researcher, aside possible employer’s concerns. Nevertheless, we believe that
there are a few actions that could contribute in these respects, which are not
too expensive in terms of work.

First, the authors must state the problem clearly and exhaustively. If this
is not possible in the paper for space reasons, the full formulation should be
posted in an accompanying web site. Secondly, the authors should also post in
the web site all the instances considered (changing names for privacy reasons, if
necessary) in the study, along with all the necessary information accompanying
them: data format, algorithms, results, and running times. Finally, the authors
should post also the files containing their best solutions, so that other researcher
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can verify the actual results, and possibly use that solutions for further studies
and improvements.

These actions would ensure comparability with the results on future research
by other researchers or also by the same authors2.

3.3 Web-based Problem Management System

Nowadays it is very common to see web sites that describe all aspects of either a
specific problem, see e.g. [10,25], or a research area [26]. These web sites normally
exhibit references to papers, people, problem formulations, benchmark instances,
and supply other information.

Web sites are surely very useful for the community, and their presence is
crucial for the quality of the research. Nevertheless, we believe that there is a
further step to be made to this regard. Inspired by the well-known concept of
CMS (content management system), we envision the idea of developing what
we would call PMS (problem management systems). A PMS is a web applica-
tion (rather than a web site) that should allow the users to interact with the
application performing automatically all the following tasks:

Add results: New results are first validated, and then possibly inserted in the
database along with time-stamp and other user-supplied information.

Add instances: Instances can be inserted at any moment. Researchers that
are interested in the problem can be automatically informed by email of this
kind of events.

Manage instance generation: Newly generated instances can be created au-
tomatically by users through interaction with an instance generator.

Analyze instances and results: Instances and results can be analyzed auto-
matically so as to produce important indicators: constrainedness, similarity
to other instances or other results, . . .

Add general information: People, references, links, code, and other informa-
tion can be added. Links would be validated periodically in an automatic
way, and broken ones can be removed. References can also be imported from
other sites.

Translate data: Input and output data can be translated in different formats
so that coherent data can be proposed in different format to the community.

Organize on-line competitions: Competitions on specific instances and with
registered participants and fixed deadlines can be organized automatically.
Results can be reported immediately.

Visualize: Solutions can be visualized in graphical form to give an immediate
picture of the features and the violations.

The interesting point is that information posted through the PMS would get
on-line immediately in an automatic way. Obviously, a PMS needs to provide
against possible malicious uses, and therefore some of the actions mentioned
2 Many researchers (including ourselves!) experienced the frustration of loosing their

solutions (or other data) for some of the problems they worked on.
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above would need the approval of the administrator before becoming effective.
This however would be just a Yes/No button, so that the administrator is pushed
to answer shortly.

The PMS would also maintain historical data (through versioning systems),
in such a way to be able to retrieve information eliminated by updates and
deletions.
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Abstract. We propose a flexible model and several integer linear pro-
gramming and constraint programming formulations for integrated em-
ployee timetabling and production scheduling problems. A hybrid con-
straint and linear programming exact method is designed to solve a ba-
sic integrated employee timetabling and job-shop scheduling problem for
lexicographic minimization of makespan and labor costs. Preliminary
computational experiments show the potential of hybrid methods.

1 Indroduction

In production systems, the decisions related to scheduling jobs on the machines
and the decisions related to employee timetabling are often made in a sequen-
tial process. The objective of job scheduling is to minimize the production costs
whereas the objective of employee timetabling is to maximize employee satis-
faction (or to minimize labor costs). Either the employee timetabling is first
established and then the scheduling of jobs must take employee availability con-
straints into account or the scheduling of jobs is done at first and the employees
must then adapt to cover the machine loads. It is well known that optimiz-
ing efficiently an integrated process would both improve production costs and
employee satisfaction. However, the resulting problem has generally been con-
sidered as too complex to be used in practical situations. Some attempts have
been made [1–7] but mostly considering an oversimplified version of the em-
ployee timetabling problem. Nevertheless the integration of task scheduling and
employee timetabling has been sucessfully developped in complex transporta-
tion systems [8–14]. In this paper we propose a model of integrated production
and employee scheduling that takes account of the following possible specific
characteristics of the production context:

A) An employee that has started a task may be replaced at any moment by
another employee (of the same skill) with no notable effect nor interruption
of the processed task.

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 64–81. ISBN 80-210-3726-1.



B) An employee is not necessarily needed during all the processing time of a
task but only at some time periods that can occur before, during and after
the processed task (setups, removals, transportation).

C) Because of the automated production process, or the nature of the tasks
performed by the employee (e.g. supervision), an employee may perform
several tasks simultaneously during a shift.

D) The production process can be quasi-continuous (on a 24h basis) whereas
the employee timetabling has to be discretized in periods (on a 8-hour basis
for instance).

E) The duration of a task may change depending on the number or on the skill
of the assigned workers.

In Section 2, we review the related work dealing with the integration of task
and employee scheduling and we give the position of the considered problem
among the various production scheduling and employee timetabling problems.
In Section 3, we propose different ILP formulations of the considered problem.
A constraint programming formulation is proposed in Section 4. In Section 5, we
propose a hybrid framework to solve the lexicographic minimization of makespan
and labor costs. In Section 6, we provide the results of a preliminary computa-
tional experiment carried out on a set of employee timetabling and job-shop
scheduling instances. Concluding remarks are drawn in Section 7.

2 Literature review and position of the considered

problem

We review some of the integrated vehicle and crew scheduling methods in Section
2.1 and the previous work on integrated production scheduling and employee
timetabling in Section 2.2. We give the position of the considered problem in
Section 2.3.

2.1 Vehicle and crew scheduling

Integrated vehicle and crew scheduling is an active research area in transporta-
tion systems, see [8–14] among others.

We focus hereafter on some recent papers presenting different models and
solution methods. Cordeau et al. [11] propose a benders decomposition scheme
to solve aircraft routing and crew scheduling problems. They use a set parti-
tioning formulation for both the aircraft routing and the crew scheduling. In
the first scheme, the primal subproblem involves only crew scheduling variables
and the master problem involves only aircraft routing variables. Both the primal
subproblem and master problem relaxation are solved by column generation. In-
teger solutions are found by a 3-phase method, adding progressively the integrity
constraints. More recently, Mercier et al. [14] have improved the robustness of
the proposed model. Their method reverses the benders decomposition proposed
in [11] by considering the crew scheduling problem as the master problem.
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Haase and Fridberg [10] propose a method to solve bus and driver scheduling
problems. The problem is formulated as a set partitioning problem with addi-
tional constraints in which a column represents either a schedule for a crew or
for a vehicle. The additional constraints are introduced to connect both schedule
types. A branch-and-price-and-cut algorithm is proposed in which column gen-
eration is performed to generate both vehicle and crew schedules. The method is
improved in [15] with a set partitioning formulation only for the driver schedul-
ing problem that incorporates side constraints for the bus itineraries. These side
constraints guarantee that a feasible vehicle schedule can be derived afterwards
in polynomial time. Furthermore, the inclusion of vehicle costs in this extended
crew scheduling formulation ensures the overall optimality of the proposed two-
phase crew-first, vehicle-second approach.

Freling et al. [13] propose a method to solve bus and driver scheduling prob-
lems on individual bus lines. They propose a formulation that mixes the set
partitionning formulation for crew scheduling and the assignment formulation
for the vehicle scheduling problem. They compute lower bound and feasible so-
lutions by combining Lagrangian relaxation and column generation. Columns
correspond to crew scheduling variables. The constraints involving the current
columns are relaxed in an Lagrangian way. The obtained Lagrangian dual prob-
lem is a single-depot vehicle scheduling problem (SDVSP). Once the lagrangian
relaxation is solved a new set of columns with negative reduced costs is gener-
ated. The method is iterated until the gap between the so-computed lower bound
and an estimated lower bound is small enough. Feasible solutions are generated
from the last feasible SDVSP and the current set of columns.

2.2 Production and employee scheduling

Specific employee scheduling problems involved in production scheduling are of-
ten tackled considering the job schedule is fixed. As a representative work in
this area, Valls et al. [16] consider a fixed schedule in a multi-machine environ-
ment and consider the problem of finding the minimal number of workers. The
problem is formulated as a restricted vertex coloring problem and a branch and
bound algorithm is presented.

A large part of work involving both job scheduling and employee timetabling
aims at keeping the number of required employees at each time period under a
threshold, without considering the regulation constraints of employee schedules
nor the individual preferences and skills of employees. Danniels and Mazzola [1]
consider a flow-shop problem in which the duration of an operation depends on
the selected mode to process an operation. Each mode defines a number of re-
sources (workers) needed during the processing of the operation. The scheduling
horizon is discretized in periods and at each time period, the number of workers
cannot exceed a fixed number. Optimal and heuristics approaches are proposed.
Daniels et al. [3] propose the same approach in a parallel machine context. Bailey
et al. [2] and Alfares and Bailey [4] propose an integrated model and a heuristic
for project task and manpower scheduling where the objective is to find a trade-
off between labor cost and daily overhead project cost. The labor cost depends
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on the number of employed workers at each time period. The daily overhead cost
depends on the project duration. There are no machine constraints and the labor
restrictions lies in a maximal number of workers per period. In [6], the authors
propose a MILP to minimize the makespan in a flow-shop with multi-processor
workstation as a primary objective and to determine the optimal number of
workers assigned to each machine as a secondary objective. The sequence of jobs
is fixed on each machine and the makespan is minimized through lot-streaming.

Faaland and Schmitt [17] consider an assembly shop with multiple worksta-
tions. Each task must be performed on a given workstation by a worker. There
are production and late-delivery costs on one hand and labor cost linked to
the total number of employees on the other hand. The authors study the ben-
efits of cross-training which allows employees to have requisite skills for several
work-centers. A heuristic based on a priority rule and on the shifting bottleneck
procedure is proposed.

A more general problem (w.r.t. the timetabling problem) is studied by Daniels
et al. [7]. They extend the model proposed in [1] to an individual representa-
tion of employees in a flow-shop environment. Each employee has the requisite
skills for only a subset of machines and can be assigned to a single machine at
each time period. The duration of a job operation depends on the number of
employees assigned to its machine during its processing. The employees assigned
to an operation are required during all its processing time. No schedule regula-
tions are considered except unavailability periods. A branch and bound method
is developped and the benefits of the level of worker flexibility for makespan
minimization is studied.

In [18], Häıt et al. propose a general model for integrating production schedul-
ing and employee timetabling, based on the concepts of load center, configura-
tion, employee assignment and sequence. A so-called load center is a subset of
machines that can be managed simultaneously by a single employee. A config-
uration is a set of load centers defining a partition of a subset of machines. At
each scheduling time period a single configuration is active. Hence, the num-
ber of load centers in a configuration gives the number of active employees. An
employee assignment is an assignment of each load center of a configuration
to a different employee. The authors define the configuration graph each node
correspond to a possible configuration and there is an arc between two config-
urations that can be consecutive in time with a weight giving the cost of the
configuration changeover. This model allows to represent the simultaneous work
of an employee on several machines. However the computation method of the job
durations performed simultaneously by the same operator is not provided. An
example with a two machines provided by the authors show the computation of
this duration of a job amounts to solve a scheduling problem of the elementary
tasks performed by the operator. Furthermore it can happen in practice that
more than one operator is needed during the processing of a job on a machine,
which is not covered by the proposed model. In this model, a schedule is defined
by the start time of the jobs and by a path (with possible loops and cycles) in
the graph of configurations with the employee assignment for each configuration
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of this path. The authors provide two exemples of integrated resolution in a
flow-shop context. In the first example, they propose a dynamic programming
algorithm to find a feasible path in the configuration graph with a fixed number
of equivalent operators and a fixed sequence of jobs. In the second example they
propose a heuristic and a lower bound of the makespan in a flow-shop where the
timetabling problem reduced to the assignment of an employee to each machine,
the duration of the jobs depending of the employee performance.

Drezet and Billaut [19] consider a project scheduling problem with human
resources and time-dependent activities requirements. Furthermore, employees
have different skills and the main legal constraints dictated by the workforce
legislation have to be respected. The model is quite general. However, only hu-
man resources are considered since the considered context is not a production
scheduling problem where machines are critical resources. A tabu search method
is proposed as well as proactive scheduling techniques to deal with the uncer-
tainty of the problem.

This brief state-of-the-art reveals that, compared to the transportation do-
main, the integration of production scheduling and employee timetabling is in
its earliest phase. Almost no existing approach tackles the complex regulation
constraints of work nor the diversity of employee activities in modern production
systems. Recently, more sophisticated models have been proposed but indepen-
dently of the relevant literature in staff scheduling in other areas and without
proposing a general solution methodology.

2.3 Position of the considered problem

There are several variants of the employee timetabling problem, see for instance
the recent surveys [20, 21]. In this paper we focus on only one of the problems
presented in [22] called individual shift scheduling where each employee (or team
of employees) is considered individually with its own skills and preferences. The
time horizon is discretized in elementary time periods (shifts). At each period, a
set of activities has to be performed and each activity requires a specific number
of workers. The objective of the employee timetabling problem is to assign a
single activity to each employee at each time period in order to cover the demand
for all activities. Such an assignment is called a schedule. There are restrictions
on the possible schedules due to regulation constraints and employee profiles. The
objective of the timetabling problem is to maximize the employee satisfaction.

There is also a large number of different production scheduling problems [23].
In this paper we consider a rather general problem where a set of jobs linked by
precedence constraints has to be scheduled on a set of machines. Each job has a
processing time, a release date, a due date and is assigned to a unique machine.
A job cannot be interrupted once started and each machine can process at most
one job simultaneously. The job scheduling problem lies in assigning a start time
to each job with the objective to minimize the production costs.

We propose to integrate the two problems by associating to each job (pro-
cessed on a machine) a set of activities (performed by the employees) such that
assigning a start time to a job determines the period of each associated activity.
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From the employee timetabling point of view, the demand profile is not known
in advance but is determined by the job schedule. From the job scheduling point
of view, the possibility to start a job is subject to the presence of the employees
able to perform the activities generated by this job. The employee profile is de-
termined by the selected employee schedules. We will give several mathematical
formulations of variants of this problem in Section 3.

3 ILP Models of integrated employee timetabling and

machine scheduling problem

The model of integration proposed by [18] is centered on the concept of config-
uration which is a partitition of the machines at a given time period such that
each subset is managed by a single operator. In this paper we propose to per-
form the integration through the concept of activity which is widely used in the
employee timetabling literature. We first provide a model with a common time
representation for timetabling and scheduling (3.1). Then we extend this model
to the case where there is a time representation for employee timetabling and
another time representation for job scheduling (3.2). We show how these models
can be extended to tackle the variability in job durations and machine assign-
ment through the concept of modes (3.3). The three latter models are based on
time indexed and assignment variable formulations. In Section (3.4) we show
how the set covering formulation usually used in efficient employee scheduling
methods can also be used in the production scheduling context.

3.1 Common time representation for timetabling and scheduling

and single-mode jobs

We consider the following employee timetabling and machine scheduling prob-
lem.

Let T denote a time horizon, discretized in a set of elementary time periods
t = 0, ..., T − 1. We consider an organization comprising a set of E employees
E = {1, . . . , E} and a set of m machines M = {1, . . . ,m}. There is set of A
activities A = {1, . . . , A} where each activity may be required by a job and
has to be performed by one or several employees. Ae is the set of activities an
employee is able to perform.

The organization has to process a set of n jobs J = {1, . . . , n} during the time
horizon. Each job j has a known duration pj > 0 and requires for its execution
a precise machine mj . A binary matrix (bjk)1≤j≤n,1≤k≤m states if job j requires
machine k, i.e. bjmj

= 1 and bjk = 0, ∀k 6= mj . A matrix (Rja)1≤j≤n,1≤a≤A

is given where Rja is the number of employees that have to perform activity a
during the processing of job j. Each job j has a release date rj and a due date
dj .

There are precedence constraints linking the jobs, represented by a directed
graph G = (V,U) where V is the set of nodes including one node per job plus a
dummy start node denoted 0 and a dummy end node denoted N +1. U is the set
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of arcs representing the precedence constraints. Each arc (i, j) of U is valuated
by a (positive or negative) time lag dij .

There are also specific constraints on the activities that can be assigned to
a given employee over time which will be described below. The objective of the
considered employee timetabling and machine scheduling problem is to assign a
start time to each activity and to assign exactly one activity to each employee
at each time period.

We assume that there is a production cost Wjt if job j starts at time t and
an employee satisfaction cost Ceat if employee e is assigned to activity a at time
t.

xjt is a binary decision variable where xjt = 1 if job j starts at time t and
xjt = 0 otherwise. yeat is a binary decision variable such that yeat = 1 if employee
e is assigned to activity a at time t and yeat = 0 otherwise. The problem can be
formulated as follows:

min

n∑

j=1

T−1∑

t=0

Wjtxjt +

E∑

e=1

A∑

a=1

T−1∑

t=0

Ceatyeat (1)

T−1∑

t=0

xjt = 1 ∀j ∈ J (2)

xjt = 0 ∀j ∈ J ,∀t 6∈ {rj , . . . , dj − pj} (3)
n∑

j=1

t∑

τ=t−pj+1

bjkxjτ ≤ 1 ∀t ∈ {0, . . . , T − 1} =,∀k ∈M (4)

T−1∑

t=0

txjt −
T−1∑

t=0

txit ≥ dij ∀(i, j) ∈ U (5)

E∑

e=1

yeat ≥
n∑

j=1

t∑

τ=t−pj+1

Rjaxjτ ∀a ∈ A,∀t ∈ {0, . . . , T − 1} (6)

∑

a∈Ae

yeat = 1 ∀e ∈ E ,∀t ∈ {0, . . . , T − 1} (7)

Fy ≤ f (8)

xjt ∈ {0, 1} ∀j ∈ J ,∀t ∈ {0, . . . , T − 1} (9)

yeat ∈ {0, 1} ∀e ∈ E ,∀a ∈ A,∀t ∈ {0, . . . , T − 1} (10)

The objective of the problem is to minimize the total cost (1) subject to
the following constraints. Each job has to be started exactly once (2). Each
job must be started a way that it is started and finished within its time win-
dow. (3). At most one job can be processed by a machine at each time pe-
riod (4). The precedence constraints must be satisfied (5). The number of em-
ployees assigned to each activity at each time period has to cover the total
demand of all jobs in process (6). Each employee has to be assigned to ex-
actly one activity (in set Ae) at each time period (7). We assume A contains
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also non working activities representing employee inactivity (break, lunch, etc.)
gathered in set P. Constraints (8) are specific constraints for each employee

e of the form
∑

a∈A

∑T−1
t=0 Fatqyeat ≤ fq, with Fatq ∈ {−1, 0, 1}, which al-

low for instance to take account of minimum or maximum consecutive peri-
ods of work, and other complex regulation constraints. For instance if no em-
ployee can work more than two consecutive shifts, the constraints of the form∑

a∈A\P(yea(t−1) + yeat + yea(t+1)) ≤ 2 can be defined for each time period

t ∈ [1, T − 2] for each employee e. The main drawback of this formulation is the
number of these constraints can be huge in practical situations and in general a
set covering formulation is preferred (see Section 3.4).

The main difference between machine and the employee resource is that em-
ployee timetables are more flexible as illustrated in the example displayed in
Figure 1. In this example, the two jobs generate a single activity during their
processing. If we suppose that the first employee E1 allocated to this activity
has to take a break while J1 is in process, another employee can perform the
activity until the break of E1 is over which occurs in this example while J2 is in
process.
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Fig. 1. a 1-machine and 2-employee example

3.2 Different time representations for timetabling and scheduling

and single-mode jobs

We assume that for pratical reasons, there may be a different time representation
for the machine scheduling problem and for the employee timetabling problem.
Let T denote the time horizon for the scheduling problem and let Θ denote the
time horizon for the timetabling problem. Furthermore, we assume that if a job
j starts at time t, 0 ≤ t < T then a number of employees Rjatθ ≥ 0 is required
to perform activity a at each period θ, 0 ≤ θ < Θ.

It follows that demand covering constraints (6) can be generalized with con-
straints (16) below and the new model is:
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min

n∑

j=1

T−1∑

t=0

Wjtxjt +

E∑

e=1

A∑

a=1

Θ−1∑

θ=0

Ceaθyeaθ (11)

T−1∑

t=0

xjt = 1 ∀j ∈ J (12)

xjt = 0 ∀j ∈ J ,∀t 6∈ {rj , . . . , dj − pj} (13)
n∑

j=1

t∑

τ=t−pj+1

bjkxjτ ≤ 1 ∀t ∈ {0, . . . , T − 1} =,∀k ∈M (14)

T−1∑

t=0

txjt −
T−1∑

t=0

txit ≥ dij ∀(i, j) ∈ U (15)

E∑

e=1

yeaθ ≥
n∑

j=1

T−1∑

t=0

Rjatθxjt ∀a ∈ A,∀θ ∈ {0, . . . Θ − 1} (16)

∑

a∈Ae

yeaθ = 1 ∀e ∈ E ,∀θ ∈ {0, . . . , Θ − 1} (17)

Fy ≤ f (18)

xjt ∈ {0, 1} ∀j ∈ J ,∀t ∈ {0, . . . , T − 1} (19)

yeaθ ∈ {0, 1} ∀e ∈ E ,∀a ∈ A,∀θ ∈ {0, . . . , Θ − 1} (20)

Such constraints allow to consider the cases where the employees need not be
present during all the processing of a job on its machine, or when the employee
activity generated by the job is not simultaneaous with the processing of the
jobs. This feature takes place when employees have to perform setup or removal
activities before and after the job processing, or when a control operation has
to be carried out during a limited time while the job is in process. In figure 2,
a third employee is necessary only right before the start and right after the end
of jobs J1 and J2.

This type of model allows also to take account of a different time scale be-
tween the time horizon of the scheduling problem, with the time periods consid-
ered in the timetabling problem. Suppose the scheduling time period is 1 hour
and the timetabling period is 4 hours, then an aggregated information of the
activities to perform during each 4 hours period has to be provided. In this pur-
pose, values Rjatθ need not be integers if the activity a generated by job j in
timetabling period θ occupies only a portion of an employee’s work capacity. In
figure 3, each job is assumed to require 0.25 employee per time unit and generate
a single activity. Then, the demand for employees able to perform this activity
is displayed for each time table period.
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Fig. 2. a 1-machine and 3-employee example

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

J1 J2M1

M2

M3

0 1 2 3 4 5 6 7 8 9 10

J4 J3

J5 J6

1

2

3

0 1 2

scheduling period

demand

timetabling period

Fig. 3. a 1-machine and 2-employee example
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3.3 Multi-mode jobs

We consider the case where for each job j there is a number Qj of different pro-
cessing modes corresponding to different ways (durations, machine and activity
requirements) to perform job j. Let pq

j denote the duration of job j in mode q.
Let bq

jk = 1 if job j uses machine k in mode q and bq
jk = 0 otherwise. xq

jt is a

binary decision variable such that xq
jt = 1 if job j is started at time t in mode

q and xq
jt = 0 otherwise. Rq

jatθ now denotes the number of employees that must
perform activity a at period θ if job j is started at time t in mode q. The model
can be adapted as follows:

min

n∑

j=1

Qj∑

q=1

T−1∑

t=0

Wjtx
q
jt +

E∑

e=1

A∑

a=1

Θ−1∑

θ=0

Ceaθyeaθ (21)

Qj∑

q=1

T−1∑

t=0

xq
jt = 1 ∀j ∈ J (22)

xq
jt = 0 ∀j ∈ J ,∀q ∈ {1, . . . , Qj}

∀t 6∈ {rj , . . . , dj − pj} (23)

n∑

j=1

Qj∑

q=1

t∑

τ=t−p
q

j
+1

bq
jkxq

jτ ≤ 1 ∀t ∈ {0, . . . , T − 1} =,∀k ∈M (24)

Qj∑

q=1

T−1∑

t=0

txq
jt −

Qi∑

s=1

T−1∑

t=0

txs
it ≥ dij ∀(i, j) ∈ U (25)

E∑

e=1

yeaθ ≥

n∑

j=1

Qj∑

q=1

T−1∑

t=0

Rjatθx
q
jt ∀a ∈ A,∀θ ∈ {0, . . . Θ − 1} (26)

∑

a∈Ae

yeaθ = 1 ∀e ∈ E ,∀θ ∈ {0, . . . , Θ − 1} (27)

Fy ≤ f (28)

xq
jt ∈ {0, 1} ∀j ∈ J ,∀q ∈ {1, . . . , Qj},

∀t ∈ {0, . . . , T − 1} (29)

yeaθ ∈ {0, 1} ∀e ∈ E ,∀a ∈ A,∀θ ∈ {0, . . . , Θ − 1} (30)

3.4 Set covering formulations

Let Se denote the set of valid schedules for an employee e. For each schedule
s ∈ Se, each activity a and each timetabling period θ, binary value ysaθ is such
that ysaθ = 1 if the schedule performs activity a at time θ and ysaθ = 0 otherwise.
Cs denote the cost of a schedule s ∈ Se. Binary decision variable zs is defined
such that zs = 1 if schedule s is selected and zs = 0 otherwise.

74 C. Artigues et al.



A new model can then be proposed by including the set covering formulation
of the timetabling constraints (we ignore the multi-mode characteristics):

min

n∑

j=1

T−1∑

t=0

Wjtxjt +

E∑

e=1

∑

s∈Se

Cszs (31)

T−1∑

t=0

xjt = 1 ∀j ∈ J (32)

xjt = 0 ∀j ∈ J ,

∀t 6∈ {rj , . . . , dj − pj} (33)
n∑

j=1

t∑

τ=t−pj+1

bjkxjτ ≤ 1 ∀t ∈ {0, . . . , T − 1} =,∀k ∈M (34)

T−1∑

t=0

txjt −

T−1∑

t=0

txit ≥ dij ∀(i, j) ∈ U (35)

E∑

e=1

∑

s∈Se

ysaθzs ≥
n∑

j=1

T−1∑

t=0

Rjatθxjt ∀a ∈ A,∀θ ∈ {0, . . . Θ − 1} (36)

∑

s∈Se

zs = 1 ∀e ∈ E (37)

xjt ∈ {0, 1} ∀j ∈ J ,∀t ∈ {0, . . . , T − 1} (38)

zs ∈ {0, 1} ∀e ∈ E ,∀s ∈ Se (39)

4 A Constraint Programming model

Constraint programming formulations have been proposed for production schedul-
ing [24] and for employee timetabling [22]. We present hereafter an integrated
formulation which involves start time decision variables Sj ∈ [ri, di − pi] for all
jobs, an activity assignment variable aθe ∈ Ae giving the activity assigned to
employee e in period θ and a demand variable δθa ∈ IN giving the number of em-
ployees required for activity a during period θ. Consider the following constraint
satisfaction problem (CSP):

Sj − Si ≥ dij ∀(i, j) ∈ U (40)

Sj + pj ≤ Si ∨ Si + pi ≤ Sj ∀i, j ∈ J ,mi = mj (41)

φ(δθa, S) ∀θ ∈ {0, . . . Θ − 1},∀a ∈ A (42)

distribute((δθa)a∈A,A, (aθe)e∈E) ∀θ ∈ {0, . . . Θ − 1} (43)

regular((aθe)θ∈{0,...Θ−1}, Π) ∀e ∈ E (44)

Constraints (40) are the precedence constraints. Constraints (41) are the ma-
chine disjunctive constraints. Constraints (42) establish the link between the job
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start time variables S and the demand variable δ through generic constraint φ
that needs to be specified for each specific problem. Constraints (43) represent
demand satisfaction through the global cardinality constraint distribute which
states that for a given period θ, δθa variables must have value a in the activ-
ity assignment vector (aθe)e∈E of employees during period θ. Last, constraints
(44) express the employee specific and regulation constraints through the global
regular language membership constraints regular [25], restricting the sequence
of values taken by the assignment variables to belong to the regular language
associated to Π.

The advantage of constraint programming is its high flexibility to model
complex demand computations, as well as complex regulation constraints.

The above CSP can be transformed into an optimization problem by in-
troducing cost variables. This can be done through the element global con-
straints (see next Section). As an alternative, in [22], a new global constraint
cost− regular(X, Π, z, C) extends the regular constraint by computing the cost
z associated by an assignment of variables X given cost matrix C.

5 Solving a lexicographic makespan and employee cost

optimization problem by a hybrid LP-CP method

In this Section, we propose a hybrid CP-LP exact method to solve a lexicographic
bicriteria optimization problem. The considered production cost is the makespan,
denoted Cmax. Let Cempl denote the total satisfaction cost of employees. The
considered problem can be denoted

min Lex(Cmax, Cempl) (45)

Cmax ≥ Sj + pj ∀j ∈ J (46)

Cempl =
∑

e∈E

Θ−1∑

θ=0

Ceθ (47)

element(Ceθ, (Ceaθ)a∈Ae
, aθe) ∀e ∈ E ,∀θ ∈ {0, . . . Θ − 1} (48)

(40) . . . (44)

Constraints (46) enforce the makespan value. Constraint (47) defines the to-
tal cost Cempl as the sum of elementary employee/period costs represented by
decision variables Ceθ. element global constraints (48) simply enforce the impli-
cations aθe = v =⇒ Ceθ = Cevθ for all θ ∈ {0, . . . Θ−1}, e ∈ E and v ∈ Ae. The
problem can be solved by first finding the optimal makespan C∗

max (problem A)
and, second, by finding the minimal employee cost C∗

empl compatible with C∗
max

(problem B).
We propose to solve both problems A and B through implicit enumeration

in a constraint programming framework. Hence C∗
max is found by iteratively

searching the smallest V such that there is a feasible solution verifying Cmax ≤ V
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(problem A). C∗
empl is found by searching the smallest V ′ such that there is a

feasible solution verifying Cmax = C∗
max and Cempl ≤ V ′ (problem B).

At each node of each above-defined search trees, constraint propagation al-
gorithms are performed to either reduce the domain of start time S and activity
variables a or to detect an inconsistency and prune the node. The branching
scheme first assigns values to start time variables and, once all start time vari-
ables are assigned, makes the remaning decisions on activity variables. Note that
constraints φ (42) have to ensure that once a complete assignment of the start
time variables is computed, the demand variables δ are also completely assigned.

For both problems A and B, the makespan constraints set due dates on the job
operations. Hence, standard scheduling constraint propagation algorithms can
be used to reduce the start time domains. In the present work, we use precedence
constraint propagation and edge-finding. We refer to [26] for a precise description
of those algorithms.

For domain reduction of the demand and activity variables δ and a, besides
the standard distribute and regular constraint propagation algorithm, we
propose to embed the linear programming relaxation of the ILP formulation
(21). . . (30), limited to constraints involving yeaθ assignment variables, into a
global constraint. Let δθa denote the smallest value in the domain of demand
variable δθa for activity a during period θ at a given node of the constraint pro-
gramming search tree. Then we consider the following LP relaxation, considering
only labor costs.

min
E∑

e=1

A∑

a=1

Θ−1∑

θ=0

Ceaθyeaθ (49)

E∑

e=1

yeaθ ≥ δθa ∀a ∈ A,∀θ ∈ {0, . . . Θ − 1} (50)

∑

a∈Ae

yeaθ = 1 ∀e ∈ E ,∀θ ∈ {0, . . . , Θ − 1} (51)

Fy ≤ f (52)

0 ≤ yeaθ ≤ 1 ∀e ∈ E ,∀a ∈ A,∀θ ∈ {0, . . . , Θ − 1} (53)

At a given node, the relaxation is stronger if the lower bound δθa on the
demand is tight. This obviously depends on the definition and propagation of
constraint φ. Each time the LP relaxation is unfeasible, which can occur due
to both demand undercoverage or labor cost upper bound violation, the current
node is pruned.

Last, whenever an upper bound Z on the total labor cost Cempl is known,

the reduced cost based filtering technique can be applied. Let C̃eaθ denote the
reduced cost of an activity assignment variable yeaθ and let Cempl denote the

current optimal LP solution value. If, Cempl + C̃eaθ > Z, a can be removed from
the domain of aθe.

Integrated Employee Timetabling and Production Scheduling [...] 77



6 Computational results on a basic employee timetabling

and job-shop scheduling problem

In this Section, we show the potential of hybrid methods to solve integrated
employee timetabling and production scheduling problems, through the resolu-
tion of basic employee and job-shop scheduling instances. For constraint based
scheduling we use ILOG Solver 6.1 and Scheduler 6.1. For LP resolution we use
ILOG Cplex 9.1. All programs are coded in C++ under Linux on a AMD x86-64
architecture.

We consider the standard job-shop scheduling problem in which a job is made
of m operations which form a chain in the precedence graph. Each job has to
be processed by all the machines successively. Hence the operations of the same
jobs are all assigned to different machines.

We consider job-shop instances of 6 jobs and 4 machines, comprising 24
operations. We consider a set of 15 employees and a set of 4+1 activities. The
job operations processing times vary from 1 to 10. We assume one time unit
corresponds to one hour. We define a timetabling period as a 8-hour shift (i.e.
T = 8Θ). Each employee has to be assigned to one activity during each shift.
We assume activity 5 corresponds to employee inactivity during the shift. Each
employee has skills for 2 production activities out of 4. Each break must be of at
least 2 consecutive shifts (16-hour break). There is a cost (uniformly randomly
generated from 1 to 5) for assigning a production activity to an employee during
each shift. Furthermore, to ensure problem feasibility at minimal makespan, we
consider an additional set of 10 extra-employees having a greater assignment
cost (equal to 9 for all extra-employees and for all periods and all activities).

We now describe how constraint φ is implemented for the considered example.
We simply assume there is a mapping between activities and machines. Hence,
whenever a machine is in process during a shift, then an employee able to perform
the corresponding activity is needed. It follows that at most 4 employees can be
required simultaneously during a shift.

More precisely the link between the operation schedule S and the demand
(δθa) can be described by the following constraints. Let D = T/Θ and let Jk

denote the set of operations scheduled on machine k. Let ak denote the activity
corresponding to machine k.

Sj + pj > Dθ ∧ Sj < D(θ + 1) =⇒ δθamj
= 1

∀j ∈ J ,∀θ ∈ [0, Θ − 1]

(Sj + pj ≤ Dθ ∨ Sj ≥ D(θ + 1),∀j ∈ Jk) =⇒ δθak
= 0

∀k ∈M,∀θ ∈ [0, Θ − 1]

We use the standard job-shop resolution method provided in the example li-
brary of ILOG scheduler for the scheduling constraint propagation parts. For the
search part on the start time and activity variables, we use a simple backtracking
on possible values (in a chronological way for the start times). All employee con-
straints have been coded by distribute constraints. The LP relaxation and the
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reduced cost-based filtering algorithms are embedded into a global constraint.
These algorithms are called whenever the lower bound of an activity demand is
increased for any period or when the domain of a variable (aθe) is changed.

We have generated 10 instances having the above described characteristics.
The results, comparing the hybrid method with and without reduced cost-based
filtering, are displayed in Table 1. Column Inst gives the instance number. Col-
umn Mks∗ gives the optimal makespan obtained by pure CP without considering
employee cost minimization. Column cost(M) gives the employee cost of the ob-
tained solution. Columns #fails(M) and CPU(M) give the total number of fails
and the CPU times of this search process. Column cost∗ gives the minimal em-
ployee cost solution with a makespan equal to Mks∗. Columns #fails(H) and
CPU(H) give the total number of fails and the CPU times of the complete hy-
brid search method needed to find the optimal cost solution. Columns #fails(H−)
and CPU(H−) give the same values for the hybrid method used without reduced
cost-based filtering.

Inst Mks∗ cost(M) CPU(M) #fails(M) cost∗ CPU(H) #fails(H) CPU(H−) #fails(H−)
1 45 75 0.2s 3 29 0.8s 151 1.1s 438
2 56 69 0.2s 2 26 208s 27176 4099s 2459422
3 44 69 0.2s 2 26 2.2s 732 1.7s 1691
4 40 53 0.2s 3 23 0.5s 24 0.7s 183
5 40 63 0.2s 3 27 6.2s 4047 205s 117850
6 48 70 0.2s 7 28 0.9s 96 1.2s 371
7 43 67 0.2s 2 33 0.6s 83 0.8s 242
8 37 57 0.2s 3 22 28s 8185 400s 269799
9 49 69 0.2s 4 24(22) 3364s 340742 - -
10 48 68 0.2s 3 23 4.1s 1140 408s 267695

Table 1. Method comparison on 10 basic employee and job-shop scheduling instances

For the proposed instances, the makespan minimisation problem is very easy
since CP always solves the problem in less than 0.2s. Note that, in contrast, the
hybrid methods outperform the standard constraint programming approaches
for employee cost minimization since the latter is unable to find the optimal so-
lution in a reasonable amount of time. Furthermore, while keeping the makespan
optimal, the employee cost is significantly improved by the hybrid methods for
all instances. One instance remains unsolved by all methods and the obtained
lower and upper bounds are given as well as the total CPU time and number of
fails needed to obtain them. This underlines the difficulty of the problem and
shows the need for improvement of the proposed methods, considering also that
the considered instances are small ones. The reduced cost-based filtering hybrid
methods outperforms the basic hybrid method on almost all instances showing
the potential of high interaction between CP and LP for this kind of difficult
integrated planning problem.
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7 Concluding remarks

We have proposed a flexible model and several ILP and CP formulations for inte-
grated employee timetabling and production scheduling. We have shown how the
flexibility of constraint programming modeling can be used to represent complex
relationships between schedules and activity demands. A hybrid exact method
involving standard constraint programming-based scheduling and timetabling
technique on one hand, and a linear programming relaxation with reduced-cost
based filtering on the other hand, has been used to solve to optimality instances
of the problem which cannot be solved by standard constraint programming.
We are planning to generate several other instances to study the behaviour of
the proposed method with different problem characteristics. The search algo-
rithm has also to be refined since we have used only standard backtracking
schemes without any particular rule for activity selection. More realistic em-
ployee timetabling constraints will have also to be considered. This may lead to
an improvement of the results of pure constraint programming techniques. The
search could also be guided by using the linear programming optimal solution.
Decomposition methods such as benders decomposition or column generation
will have also to be tested.
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Abstract. In this paper we introduce a new fuzzy evaluation function
for examination timetabling. We describe how we employed fuzzy reason-
ing to evaluate the quality of a constructed timetable by considering two
criteria, the average penalty per student and the highest penalty imposed
on any of the students. A fuzzy system was created based on a series of
easy to understand rules to combine the two criteria. A significant prob-
lem encountered was how to determine the lower and upper bounds of
the decision criteria for any given problem instance, in order to allow the
fuzzy system to be fixed and, hence, applicable to new problems without
alteration. In this work, two different methods for determining bound-
ary settings are proposed. Experimental results are presented and the
implications analysed. These results demonstrate that fuzzy reasoning
can be successfully applied to evaluate the quality of timetable solutions
in which multiple decision criteria are involved.

Keywords - Timetabling, fuzzy sets, multi-criteria decision making

1 Introduction

Timetabling refers to the process of allocating limited resources to a number
of events subject to many constraints. Constraints are divided into two types:
hard and soft. Hard constraints cannot be violated in any circumstances. Any
timetable solution that satisfies all the hard constraints specified is considered as
a feasible solution, provided that all the events are assigned to a time slot. Soft
constraints are highly desirable to satisfy, but it is acceptable to breach these
types of constraint. However, it is very important to minimise the violation of the
soft constraints, because, in many cases, the quality of the constructed timetable
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is evaluated by measuring the fulfillment of these constraints. In practice, the va-
riety of constraints which are imposed by academic institutions are very different
[6]. Such variations make the timetabling problem more challenging. Algorithms
or approaches that have been successfully applied to one problem, may not per-
form well when applied to different timetabling instances.

Researchers have employed many different approaches over the years in an at-
tempt to generate ‘optimal’ timetabling solutions subject to a list of constraints.
Approaches such as Evolutionary Algorithms [7, 10, 17, 25], Tabu Search [8, 18,
20, 26], Simulated Annealing [24], Constraint Programming [1, 4, 19], Case Based
Reasoning [11, 27] and Fuzzy Methodologies [2, 3, 22, 27] have been successfully
applied to timetabling problems.

In 1996, Carter et al. [14] introduced a set of examination timetabling bench-
mark data. This benchmark data set consists of 13 problem instances. Originally
these data came from real university examination timetabling problems. There-
fore, it was expected that these data sets varied considerably in terms of resources
given/availability, constraints specified and how the quality of the constructed
timetable were evaluated. For the sake of generality, these data sets were then
simplified such that only the following constraints were considered:

Hard constraint The constructed timetable must be conflict free. The require-
ment is to avoid any student being scheduled for two different exams at the
same time.

Soft constraint The solution should attempt to minimise the number of exams
assigned in adjacent time slots in such a way as to reduce the number of
students sitting exams in close proximity.

In the context of these benchmark data sets, several different objective func-
tions have been introduced in order to measure the quality of the timetable
solution. In addition to the commonly used objective function that evaluates
only the proximity cost (see next section for details), other objective functions
have been derived based on the satisfaction of other soft constraints, such as
minimising consecutive exams in one day or overnight, assigning large exams
to early time slot, and others. This is discussed in more detail in the following
section.

Previous studies such as [3] and [22], demonstrated that fuzzy reasoning is a
promising technique that can be used both for modeling timetabling problems
and for constructing solutions. These studies indicated that the utilisation of
fuzzy methodologies in university timetabling is an encouraging research topic.
In this paper, we introduce a new evaluation function that is based on fuzzy
methodologies. The research presented in this paper will focus on evaluating the
constructed timetable solutions by considering two decision criteria. Although
the constructed timetable solutions were developed based on specific objectives
specified earlier, the method is general in the sense that a user could, in principle,
define additional criteria he or she wished to be taken into account in evaluating
any constructed timetables. This paper is motivated by the fact that in practice
the quality of the timetable solution is usually assessed by the timetabling officer
considering several criteria/objectives.
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In the next section, we present a brief description of existing evaluation meth-
ods, their drawbacks, and a detailed explanation of the proposed novel approach.
Section 3 presents descriptions of the experiments carried out and the results ob-
tained, followed by discussions in Section 4. Finally, some concluding comments
and future research directions are given in Section 5.

2 Assessing Timetable Quality

2.1 Existing Evaluation Function

This section presents several evaluation functions that have been developed for
Carter et al.’s benchmark data sets. The proximity cost function was the first
evaluation function used to measure the quality of timetables [14]. It is moti-
vated by the goal of spreading out each student’s examination schedule. In the
implementation of the proximity cost, it is assumed that the timetable solu-
tion satisfies the defined hard constraint i.e. that no student can attend more
than one exam at the same time. In addition, the solution must be developed
in such a way that it will promote the spreading out of each student’s exams
so that students have as much time as possible between exams. If two exams
scheduled for a particular student are t time slots apart, a penalty weight is
set to wt = 25−t where t ∈ {1, 2, 3, 4, 5} (as implemented in [14] and widely
adopted by most subsequent research in this area). The weight is multiplied by
the number of students that sit both the scheduled exams. The average penalty
per student is calculated by dividing the total penalty by the total number of
students. The maximum number of time slots for each data set are predefined
and fixed, but no limitation in terms of capacity per time slot is set. Consecutive
exams either in the same day or overnight are treated the same, and there is
no consideration of weekends or other actual gaps between logically consecutive
days. Hence, the following formulation is used to measure this proximity cost
(adapted from Burke et al. [5]):

∑N−1
i=1

∑N
j=i+1 sijw|pj−pi|

S
,

where N is the number of exams, sij is the number of students enrolled in
both exam i and j, pi is the time slot where exam i is scheduled, and S is the
total number of students; subject to 1 ≤ |pj − pi| ≤ 5.

Burke et al. [10] devised a new evaluation function in which the goal is to
minimise the number of students who have to sit two exams in the same day.
Besides the need to construct a conflict free timetable, it also required to schedule
the exams within the maximum number of time slots given. There are three time
slots per weekday and one morning slot on Saturday. A maximum capacity per
time slot is also specified. Burke and Newall [9] extended the previous evaluation
function by defining different weights for two consecutive exams in the same day
and two exams in overnight consecutive time slots.
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More recently, Petrovic et al. [22] employed fuzzy methodologies to mea-
sure the satisfaction of various soft constraints. The authors described how they
modeled two soft constraints, namely constraint on large exam and constraint on
proximity of exams, in the form of fuzzy linguistic terms and defined the related
rule set. They used these two criteria to evaluate the timetable quality.

2.2 Disadvantages/Drawbacks of Current Evaluation Functions

As can be seen, the final value of the proximity cost penalty function is a measure
only of the average penalty per student. Although this penalty function has been
widely used by many researchers in the context of the benchmark data set, in
practice, considering only the average penalty per student is not sufficient to
evaluate the quality of the constructed timetable. The final value does not, for
example, represent the relative fairness of spreading out each student’s schedule.
For example, when examining the resultant timetable, it may be the case that a
few students have an examination timetable in which many of their exams are
scheduled in adjacent time slots. These students will not be happy with their
timetable as they will not have enough time to do their preparation. On the
other hand, the remaining students enjoy a ‘good’ examination timetable.

EXAMPLE : Consider two cases. Case 1 : there are 100 students with each
student given 1 penalty cost; Case 2 : there are 100 students, but now 10 students
are given 10 penalty cost respectively; the rest zero. In both cases the average
penalty per student is equal to 1, but obviously the solution in Case 2 is ‘worse’
than the solution in Case 1.

One of the authors (McCollum), with extensive experience of real-world
timetabling, having spend 12 years as a timetabliong officer and with continuing
links with the timetabling industry, has expressed (via private communication)
that ‘proximity cost’ is not the only factor considered by timetabling officers
when evaluating the quality of a timetable. Usually, a timetable evaluation is
based on several factors and some of the factors are subjective and/or based
on ambiguous information. Furthermore, to the best of our knowledge, all the
evaluation functions mentioned in Section 2.1 are integrated into the timetabling
construction process. These objective functions are used to measure the satis-
faction of specific soft constraints. This means that, the constructed timetable
is optimised for certain soft constraints. In practice, the user may consider other
criteria in evaluating the constructed timetable.

One way to handle multiple criteria decision making is by using simple lin-
ear combination. This works by multiplying the value of each criterion by a
constant weighting factor and summing to form an overall result. Each weight
represents the relative important of each criterion compared to the other crite-
ria. In reality, there is no simple way to determine the precise values for these
weights, especially weights that can be used across several problem instances
with different complexity. Fuzzy systems are a generalisation of a linear system,
in that they can implement both linear and non-linear combinations. The nature
of fuzzy systems that allows the use of linguistic terms to express the systems’
behaviours provides a transparent representation of the nonlinear system under
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Fig. 1. Components of a fuzzy system

consideration. Fuzzy systems apply ‘if-then’ rules and logical operators to map
the relationships between input and output variables in the system. Fuzzy rules
may be elicited from ‘experts’, which for the problem under consideration refers
to timetabling officers or timetabling consultants. As mentioned earlier, we have
access to such experts who could provide us with enough knowledge to develop
a fuzzy system.

Therefore, in this paper a new evaluation function utilising fuzzy method-
ologies is introduced. Basically, the idea is to develop an independent evaluation
function that can be used to measure the quality of any constructed examina-
tion timetable. The timetable can be generated using any approach with specific
objectives to achieve. Subsequently, the timetable solution with the problem de-
scription and the list of factors that need to be evaluated are submitted to the
evaluation function.

2.3 Overview of Fuzzy Systems

This subsection is largely reproduced from our paper [3] for the purpose of
completeness. In many decision making environments, it is often the case that
several factors are simultaneously taken into account. Often, it is not known
which factor(s) need to be emphasised more in order to generate a better decision.
Somehow a trade off between the various (potentially conflicting) factors must
be made. The general framework of fuzzy reasoning facilitates the handling of
such uncertainty.

Fuzzy systems are used for representing and employing knowledge that is
imprecise, uncertain, or unreliable. Figure 1 shows the 5 interconnected compo-
nents of a fuzzy system. The fuzzification component computes the membership
grade for each crisp input variables based on the membership functions defined.
The inference engine then conducts the fuzzy reasoning process by applying the
appropriate fuzzy operators in order to obtain the fuzzy set to be accumulated
in the output variable. The defuzzifier transforms the output fuzzy set to crisp
output by applying specific defuzzification method.
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More formally, a fuzzy set A of a universe of discourse X (the range over which
the variable spans) is characterised by a membership function µA : X → [0, 1]
which associates with each element x of X a number µA(x) in the interval [0, 1],
with µA(x) representing the grade of membership of x in A [28]. The precise
meaning of the membership grade is not rigidly defined, but is supposed to
capture the ‘compatibility’ of an element to the notion of the set. Rules which
connect input variables to output variables in ‘IF ... THEN ...’ form are used
to describe the desired system response in terms of linguistic variables (words)
rather than mathematical formulae. The ‘IF’ part of the rule is referred to as the
‘antecedent’, the ‘THEN’ part is referred to as the ‘consequent’. The number of
rules depends on the number of inputs and outputs, and the desired behaviour of
the system. Once the rules have been established, such a system can be viewed
as a non-linear mapping from inputs to outputs.

There are many alternative ways in which this general fuzzy methodology
can be implemented in any given problem. In our implementation, the standard
Mamdani style fuzzy inference was used with standard Zadeh (min-max) oper-
ators. In Mamdani inference [21], rules are of the following form:

Ri : if (x1 is Ai1) and ... and (xr is Air) then (y is Ci) for i = 1, 2, ..., L

where L is the number of rules, xj (j = 1, 2, 3, ..., r) are input variables, y is
output variable, and Aij and Ci are fuzzy sets that are characterised by mem-
bership functions Aij(xj) and Ci(y), respectively. The final output of a Mamdani
system is one or more arbitrarily complex fuzzy sets which (usually) need to be
defuzzified. It is not appropriate to present a full description of the functioning
of fuzzy systems here; the interested reader is referred to Cox [16] for a simple
treatment or Zimmerman [29] for a more complete treatment.

2.4 The Proposed Fuzzy Evaluation Function

As an initial investigation, this proposed approach was implemented on solu-
tions which were generated based on the proximity cost requirements (aver-
age penalty), with one additional factor/objective. Beside the average penalty
per student, the highest penalty that occurred amongst the students (highest
penalty) was also taken into account. However, the latter factor was only evalu-
ated after the timetable was constructed. That is to say, there was no attempt
to include this factor in the process of constructing the timetable.

A fuzzy system with these two input variables (average penalty and highest
penalty) and one output variable (quality) was constructed. Each of the input
variables were associated with three linguistic terms; fuzzy sets corresponding to
a meaning of low, medium and high. In addition to these three linguistic terms,
the output variable (quality) has two extra terms that correspond to meanings
of very low and very high. These terms were selected as they were deemed the
simplest possible to adequately represent the problem. Gaussian functions of
the form e−(x−c)2/σ2

, where c and σ are constants, are used to define the fuzzy
set for each linguistic term. This is on the basis that they are the simplest and
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Fig. 2. Membership functions for input and output variables

most common choice, given that smooth, continuously varying functions were
desired. The membership functions defined for the two inputs, average penalty
and highest penalty, and the output quality are depicted in Figure 2 (a) – (c),
respectively.

In the case of such a system having two inputs with three linguistic terms
there are nine possible fuzzy rules that can be defined in which each input vari-
able has one linguistic term. As we already know, from the definition of proximity
cost, the objective is to minimise the penalty cost, meaning that, the lower the
penalty cost, the better the timetable quality. Also, based on everyday experi-
ence, we would prefer the highest penalty for any one student to be as low as
possible, as this will create more fair timetable for all students. Based upon this
knowledge we defined a fuzzy rule set consisting of all 9 possible combinations.
Each rule set connects the input variables to a single output variable, quality.
The fuzzy rule set is presented in Figure 3. As stated above, standard Mam-
dani style fuzzy inference was used to obtain the fuzzy output for a given set of
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Rule 1: IF (average penalty is low) AND (highest penalty is low)
THEN (quality is very high)

Rule 2: IF (average penalty is low) AND (highest penalty is medium)
THEN (quality is high)

Rule 3: IF (average penalty is low) AND (highest penalty is high)
THEN (quality is medium)

Rule 4: IF (average penalty is medium) AND (highest penalty is low)
THEN (quality is high)

Rule 5: IF (average penalty is medium) AND (highest penalty is medium)
THEN (quality is medium)

Rule 6: IF (average penalty is medium) AND (highest penalty is high)
THEN (quality is low)

Rule 7: IF (average penalty is high) AND (highest penalty is low)
THEN (quality is medium)

Rule 8: IF (average penalty is high) AND (highest penalty is medium)
THEN (quality is low)

Rule 9: IF (average penalty is high) AND (highest penalty is high)
THEN (quality is very low)

Fig. 3. Fuzzy rules for Fuzzy Evaluation System

inputs. The most common form of defuzzification, ‘centre of gravity defuzzifica-
tion’, was then used to obtain a single crisp (real) value for the output variable.
This process is based upon the notion of finding the centroid of a planar figure,
as given by: ∑

i

µ(xi) · xi

µ(xi)

This single crisp output was then taken as the quality of the timetable.

2.5 Input Normalisation

With this proposed fuzzy evaluation function, we carried out experiments to
determine whether the fuzzy evaluation system was able to distinguish a range
of timetable solutions based on the average penalty per student and the highest
penalty imposed on any of the students. All the constructed timetables for the
given problem instance were evaluated using the same fuzzy system, and their
quality determined based on the output of the fuzzy system. The constructed
timetable with the biggest output value was selected to be the ‘best’ timetable.

Based on our previous experience [2, 3], the average penalty values for dif-
ferent data sets result in widely different scales due to the different complexity
of the problem instances. For example, in the STA-F-83 data set (from Carter
et al.— see below for full details of the data sets used) an average penalty of
160.42 was obtained, whereas for UTA-S-92, the average penalty was 3.57.

As can be seen in Figure 2(a) and Figure 2(b), the input variables have their
universe of discourse defined between 0.0 and 1.0. Therefore, in order to use this
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fuzzy model, both of the original input variables must be normalised within the
range [0.0, 1.0]. The transformation used is as follows:

v′ =
(v − lowerBound)

(upperBound− lowerBound)

where v is the actual value in the initial range [lowerBound, upperBound]. In ef-
fect, the range [lowerBound, upperBound] represents the actual lower and upper
boundaries for the fuzzy linguistic terms.

By applying the normalisation technique, the same fuzzy model can be used
for any problem instance, either for the benchmark data sets as used here, or
for a new real-world problem. This would provide flexibility when problems of
various complexity are presented to the fuzzy system. In such a scheme, the
membership functions do not need to be changed from their initial shapes and
positions. In addition, rather than recalculate the parameters for each input
variable’s membership functions, it is much easier to transform the crisp input
values into normalised values in the range of [0.0, 1.0]. The problem thus becomes
one of finding suitable lower and upper bounds for each problem instance.

3 Experiments on Benchmark Problems

3.1 Experiments Setup

In order to test the fuzzy evaluation system, the Carter et al.’s [14] benchmark
data sets were used. The 12 instances in these benchmark data sets, with different
characteristics and various level of complexity, are shown in Table 1.

Table 1. Examination timetabling problem characteristics

Data Set Number of Number of Number of
slots(T ) exams (N ) students (S)

CAR-F-92 32 543 18419
CAR-S-91 35 682 16925
EAR-F-83 24 190 1125
HEC-S-92 18 81 2823
KFU-S-93 20 461 5349
LSE-F-91 18 381 2726
RYE-F-92 23 486 11483
STA-F-83 13 139 611
TRE-S-92 23 261 4360
UTA-S-92 35 622 21266
UTE-S-92 10 184 2750
YOR-F-83 21 181 941
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For each instance of the 12 data sets, 40 timetable solutions were constructed
using a simple sequential constructive algorithm with backtracking, as previously
implemented in [3]. We used 8 different heuristics to construct the timetable
solutions, for each of which the algorithm was run 5 times to obtain a range
of solutions. However, due to the nature of the heuristics used, in some case, a
few of the constructed timetable solutions have the same proximity cost value.
Therefore, for the purpose of standardization, 35 different timetable solutions
were selected out of the 40 constructed timetable solutions, by firstly removing
any repeated solution instances and then just removing at random any excess.
The idea is to obtain a set of timetable solutions with variations of timetable
solution quality, in which none of the solutions have the same quality in terms of
proximity cost (i.e average penalty per student). The timetable solutions were
constructed by implementing the following heuristics:

– Three different single heuristic orderings:
• Least Saturation Degree First (SD),
• Largest Degree First (LD), and
• Largest Enrollment First (LE),

– Three different fuzzy multiple heuristic orderings:
• a Fixed Fuzzy LD+LE Model,
• a Tuned Fuzzy LD+LE Model, and
• a Tuned Fuzzy SD+LE Model (see [3] for details of these), and

– random ordering, and
– deliberately ‘poor’ ordering (see below).

A specific ‘poor’ heuristic was utilised in an attempt to purposely construct bad
solutions. The idea was to attempt to determine the upper bound of solution
quality (in effect, though not formally, the ‘worst’ timetable for the given problem
instance). Basically the method was to deliberately assign student exams in
adjacent time slots. In order to construct bad solutions, the LD was initially
employed to order the exams. Next, the exams were sequentially selected from
this ordered exams list, and assigned to the time slot that caused the highest
proximity cost; this process continued until all the exams were scheduled.

The 35 timetable solutions were analysed in order to determine the min-
imum and the maximum values for both the input variables, average penalty
and highest penalty. These values were then used for the normalisation process
(see Section 2.5). However, because the 12 data sets have various complexity
(see Table 1), the determination of the initial range for each data set is not a
straight-forward process. Thus, two alternative boundary settings were imple-
mented in order to identify the appropriate set of lowerBound and upperBound
for each data set.

The first boundary setting used lowerBound = 0.0 and the upperBound =
maxValue, where maxValue is the largest value obtained from the set of 35
solutions. However, from the literature, the lowest value yet obtained for the
STA-F-83 data set is around 130 [15]. Thus, it did not seem sensible to use
zero as the lower bound in this case. In order to attempt to address this, we
investigated the use of a non-zero lower bound. Of course, a formal method for
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determining the lower bound for any given timetabling instance is not currently
known. Hence, the second boundary setting used lowerBound = minValue and
upperBound = maxValue, where minValue is the smallest value obtained from
the set of 35 constructed solutions for the respective data set.

In this implementation, both input variables, average penalty and highest
penalty, were independently normalised based on their respective minValue and
maxValue. The fuzzy evaluation system described earlier (see Section 2.4) was
then employed to evaluate the timetable solutions. The same processes were ap-
plied to all of the data sets listed in Table 1. The fuzzy evaluation system was
implemented using the ‘R’ language (The R Foundation for Statistical Comput-
ing Version 2.2.0 ) [23].

3.2 Experimental Results

In this section the experiment results are presented. Table 2 shows the min-
imum and maximum values obtained for both criteria. Figures 4(a) and 4(b)
show the evaluation results obtained by the fuzzy evaluation system for the
LSE-F-91 and TRE-S-92 data sets. These two data sets are shown as represen-
tative examples chosen at random. Both graphs show the results obtained when
the boundary setting [minV alue, maxV alue] was implemented. In the graph,
the x-axis (Solution Rankings) represents the ranking of the timetable solution
quality evaluated by using the fuzzy evaluation function; in the order of the best
solution to the worst solution. The y-axis represents the normalised input values
(average penalty and highest penalty) and the output values (quality) obtained
for the particular timetable solution. These two graphs show that the fuzzy eval-
uation function has performed as desired, in that the overall (fuzzy) quality of
the solutions varies from close to zero to close to one.

Table 2. Minimum and maximum values for Average Penalty and Highest Penalty
obtained from the 35 timetable solutions for each data set

Average Penalty Highest Penalty
Data Set Minimum

Value
Maximum

Value
Minimum

Value
Maximum

Value

CAR-F-92 4.54 11.42 65.0 132.0
CAR-S-91 5.29 13.33 68.0 164.0
EAR-F-83 37.02 71.28 105.0 198.0
HEC-S-92 11.78 31.88 75.0 136.0
KFU-S-93 15.81 43.40 98.0 191.0
LSE-F-91 12.09 32.38 78.0 191.0
RYE-F-92 10.38 36.71 87.0 191.0
STA-F-83 160.75 194.53 227.0 284.0
TRE-S-92 8.67 17.25 68.0 129.0
UTA-S-92 3.57 8.79 63.0 129.0
UTE-S-92 28.07 56.34 83.0 129.0
YOR-F-83 39.80 64.48 228.0 331.0
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Fig. 4. Indicative illustrations of the range of normalised inputs and associated output
obtained for the LSE-F-91 and TRE-S-92 data sets

Tables 3 and 4 show a comparison of the results obtained using the two
alternative forms of the normalisation process. The Solution Number is used
to identify a particular solution within the 35 timetable solutions used in the
experiments for each data set. In both tables, the fifth and sixth columns (la-
beled as ‘Range [minValue,maxValue]’ indicates the fuzzy evaluation value and
the rank of the solution relative to the other solutions, when the boundary
range [minValue,maxValue] was used. The last two columns in the tables show
the evaluation values and solution ranking obtained when the boundary range
[0,maxValue] was used. Only the first 10 ‘best’ timetable solutions for each of
the data sets are presented, based on the ranking produced when the boundary
range [minValue,maxValue] was used.
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Table 3. A comparison of the results obtained using the two alternative forms of the
normalisation process for six of the data sets

Timetable Criteria Range[minValue, maxValue] Range[0, maxValue]
Data Set Solution

Number
Average
Penalty

Highest
Penalty

Evaluation
Value

Solution
Ranking

Evaluation
Value

Solution
Ranking

CAR-F-92 19 4.544 65 0.888503 1 0.534427 1
17 4.624 71 0.876804 2 0.517946 2
18 4.639 71 0.876791 3 0.517485 3
16 4.643 71 0.876788 4 0.517366 4
7 5.148 68 0.876583 5 0.510084 5

10 5.192 69 0.873279 6 0.506692 6
13 5.508 68 0.858276 7 0.500729 7
12 5.532 68 0.856617 8 0.500120 8
11 5.595 68 0.851966 9 0.498538 9
2 5.609 68 0.850863 10 0.498184 10

CAR-S-91 17 5.292 68 0.888524 1 0.557585 1
13* 5.573 75 0.880205 2 0.537593 3
11* 5.911 68 0.879621 3 0.542750 2
15 5.654 75 0.879244 4 0.535472 4
14 5.842 75 0.875877 5 0.530812 5
6* 6.079 76 0.868161 6 0.523516 8
2* 6.393 71 0.860211 7 0.526116 6

21* 6.509 71 0.853145 8 0.523572 7
12 5.688 83 0.850233 9 0.520297 9
16 5.690 83 0.850227 10 0.520255 10

EAR-F-83 21 37.018 116 0.868135 1 0.467867 1
4* 41.860 118 0.834883 2 0.444700 3
5* 43.637 105 0.827016 3 0.454672 2
18 44.147 118 0.798099 4 0.432416 4
1 41.324 131 0.748303 5 0.415267 5

3* 43.628 129 0.733864 6 0.411292 7
20* 44.968 127 0.718542 7 0.411481 6
12 49.662 114 0.710776 8 0.392966 8
2* 41.178 144 0.699109 9 0.370814 11

16* 44.980 135 0.674252 10 0.385906 9

HEC-S-92 21 11.785 83 0.863057 1 0.506506 1
14 14.774 75 0.854699 2 0.495547 2
13 13.236 84 0.853706 3 0.489407 3
7* 14.162 83 0.847966 4 0.482514 5

16* 14.635 83 0.838633 5 0.477754 7
15* 14.217 85 0.832653 6 0.476641 8
1* 15.594 78 0.828916 7 0.481021 6
6* 15.911 75 0.817611 8 0.485117 4
27 15.763 84 0.801080 9 0.463727 9
8* 14.124 94 0.727535 10 0.446459 11

KFU-S-93 17 15.813 98 0.888529 1 0.541211 1
15 16.904 101 0.884358 2 0.526210 2
14 17.336 100 0.883340 3 0.524294 3
16 17.920 104 0.876034 4 0.513226 4
3* 20.022 102 0.852341 5 0.501383 11
9* 16.463 113 0.847871 6 0.509402 5
7* 16.471 113 0.847868 7 0.509339 6
6* 16.500 113 0.847858 8 0.509119 7
8* 16.500 113 0.847858 9 0.509119 8

10* 16.500 113 0.847858 10 0.509119 9

LSE-F-91 11* 13.458 78 0.881499 1 0.552817 2
13* 12.094 87 0.879126 2 0.555747 1
6* 14.720 89 0.855424 3 0.523229 4

12* 12.349 102 0.812127 4 0.527563 3
10* 16.408 91 0.804048 5 0.504874 5
32* 17.942 98 0.722929 6 0.480142 7
5* 18.564 93 0.720053 7 0.481747 6
9* 16.486 109 0.707889 8 0.476028 9

16* 18.979 95 0.707212 9 0.474395 11
7* 17.174 105 0.704871 10 0.476479 8
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Table 4. A comparison of the results obtained using the two alternative forms of the
normalisation process for the remaining six data sets

Timetable Criteria Range[minValue, maxValue] Range[0, maxValue]
Data Set Solution

Number
Average
Penalty

Highest
Penalty

Evaluation
Value

Solution
Ranking

Evaluation
Value

Solution
Ranking

RYE-F-92 21 10.384 87 0.888528 1 0.610225 1
8 12.180 97 0.871582 2 0.558378 2

10 12.337 97 0.870489 3 0.556102 3
20 12.264 98 0.868672 4 0.555205 4
6 12.976 97 0.864830 5 0.547756 5
9 12.417 102 0.854386 6 0.545595 6
7 12.094 105 0.839576 7 0.544225 7

3* 13.678 104 0.831331 8 0.527428 12
2* 14.441 104 0.817334 9 0.519821 14
4* 14.581 104 0.814229 10 0.518513 15

STA-F-83 21 160.746 227 0.888536 1 0.215426 1
20 161.151 227 0.887829 2 0.214107 2
15 164.375 228 0.871792 3 0.202156 3
3 167.394 227 0.824391 4 0.196779 4

31 168.195 227 0.805614 5 0.194967 5
18 168.863 227 0.788882 6 0.193535 6

11* 168.781 232 0.788385 7 0.182500 17
16* 169.100 227 0.782864 8 0.193043 7
29* 171.249 227 0.733062 9 0.188900 8
9* 171.391 227 0.730410 10 0.188645 9

TRE-S-92 19* 9.311 69 0.880078 1 0.478231 2
8* 9.389 68 0.878204 2 0.479078 1
20 9.598 68 0.871588 3 0.475325 3
7* 9.039 75 0.868946 4 0.468005 6
6* 9.757 71 0.864316 5 0.465758 8

17* 9.885 68 0.858365 6 0.469941 4
21* 8.671 77 0.855435 7 0.469016 5
1* 10.003 68 0.851293 8 0.467596 7
10 9.856 75 0.846708 9 0.454514 9

16* 9.981 77 0.826007 10 0.446743 11

UTA-S-92 17 3.567 63 0.888536 1 0.532771 1
11 3.833 68 0.878185 2 0.511100 2
14 3.911 68 0.876019 3 0.508369 3
13 3.927 68 0.875482 4 0.507798 4
16 3.977 68 0.873738 5 0.506065 5
12 4.143 68 0.866816 6 0.500466 6
24 4.531 73 0.807693 7 0.475697 7
23 4.573 73 0.802872 8 0.474319 8
27 4.581 73 0.801938 9 0.474053 9
8 4.976 68 0.762605 10 0.472232 10

UTE-S-92 19 30.323 83 0.879116 1 0.438284 1
18 29.718 86 0.878651 2 0.429775 2
21 28.069 90 0.853031 3 0.420748 3
20 32.804 88 0.835146 4 0.400981 4
26 31.522 91 0.826953 5 0.392480 5
15 33.935 91 0.780095 6 0.378000 6
27 34.928 90 0.767341 7 0.377994 7

12* 32.996 94 0.758297 8 0.367082 9
17* 29.695 98 0.723270 9 0.369027 8

8 30.555 98 0.721926 10 0.362837 10

YOR-F-83 21 39.801 234 0.883004 1 0.372139 1
8* 44.158 233 0.837983 2 0.363036 3

20* 44.412 231 0.831362 3 0.365581 2
9 45.645 228 0.791749 4 0.359602 4

14 45.736 238 0.785008 5 0.345675 5
1 46.810 234 0.751639 6 0.341781 6
2 46.862 235 0.749650 7 0.340088 7

17 47.142 240 0.736830 8 0.330597 8
32* 46.947 244 0.731929 9 0.324728 10
31* 47.396 242 0.726141 10 0.324908 9
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4 Discussion

The fuzzy system presented here provides a mechanism to allow an overall de-
cision in evaluating the quality of a timetable solution to be made based on
common sense rules that encapsulate the notion that the timetable solution
quality increases as both the average penalty and the highest penalty decrease.
The rules are in a form that is easily understandable by any timetabling officer.

Looking at Figures 4(a) and 4(b) it can be seen that, in many cases, it is
not guaranteed that timetable solutions with low average penalty will also have
low highest penalty. This observation confirmed the assumption that considering
only the proximity cost to measure timetable solution quality is not sufficient.
As an example, if the detailed results obtained for the [0,maxValue] boundary
range for LSE-F-91 in Table 3 are analysed, it can be seen that solution 13 (with
the lowest average penalty) is not ranked as the ‘best’ solution. The same effect
can be observed in solution 21 for the TRE-S-92 data set and solution 21 for
the UTE-S-92 data set in Table 4.

In these three data sets (LSE-F-91, TRE-S-92 and UTE-S-92 ), the timetable
solutions with the lowest average penalty were not selected as the ‘best’ timetable
solution, because the decision made by the fuzzy evaluation system also takes
into account another criterion, the highest penalty. This finding can also be seen
in the other data sets, but it is not too obvious especially if we only focus on the
first 3 ‘best’ solution. Regardless, in terms of functionality, these results indicate
that the fuzzy evaluation system has performed as intended in measuring the
timetable’s quality by considering two criteria simultaneously.

Analysing Tables 3 and 4 further, it can also be observed that the decision
made by the fuzzy evaluation function is affected slightly when the different
boundary settings are used to normalise the input values. The consequence of
this is that the same timetable solution might be ranked in a different order, de-
pendent on the boundary conditions. In both tables, the solutions with different
ranking position are marked with ∗. For the CAR-F-92 (in Table 3) and UTA-
S-92 data sets (in Table 4), the solution rankings are unchanged by altering
the boundary settings. In several cases, the solution rankings are only changed
slightly. It is also interesting to note that, in a few cases, for example solution
3 for KFU-S-93 (in Table 3) and solution 11 for STA-F-83 (in Table 4), the
ranking change is quite marked.

Overall, the performance of the fuzzy evaluation system utilizing the bound-
ary range [0.0,maxValue] did not seem as satisfactory as when the boundary
range [minValue,maxValue] was used. This observation is highlighted by Ta-
ble 5, which presents the fuzzy quality measure obtained for the ‘worst’ and
‘best’ solutions as evaluated under the two different boundary settings. When
the boundary range [0.0,maxValue] was used, it can be seen that the fuzzy eval-
uation system evaluated the quality of the timetable solutions for the 12 data
sets in the overall range of 0.111464 to 0.610225. In the case of STA-F-83, the
‘best’ solution was only rated as 0.215426 in quality. The quality of timetable
solutions falls only in the regions of linguistic terms that correspond to meanings
of very low, low and medium in the timetable quality fuzzy set (see Figure 2(c)).
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Table 5. Range of timetable quality

Range [0, maxV alue] Range [minV alue, maxV alue]
Data Set Worst

Solution
Best

Solution
Worst

Solution
Best

Solution

CAR-F-92 0.111464 0.534427 0.111464 0.888503
CAR-S-91 0.111464 0.557585 0.111464 0.888524
EAR-F-83 0.111465 0.467867 0.111465 0.868135
HEC-S-92 0.127502 0.506506 0.155374 0.863057
KFU-S-93 0.111466 0.541211 0.111466 0.888529
LSE-F-91 0.111895 0.555747 0.112182 0.881499
RYE-F-92 0.115999 0.610225 0.119240 0.888528
STA-F-83 0.111464 0.215426 0.111464 0.888536
TRE-S-92 0.111476 0.479078 0.111488 0.880078
UTA-S-92 0.111464 0.532771 0.111464 0.888536
UTE-S-92 0.111464 0.438284 0.111464 0.879116
YOR-F-83 0.120046 0.372139 0.213388 0.883004

This is because the lower bound value used here (i.e. lowerBound = 0.0) is far
smaller than the actual smallest values. Consequently, the input values for even
the lowest values (i.e. the ‘best’ solution qualities) are transformed to normalised
values that always fall within the regions of the medium and high linguistic terms
in the input variables. As a result, the normalised input values will not cause
any rule to be fired or, the firing level for any rule is relatively very low. This is
illustrated in Figure 5(a), in which the activation level of the consequent part for
Rule 1 is equal to 0.13. Although the possibility exists for any input to fall into
more than one fuzzy set, so that more than one rule can be fired, the aggregation
of fuzzy output for all rules will obtain a final shape that will only produce a
low defuzzification value.

In contrast, Figure 5(b) illustrates the situation when the normalised input
values fall in the regions of linguistic term that corresponding to the meaning
of low. In this situation, a high defuzzification value will be obtained due to
the fact that most of the rules will have a high firing level. Thus, all of the
solutions being ranked first had quality values more than 0.8, when the initial
range [minValue,maxValue] was used. In this case, the quality of timetable so-
lutions falls in the regions of the linguistic terms that correspond to meanings
of high and very high for the timetable quality fuzzy set (see Figure 2(c)). As
might be expected, from the fact that the actual minimum and maximum val-
ues from the 35 constructed timetable solutions were used, the fuzzy evaluation
results were nicely distributed along the universe of discourse of the timetable
quality fuzzy set. For a clearer comparison of the effect of the two boundary
settings, the distribution of input and output values for the UTA-S-92 data set
are presented in Figure 4. As can be seen, the input values (Figures (b) and
(c)) are concentrated in the middle regions (0.4 − 0.7) of the graphs when the
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Fig. 5. Firing level for Rule 1 with different normalised input values

boundary range [0.0,maxValue] was used. In contrast, when the boundary range
[minValue,maxValue] was used, the input values were concentrated in the bot-
tom regions of the graphs. Based upon the defined fuzzy rules, we know that
the timetable quality increases with a decrease in both input values. Indeed,
this behavior of the output can be observed for both boundary setting (see Fig-
ure 4(a)). Using either of the boundary settings, the fuzzy evaluation system
is capable of ranking the timetable solutions. It is purely a matter of choosing
the appropriate boundary settings of the fuzzy sets for the input variables. One
of the deficiencies of this fuzzy evaluation, at present, appears to be that there
is no simple way of selecting the boundary settings of the input variables. The
drawback is that both boundary settings implemented so far can only be ap-
plied after a number of timetable solutions are generated. Therefore significant
amounts of times are required to construct and analyse the solutions. Further-
more, if boundary setting are based on the actual minimum and maximum values
from the existing timetable solutions, the fuzzy evaluation system might not be
able to evaluate a newly constructed timetable solution if the input values for
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Fig. 6. A graphical comparison of the effect of the two boundary settings for UTA-S-92
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the decision criteria for the new solution lie outside the range of the fuzzy sets.
(Actually, output values can always be calculated — the real problem is that
the resultant solution quality will always be the same once both criteria reach
the left-hand boundary of their variables.) Thus it would be highly beneficial if
we could determine approximate boundary settings, particularly some form of
estimate of the lower bound of the assessment criteria, based upon the problem
structure itself.

5 Conclusions

In conclusion, the experimental results presented here demonstrate the capa-
bility of a fuzzy approach of combining multiple decision criteria in evaluating
the overall quality of a constructed timetable solution. However, in the fuzzy
system implementation the selection of the lowerBound and upperBound for the
normalisation process is extremely important because it has a significant effect
on the overall quality obtained. The initial results presented here only use two
decision criteria to evaluate the timetable quality. Possible directions for future
research include extending the application of the fuzzy evaluation system by
considering more criteria, and devising a more sophisticated approach to de-
termine approximate boundary settings for the normalisation process. Another
aspect to be investigated further is in comparing the quality assessments pro-
duced by such fuzzy approaches with the subjective assessments of quality that
timetabling officers make in real-world timetabling problems.
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Abstract. A standard problem within universities is that of Teaching
Space Allocation; the assignment of rooms and times to various teaching
activities. The focus is usually on courses that are expected to fit into
one room. However, it can also happen that the course will need to be
broken up, or “split”, into multiple sections. A lecture might be too
large to fit into any one room. Another common example is that the
course corresponds to seminars or tutorials, and although hundreds of
students are enrolled, each individual class, or event, should be just tens
of students in order to meet student and institutional preferences.
Typically, decisions as to how to split courses need to be made within
the context of limited space requirements. Institutions do not have an
unlimited number of teaching rooms, and need to effectively use those
that they do have. The efficiency of space usage is usually measured by
the overall “utilisation” which is basically the fraction of the available
seat-hours that are actually used. A multi-objective optimisation prob-
lem naturally arises; with a trade-off between satisfying preferences on
splitting, a desire to increase utilisation, and also to satisfy other con-
straints such as those based on event location, and timetabling conflicts.
In this paper we explore such trade-off surfaces. The explorations them-
selves are based on a local search method we introduce that attempts to
optimise the space utilisation by means of a “dynamic splitting” strategy.
The local moves are designed to improve utilisation and the satisfaction
of other constraints, but are also allowed to split, and un-split, courses
so as to simultaneously meet the splitting objectives.

1 Introduction

An important issue in the management of university teaching space is that of
planning for future needs. Support for such decision-making, is generally divided
into two broad, and sometimes overlapping, areas:
? Contact Author.
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– space management: near-term planning
– space planning: long-term planning, including capacity planning

A fundamental stage of capacity planning is to estimate the projected stu-
dent enrollments, and multiply by the expected weekly student contact hours
to obtain the total demand for “seat-hours”. Similarly, for the rooms we could
just sum up the room capacities and multiply by the number of hours they are
available in order to determine the “seat-hours supply”. A naive way to per-
form capacity planning, based on such seat-hours estimates, would be simply to
ensure that the supply exceeds the demand. However, it is very rare that it is
possible to use all of the seats. The efficiency of space usage is usually measured
by giving a figure for the “Utilisation”; the fraction (or percentage) of available
seat-hours that actually end up being used. In real institutions, the utilisation
can be surprisingly low, perhaps only 20-50%. To compensate for this, we need
to build in excess capacity [14, 15].

Naturally, such excess capacity is expensive, because it entails planning for
seats to be underused. Good planning should reduce the excess capacity without
increasing the risks that expected activities will not find a space. However, this
is difficult because there is little fundamental understanding of why the utilisa-
tion is so low in the first place, or of the interaction of various constraints and
objectives with the utilisation.

A study of this issue was initiated in [5, 6], however, that work, like the ma-
jority of work on (university) course timetabling research was concerned with un-
splittable “events” (or “courses” or “classes”). Meaning, that they are “atomic”,
they are not to be subdivided, but need to be assigned to a single room and
timeslot. However, in some circumstances, courses cannot be taken to be atomic,
but must instead be subdivided, or “split”, before allocating them to rooms and
timeslots. In this paper we extend the work of [5, 6] to the case of courses that
require considerable splitting.

Course splitting tends to be driven by one (or both) of the following require-
ments:

1. Small-Group Splitting: Courses that are intrinsically designed to be taught
in small groups, such as seminars or tutorials.

2. Constraint-Driven Splitting: Courses that could in principle be held
without splitting, but for which splitting is forced because of other con-
straints:

(a) capacity constraints: the course is simply too large to fit into one
room.

(b) timetable constraints: the enrollment is large and across such a wide
spectrum of students that it will conflict with many other courses, and
this greatly reduces the chances of obtaining a conflict-free timetable.
Splitting such a course into multiple sections can greatly help timetabling
pressures, as students are more likely to be able to find a section that is
conflict free for them.
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Standard university course timetabling methodologies (e.g. [17, 4, 7, 8, 10, 9,
16, 11]) assign events to rooms and timeslots, satisfying capacity constraints,
so that students do not have to take two events at the same time (and possibly
some sequencing or adjacency constraints) and optimising the satisfaction of soft
constraints such as the avoidance of unpopular times. The best-known problem
that consists of “timetabling with splitting” is the “Student Sectioning Problem”
(SSP) [3, 2, and others]. In this problem, we are given the enrollment of students
into courses, but each course consists of multiple sections, and students need
to be assigned to sections in such a way as to avoid timetable clashes whilst
respecting room capacities. This means that the student sectioning problem is
most relevant to the short period between students enrolling into courses, and
students needing to know which section they should attend.

However, in this paper, we are not studying such “immediate” problems as
the SSP, but instead we are concerned with decision support for space capacity
planning over a longer time frame. For space planning, we need to understand
which utilisations are achievable and how they depend on the decision criteria,
such as section size, and the constraints, such as those arising from location and
timetabling. Our goals are:

– Devise algorithms to do splitting together with event allocation
– Explore and understand the trade-offs between the various objectives
– Understand the impact of such trade-offs on the use of expected utilisation

as a safety margin within space planning

To achieve the above, our general approach can be outlined as follows:

1. Formulate or model the problem: This includes obtaining a model of splitting
that contains the main aspects - although it does not need to contain all the
details. For example, we will cover the small group requirements by simply
introducing objectives related to the section size or number.

2. Use local search and standard simulated annealing to explore the solution
space and deal with the splitting problem.

3. Carry out experiments in order to draw the trade-off surfaces.

The specific contributions made in this paper are:

– Dynamic splitting: A local search based on exchanges of events, but in
which we also make decisions on how to do the splitting. Moves can split
courses, and can also rejoin them in order to suit the available rooms.

– preliminary trade-off surfaces: We present results on the interaction of
objectives such as location and timetabling, with preferences on section sizes.

Outline of the paper: Section 2 gives the basic description of the problem con-
straints and objective functions, and a brief description of the data sets. In
Section 3 we outline a form of local search that does not include splitting, but
which forms a good basis for the algorithms for splitting presented in Section 4.
In Section 5 we compare the performances of the various algorithms. In Section 6
we move to the exploration of the solution space itself, presenting results for the
trade-offs between the various objectives.
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2 Problem Description

Teaching space allocation is concerned with allocating events (courses/course
offerings, tutorials, seminars) to rooms and times. In this section, we will cover
the basic language of the problem; the constraints and objectives, and then the
dataset that we will use.

2.1 Courses, Events and Rooms

For each course we have:

1. Size: the number of students in the course
2. Timeslots: the number of timeslots the course uses during the week
3. Spacetype: Lecture, Seminar, Tutorial, etc.
4. Department: the department that owns or administers the course

One can consider other aspects. For example, special features that are im-
posed by some constraints. However, we shall not consider these here. Also note
that the word “course” can mean many different things; ranging from the entire
set of classes constituting a degree down to a single class. However, in this pa-
per, we use “course” in the sense of a set of activities of a single type such as a
lecture or tutorial, and associated with a single subject. In the case of lectures,
the course would be taught by a single faculty. In general, a “course” might have
multiple associated types. For example, lectures in french grammar might always
be accompanied by seminars on french literature. However, for the purposes of
this paper we will disregard such cross-spacetype dependencies, and regard the
lectures and tutorials as separate courses.

Courses will generally be split into sections, though we generally use the term
event to denote courses/sections that are “atomic”, that is, to be assigned to a
single room and timeslot. Events have the same information as courses except
that each takes only a single timeslot. For events we have:

1. Size: Number of students
2. Spacetype: Lecture, Seminar, Tutorial, etc.
3. Department: Department offering/managing the event.

For every room we have:

1. Capacity: Maximum number of students in the room.
2. Timeslots: The number of timeslots per week.
3. Spacetype: Space for Lecture, Seminar, Tutorial, etc.
4. Department: The one that owns/administers the room.

The most basic hard constraints ( i.e. those that we always enforce) are:

1. Capacity constraint: Size of an event cannot exceed the room capacity
2. No-sharing constraint: At most one event is allowed per “room-slot”,

where by room-slot we refer to a (room,timeslot) pair.
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In this paper, we will also aply the condition that the spacetype of the event
must be the same as that of the room. In general, this hard constraint can be
softened, and the resulting spacetype mixing is an important issue, but will be
left for future work. So, henceforth, in descriptions of the algorithms we will
ignore spacetypes.

2.2 Penalty and Objective Functions

Merely allocating events to room-slots so as to satisfy the capacity constraints
and no-sharing constraints on its own is not useful; we also need to take account
of models of space utilisation objectives and penalties for additional soft con-
straints. Based on the work in [5, 6], and also from considerations of what a good
allocation is likely to mean in the presence of splitting, we use the following:

Utilisation (U) [5, 6]: The primary objective is that we want to make good use
of the rooms, and have a good number of student contact hours. We will measure
this by the “Seat-Hours” – which is just the sum over all rooms and timeslots
of the number of students allocated to that room-slot. The utilisation U is then
defined as just the Seat-Hours achieved as a fraction of the total Seat-Hours
available (the sum over all rooms and times of the room capacity):

U =
Seat-Hours used

total Seat-Hours available
(1)

This is usually expressed as a percentage: U=100% if and only if every seat is
filled at every available timeslot.

Timetabling (TT) [5, 6]: The teaching space allocation framework is con-
strained by timetabling needs, and we believe that space allocation needs to
take some account of this. Hence we use here a timetabling penalty (TT) that
is just a standard conflict matrix between events; a set of pairs of events that
should not be placed at the same timeslot. For this paper we will simply use
randomly generated graphs. We use TT (p) to denote that each potential con-
flict is taken independently with probability percentage, p. For example, TT(70)
means that the conflict density is (about) 70%.

Conflict Inheritance Problem: Course conflicts are used to represent the case
that students are enrolled for both of the courses in the conflict. In standard
university timetabling, the conflict graph will be fixed but, with sectioning. Part
of the point is that students can be assigned to sections with the intention of
resolving conflicts. The problem of assigning students to sections is treated in
[13, 2, and others]. For example, in [3] a relaxed conflict matrix is created, and
in particular it is less dense than the matrix between courses. Hence, if a course
has multiple sections, then not every section ought to have the same conflicts
as the parent course. That is, there is a “conflict inheritance problem”: when a
course is split, how should we decide upon the timetable conflicts given to the
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resulting events (also see [18]). This problem is not studied here, but destined
for future work. In this initial study of splitting, we will look at the simpler case
in which the inheritance is full; that is, on splitting, each event inherits all the
conflicts of the course.

Location (L) [5, 6]: A common objective in timetabling, is the goal of reducing
the physical travel distances for students between events. It also seems likely that
students and faculty would prefer that the events they attend will be close to
their own department. We do not attempt to model this exactly but instead use a
simple model in which there is a penalty if the department of the event is different
from that of the room-slot. Specifically, if an event i has department D(i), and
is allocated to a room r with department D(r), then there is a penalty matrix
derived from the department, Y (D(i), D(r)). Events in their own department are
not penalised, Y (d, d) = 0, and the off-diagonal elements were selected arbitrarily
(as we did not have physical data). The total Location penalty is just the sum
of this penalty over all allocated events.

Section Size (SZ): For courses such as tutorials or seminars it is standard
that they are intended to be in small groups, hence when splitting, we need to
be able to control the sizes of the sections. In this paper, we use a simple model
in which we take a target size for the sections, and simply penalise the deviation
from that target. Given an allocated event i, let the number of students be ci,
the total number of allocated events be I, and the target section size T . The
section size penalty SZ that we use is

SZ =
I∑

i=1

|ci − T | (2)

Section number (SN) : Every section will need a teacher, and so the total
number of sections allocated will have a cost in terms of teaching hours, and
should not be allowed to become out of control. The penalty SN is simply the
total number of allocated events. Pressure to minimise SN will tend to discourage
courses from splitting into more events than are needed.

No Partial Allocation (NPA) : The context in which we do the search is that
we have a large pool of courses available and are investigating the best subset
that can be allocated. However, if a course is broken into sections, then the
course as a whole ought to be allocated or not. The NPA penalises those cases
in which some of the sections of a course are allocated, but other events from
the same course remain unallocated. Enforcing NPA as a hard constraint would
disallow partial allocation: for every course, either all sections are allocated, or
none are allocated.
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Data-set Name: Wksp Tut Sem Tut-trim

Spacetype Workshop Tutorial Seminar Tutorial
num. of courses 1077 2088 3711 620
num. of rooms 16 184 88 47
timeslots number 48 46 46 50
Seat-Hours: courses 86,140 290,839 440,131 87,678
Seat-Hours: rooms 39,408 163,500 176,318 41,350

Table 1. The four data-sets that we use, and some of their properties, including
numbers of rooms and courses, and also the total Seat-Hours demanded by all the
courses, and the Seat-Hours available in all the rooms.

2.3 Overall Objective Function

The overall problem is a multi-objective optimisation problem. However, we
work using a linearisation into a single overall objective or fitness F, which can
be represented as follows:

F = W (U) · U +W (L) · (−L) +W (TT ) · (−TT ) +
W (SZ) · (−SZ) +W (SN) · (−SN) +W (NPA) · (−NPA) (3)

where the W(*) are simply weights associated with each objective or penalty.
The minus signs merely change penalties into objectives, and make all the “di-
mensions” or objectives into maximisation problems.

The aim is to maximise F and consequently maximise utilisation (U) while
reducing the penalties for L, TT, etc. In practice, we will consider a wide variety
of relative weights. Of course, if a weight is large enough then it effectively
turns the penalty into a hard constraint. Using weights is also intended to allow
modelling of the way that administrators will relax some penalties and tighten
others.

2.4 Datasets

Table 1 gives an overview of the four datasets we use to test our splitting al-
gorithms. All datasets are collected from a building of a university in Sydney,
Australia. (We omitted the lectures only data-set used for [5, 6] as it is not
relevant to splitting.)

The workshops dataset, Wksp, is mainly characterized by the non-uniform
capacity of rooms ranging from 21 to 80, making it possible for some small
courses to fit without splitting. For Tut, the main characteristic of this data-set
is the small capacity of rooms and their uniformity, e.g. most rooms have sizes
in the range 8-20, enforcing a section size is therefore trivial in this case. The
full data-set, Tut, is quite large and so, in order to be able to plot trade-off
surfaces in a reasonable amount of time, we also created the set Tut-trim by
randomly selecting a fraction of the rooms and courses. The seminar data-set,
Sem, is similar in structure to Tut, it exhibits the same characteristics as Tut, and
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Fig. 1. Schematic of the local search operators (except 2-OPT-swap-rand) for the
local search without splitting.

has room capacities ranging from 30 to 86 students. Both seminars and tutorials
have relatively large courses and therefore splitting is essential for them.

3 Algorithms Without Splitting

In this section, we present the methods we use for cases when splitting is neither
needed nor performed. Although, the focus of the paper is on splitting we think
that describing the non-splitting local operators first helps the presentation of
the paper.

3.1 Local Search Operators Without Splitting

The neighbourhood moves used to explore the search space are given below.
Note that, by construction, all operators (implicitly) maintain feasibility of the
solution. Figure 1 illustrates these local search operators.

1-OPT-swap-rand: Randomly select 2 different rooms and in each room
randomly select an allocated event. The selected events are swapped between
rooms. If the given events violate any of the hard constraints, we randomly
search again for 2 other events to swap.

2-OPT-swap-rand: Similar to 1-OPT-swap but it randomly selects 4 rather
than 2 events and swaps them. Special consideration is given to checking that
the 4 events are all different and that one swap would not cancel the other.
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Move-exterior Randomly selects an allocated and an unallocated event
and tries to swap them; assigning the unallocated event to the timeslot of the
allocated one.

Push-rand Randomly selects one course from the unallocated set of events
and tries to allocate it to a randomly selected room, also picking the timeslot at
random.

Push-rand-p: This move is another version of push-rand but which gives
priority to early timeslots in the rooms timetable, favouring them over late ones.
The local search is allowed to switch probabilistically between the 2 different
versions of push-rand.

Pop-rand: Randomly selects one event from a randomly selected room and
deallocates it.

Move-inner: Swap 2 randomly selected events in a given room between 2
randomly selected timeslots.

3.2 Meta-Heuristics

We only use Hill-Climbing (HC) and Simulated Annealing (SA) [12, 1] imple-
mentations in this paper.

The hill climbing algorithm (HC) variant uses most of the moves given above
to perform a search of the neighbourhoods. On each iteration, it selects an oper-
ator from the list above according to a given move probability and applies it to
generate a candidate solution. If the candidate new solution has better (or equal)
fitness than the incumbent, we commit to the move, but otherwise disregard it.

Simulated Annealing (SA) was used as the main component for overcoming
local optima. A geometric cooling schedule was used, specifically temperature
T → αT every 650 iterations with α = 0.998. We generally used 6 million
iterations. Such a slow cooling and such a large number of iterations were chosen
to err on the side of safety.

4 Algorithms With Splitting

In this section, we describe the splitting heuristics that are incorporated into the
hill-climbing (HC) and the simulated annealing (SA) approaches. Two strategies
are implemented: a) constructor-based splitting, and b) dynamic local search-
based splitting. In the first case, the section size is calculated during the con-
struction of an initial solution and remains fixed for all events throughout the
local search. In dynamic splitting, the section size is calculated as the local search
progresses according to the size of the event (and room capacity) that is being
allocated. Hence, we will have:

– SS-HC: Constructor-based static splitting and hill-climbing
– SS-SA: Constructor-based static splitting and simulated annealing
– DS-HC: Dynamic splitting and hill-climbing
– DS-SA: Dynamic splitting and simulated annealing
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4.1 Static Splitting

In static splitting we select a target section size (generally based on room profiles)
and then split all the courses of size larger than that target size, into as many
sections as needed during the process of constructing an initial solution. We
use the term static, because once a split is enforced it cannot be changed. We
afterwards run a local search algorithm (hill-climbing or simulated annealing)
to improve the initial solution. So, in this strategy, splitting happens within the
constructor and this provides no flexibility in changing section size during the
local search.

There can be many ways to calculate and fix the target section size. Here we
compare three variants which are based on the notion of a “target room capac-
ity”. This means that the target section size is calculated based on the capacity
of the rooms that are available for allocating course sections. Specifically, the
target section size is fixed to one of three different values:

1. MAXCAP - the largest room capacity
2. AVGCAP - the average room capacity
3. MINCAP - the smallest room capacity

We recognise that more elaborate ways to calculate the target section size
are possible based on information from the room profiles. However, our interest
here is to explore how splitting during the construction phase affects the search
process in general, and compare it to the case in which splitting is carried out
during the local search (dynamic) which is described in the next subsection.

4.2 Dynamic Splitting Operators

In dynamic splitting, we calculate the section sizes during the local search itself.
The dynamic splitting heuristic is also capable of un-splitting/rejoining sections
and this gives more flexibility to determine an adequate target section size by
changing, adding, deleting and merging sections as needed.

Dynamic splitting is embedded in the local search in such a way that there is
freedom and diversity in the choices of section sizes. Thus, the splitting operators,
in conjunction with the local search, can discover good solutions that respond
not only to the room capacities but also to the penalty values for the location
(L), timetabling (TT), section number (SN), section size (SZ), and no partial
allocation (NPA). Note that, at the current stage, the operators themselves do
not directly respond to penalties, and presumably this leads to inefficiencies
because good moves will need to be discovered via multiple attempts within the
SA/HC rather than directly and heuristically; we intend to investigate this in
future work.

In the search, it is important to note that the “pool of unallocated courses”
is a pool of the portions of courses that are not yet allocated. The unallocated
portions contain no information about how they are going to be split; that is,
it is not a pool of sections waiting to be allocated, but instead the sections are
created during the process of allocation. That is, the main characteristic of the
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splitting operators lies in the fact that when a split occurs, we actually select a
fraction of a course and allocate it. When a section is unallocated, we merge it
back with the associated course without keeping track of previous section splits.

Below we detail the neighbourhood operators used in the dynamic splitting
(ordered roughly by their degree of elaborateness):

1-OPT-swap-rand-sec: This operator works as 1-OPT-swap-rand de-
scribed in section 3.1 but the move is carried out between 2 sections (not neces-
sarily of the same course).

Move-inner-sec: This operator works as move-inner described in sec-
tion 3.1 but the move is carried out between 2 sections (not necessarily of the
same course).

Push-rand : This operator works as push-rand described in section 3.1 but
note that the events being ‘pushed’ to the allocation are sections of a course that
are smaller than the chosen room, and so no splitting was needed.

Pop-unsplit . This operator is used to remove sections from their allocated
room and unsplit/rejoin sections with their unallocated parent course. Note that
this move can be seen as the reverse operation to splitting but not exactly because
we do not keep track of the splits made during the search by split-push and
split-max that we describe next. First, the pop-unsplit operator chooses at
random an allocated event from a randomly selected room. In the case that the
chosen event is a section, the operator unallocates the section and merges it with
its unallocated parent event. If the event is not a section it is simply added to
the unallocated pool.

Split-push : This operator is used to handle courses whose unallocated por-
tion is larger than the chosen room, and is the main operator that is used to
create new sections. It is at the heart of the dynamic splitting:

Proc: split-push
1 Randomly select a room Rj with available timeslots.

Let its capacity be Cj .
2 Randomly select a course Pi from the unallocated pool.

Let the size of Pi be Ni.
3 Set size s = floor(Cj ∗ rand(δ, 1))

though if s > Ni then s=Ni
4 Randomly select empty room-slot tj
5 Create section Si with size s

and resize the remainder Pi
6 Set that Si inherits all conflicts from course Pi (see section 2.2)
7 Generate candidate move by allocating Si to room Rj in timeslot tj

Note that rand(δ, 1) means a number randomly selected from the interval [δ, 1]
and the parameter δ is described below. After randomly selecting a room-slot
and unallocated course, the main step in this operator comes in its decision as to
how to split the course to create a new section. Assuming that the capacity of the
room is smaller than the size of the remainder of the course, the new section size,

The Teaching Space Allocation Problem with Splitting 113



s, is calculated by multiplying the capacity of the room by a randomly selected
factor. The factor depends on a “section re-sizing parameter”, δ, that we give
a value between 0.4 and 0.6. Suppose that we take δ = 0.4 then this effectively
means that the generated section size, s, will be between 40% and 100% of the
selected room’s capacity. The intention of this randomised selection of section
size is that it enables the search to discover section sizes that match the penalties
such as section size and section number. The new section inherits all of the
conflict information from its parent course – see the discussion of the “Conflict
Inheritance Problem” in section 2.2. The new section is then allocated to the
chosen room. The remaining part of the parent course is left in the unallocated
list of courses with its size reduced appropriately.

Split-max : This operator is a version of split-push with δ=1 and is de-
signed so that courses with size larger then the chosen room are split so that
sections are of the maximum size allowed within the chosen room.

4.3 Example of the Operator Application
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Fig. 2. Example in which applying operators to split courses has different effects. In
case 1, course C2 first receives a push-rand into room R2, and then applications of
split-push to C1 are unable to allocate only 60+20+20=100 students rather than the
needed 120. However, in case 2 we see that reversing the order allows all of both courses
to be allocated.

An example of the search process, and the differences that can arise during
search, are illustrated in the simple example of Figure 2. Two courses C1 and C2,
of sizes 120 and 40 respectively, are to be allocated to the four rooms available;
and we have selected capacities so that total size of courses precisely equals the
total capacity of the rooms. In the first case, it happens that the smaller event
C2 is allocated first via a push-rand because it can be allocated to that room
without a split. But this inevitably means that 20 spaces within room R2 are
wasted, and so it becomes impossible to allocate all of course C1. However, in
the second case, the larger course C1, is first split using split-max and then we
end up with a perfect fit. The operator split-max with its implicit “maximum
size sections first” is often better at maximising the utilisation; though there
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are other cases in which push-rand is necessary. For this reason, and also via
experiments, we tend to give the operator split-max more probability of being
selected than the operator push-rand .

4.4 Controlling the search

The example above, and the resulting preference for split-max over push-
rand , is just one case of the standard difficult problem of selecting the operator
probabilities.

We have also observed, in an informal manner, that the effectiveness of each
operator varies during the search. As an example, suppose we are just doing non-
splitting local search from section 3. We start with an empty allocation, and then
the Push-rand operator is most important and successful in the early stages as
events/courses need to be allocated, but for capacity reasons it remains stalled
during the rest of the search, during which the other moves provide the bulk of
the successful search efforts. This led to us taking a simple, though adequate,
compromise with probabilities of around 10-20% for each operator.

5 Experimental Comparison of The Algorithms

In this section, we first investigate the “static splitting” method in which only the
constructor does any splitting and is followed by local search, CONS-SA (CONS-
HC is not presented as, unsurprisingly, it performs no better than CONS-SA).
We find that it is far inferior to the dynamic splitting. Moving to the dynamic
splitting itself we then compare the HC and SA variants, and will see that the
DS-SA variant is the better.

However, we first answer the simple question of whether or not, for the data
sets that we use, we need to do any splitting at all. The following table compares
some examples of the utilisation percentages obtained, and the number of events
allocated, without any splitting (not even static splitting from the constructor)
and compares them with those obtained by DS-SA:

Wksp Tut Sem
SA, no splitting 36% (264 ev) 0.015% 0.013%
DS-SA 70% (720 ev) 26% (1747 ev) 44% (3000 ev)

We clearly see that splitting is essential for the tutorials and seminars as, oth-
erwise, virtually nothing is allocated. For the workshops, some courses can be
allocated, but we still lose a lot compared to when splitting is allowed. So from
now on we always permit splitting (we refer the reader back to Subsection 2.4
where the datasets are presented and the difference between the Wksp data set
and the others was also noted). While, in the results above, utilisation figures
seem a bit higher than in real world cases (30-40%) we show in later sections how
the different actual constraints drive the utilisation down to more practical lev-
els; the introduction of section size penalty along with the No-Partial-Allocation
penalty, can also generate a realistic level of utilisation figures.
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Fig. 3. Comparison of dynamic and static (constructor-based) splitting for the Wksp
data set. Plots give the trade-offs obtained between utilisation and Location; all the
other objectives being disregarded (WTT=WSZ=WSN=WNPA=0). The first three sets
of points are from the three constructive methods of subsection 4.1 ; the last “DS-HC”
from the dynamic splitting with hill-climbing.

Our results are generically presenting trade-off curves which are approxima-
tions to Pareto Fronts. These are generally representing the trade-off between
two of the objective functions: We select a wide range of relative values for the
weights associated with the two chosen objectives, and then call the solver with
those weights. For example, we often plot the trade-off between Utilisation, U ,
and the location, L; in this case, we pick a non-zero value for W (U), and then
just solve at each of many values for W (L). This leaves some gaps in the curves
due to the presence of unsupported solutions. However, generally the gaps are
small and do not expect that filling them would significantly change the overall
messages from the results. Note that since L is a penalty, then the objective is
essentially −L, and we use this for the y-axis, so that “better” is towards the
top-right corner (and similarly for all others of our trade-off graphs).

5.1 Dynamic vs. Static Splitting

Figure 3 shows the trade-off curves between utilisation and location for the three
different methods from the static splitting (see subsection 4.1), and compares
them to the results from the dynamic splitting method, DS-HC.

We see that for the constructor, splitting based on the average room capac-
ity (AVGCAP), outperforms the other two (MINCAP and MAXCAP). This is
reasonable, as when splitting by the smallest room capacity there is capacity
wastage in larger rooms and when splitting is based on the larger room size
there is a wastage caused by violating room capacities, since we cannot allocate
a section to a room with smaller capacity.

However, it is also clear that all our constructor-based splitting methods
are easily outperformed by the dynamic splitting. This is unsurprising, as it is
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entirely reasonable that it is best to do splits based upon the availability of room
capacities rather than on a uniform target capacity. It is possible that a more
sophisticated constructive method would perform much better. However, for the
purposes of this paper we will henceforth consider only dynamic splitting.

5.2 Dynamic Splitting: HC vs. SA
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Fig. 4. Trade-off of utilisation and location as obtained with dynamic splitting, and
using the hill-climbing (HC) and simulated annealing (SA) algorithms. For the Wksp
data, and in the presence of TT(70), and no other constraints beside U, L, and TT.

Figure 4 illustrates the different performances of DS-HC and DS-SA on the
workshop problems in the presence of timetabling. Figure 5 is the same except
that it is for a tutorials dataset. As is well-known, the conflict graph of the
timetabling penalty moves the problem to a variant of graph colouring. So it
is not surprising that the SA is likely to outperform the HC, as SA can escape
local minima but HC cannot. Perhaps more surprising is that the performances
in the absence of TT are often very similar. Presumably, without the TT, the
search space is rather well-behaved.

In any case, it is clear that DS-SA is the best of the algorithms that we have
considered, and so will be assumed from now on whenever we have a TT penalty
(and in the absence of a TT penalty it seemed to matter little which one is used).

6 Trade-Offs Between the Various Objectives

Having selected dynamic splitting as our algorithm of choice, we now change
focus: we no longer pursue the solution algorithm itself, but instead focus al-
most entirely on the solution space. In particular, we present some preliminary
and partial results on how the various objectives interact, and in particular the
magnitude of their effect on the utilisation.
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Fig. 5. Same as for Figure 4 but instead using the tutorials dataset, Tut-trim, and
with TT(75).

6.1 Interaction of Section Size Penalty (SZ), Location Penalty (L),
and Utilisation (U)
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Fig. 6. Trade-off surfaces for the given values of the weight W(SZ) for the section size
policy. On the Wksp data-set, with a target section size of 25; and optimising only
utilisation U, location L, and section size SZ.

Figure 6 gives plots of the trade-off between utilisation (U) and location (L),
in the presence of various weights, W (SZ), for the section size penalty (SZ),
with a target section size of 25, but with no other penalties. Note that the case
W (SZ) = 0, was seen previously as the best line in figure 3, and illustrates that,
even without section size constraints, demanding a low location penalty has the
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potential to significantly reduce the utilisation (from about 98% down to 50%).
The non-zero values for W (SZ) drastically reduce the utilisation: dropping to
the range 10-50%. This corresponds to a policy of a fixed size, but with such an
excessively-strict adherence to that policy that the overall room usage suffers.

Interestingly, the Pareto front shape seems unaltered by changing the target
size, though we currently have no explanation of this, and we believe this issue
deserves further investigation.

6.2 Trade-offs Arising From Section Size Penalty and Utilisation
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Fig. 7. Utilisation vs. section size penalty, SZ, for the Wksp data set, and for two values(
15 and 20) of the target section size.

So far, we have only looked at trade-offs between Utilisation and Location,
but now, in Figure 7 we show the trade-off between utilisation, U, and section
size penalty (SZ). This happens to be with a small weight given to the sec-
tion number penalty, SN; however, with no other penalties: W (L) = W (TT ) =
W (NPA) = 0, so in this case location penalties are ignored. Each curve il-
lustrates the drastic drop in utilisation as we move towards the section size
becoming a hard constraint. We also see that reducing the target for the section
size reduces utilisations though by a lesser amount.

Part of this effect is possibly because our current section size penalty does not
allow a range of values for the section size, and because it penalises under-filling
a section just as much as overfilling. In future work, we intend to allow more
relaxed and flexible versions of the section size penalty. However, intuitively, it
still seems very likely that section size requirements are going to have a strong
negative effect on utilisation, and crucially, the methods that we are developing
will still allow one to quantify these effects.

Generally, enforcing a soft section size penalty is more realistic than a hard
one since flexibility in the section size is quite reasonable; sections aren’t always
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standardized towards a fixed, unchangeable target size and it ought to be possible
to vary the target size to suit other constraints.

6.3 Effects of Timetabling Constraints
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Fig. 8. Trade-offs between Utilisation and Location for the Wksp dataset. “No TT”
means that no objectives besides L and U are weighted, in particular W(TT)=0. In
contrast, “TT(70)” means that a timetabling constraint, with a density of 70% is
enforced as a hard constraint.

Figure 8 is a plot of the usual trade-off between utilisation and location
objectives, but comparing the presence and absence of a timetabling constraint.
The case with timetabling is with conflict matrix of density 70%, and with an
associated weight W(TT) that is large enough that the timetabling is effectively
enforced as a hard constraint. This illustrates that timetabling issues easily have
the potential to significantly reduce the utilisation, and so again could be part
of the explanation for the low values of utilisation observed in real problems.

6.4 Inclusion of the No-Partial-Allocation Penalty

So far we have presented results for cases in which the “No Partial Allocation”
(NPA) objective is ignored, that is, W(NPA)=0. This means that some sections
from a course can be allocated even though others are unallocated. This gives
the search extra freedom, and so it is reasonable that enforcing NPA will only
further reduce the utilisations obtained. The magnitude of this effect is seen in
Figure 9: we see that giving NPA high weights can further reduce the utilisation
by about 10-20%. This is a significant effect, though it is somewhat smaller than
the effects seen in the trade-offs with the timetabling and section size objectives.
It is also interesting that the effect of the NPA becomes very small when selecting
solutions with small location penalty.
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Fig. 9. Trade-offs between Utilisation and Location, in the presence of various strengths
of the “No Partial Allocation” (NPA) penalty, but with no TT or other penalties.

7 Summary and Future Work

We have devised methods, and performed preliminary studies of them, to support
space planning and space planning in the presence of courses that will need to
be split down into multiple sections.

The work broadly splits into two aspects. Firstly, we provided algorithms to
perform splitting and optimisation in the presence of multiple objective func-
tions, including overall space usage, constraints inspired from timetabling, and
also objectives relating to desirable properties of the splits themselves. In partic-
ular, we devised a splitting algorithm, “dynamic splitting”, in which the decisions
as to course splitting are incorporated within a local search.

Secondly, we used an implementation of the dynamic splitting in order to ex-
plore the trade-offs between various objectives. We found that the incorporation
of objectives other than solely employing utilisation can result in the utilisation
dropping from over 90% down to much lower figures such as 30-50%. This is sig-
nificant because such low utilisations are consistent with the real world; and so
our model ultimately has the potential to explain real-world utilisation figures.
The intended longer term consequences of such better understanding will enable
an improved ability to engineer the safety margins that need to be built into
capacity planning.

In future work, we intend to improve the speed and scope of the methods.
This will have multiple aspects, but perhaps the most important is to model the
conflict inheritance issues that we discussed in Section 2.2. At the moment, we
do not answer, or indeed model this problem. In the absence of a good model
for this inheritance, we do not answer here the questions as to how the degree of
inheritance affects results. All our inheritance is either total or none. That is, all
sections inherit either all conflicts of the associated course, or else they inherit
none (equivalent to simply turning off the timetable penalty). Although a defi-
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ciency, this does at least allow us to put bounds on the effect of the timetabling.
The effect of partial inheritance must lie between the two extremes of total and
no inheritance. Building a model for the partial inheritance, and exploring its
effects is a high priority for future work.
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Abstract. Hyper-heuristics are proposed as a higher level of abstraction as
compared to the metaheuristics. Hyper-heuristic methods deploy a set of simple
heuristics and use only nonproblem-specific data, such as, fitness change or
heuristic execution time. A typical iteration of a hyper-heuristic algorithm
consists of two phases: heuristic selection method and move acceptance. In this
paper, heuristic selection mechanisms and move acceptance criteria in hyper-
heuristics are analyzed in depth. Seven heuristic selection methods, and five
acceptance criteria are implemented. The performance of each selection and
acceptance mechanism pair is evaluated on fourteen well-known benchmark
functions and twenty-one exam timetabling problem instances.

1   Introduction

The term hyper-heuristic refers to a recent approach used as a search methodology [2,
3, 5, 11, 21]. It is a higher level of abstraction than metaheuristic methods. Hyper-
heuristics involve an iterative strategy that chooses a heuristic to apply to a candidate
solution of the problem at hand, at each step. Cowling et al. discusses properties of
hyper-heuristics in [11]. An iteration of a hyper-heuristic can be subdivided into two
parts; heuristic selection and move acceptance. In the hyper-heuristic literature, sev-
eral heuristic selection and acceptance mechanisms are used [2, 3, 5, 11, 21]. How-
ever, no comprehensive study exists that compare the performances of these different
mechanisms in depth.

Timetabling problems are real world constraint optimization problems. Due to
their NP complete nature [16], traditional approaches might fail to generate a solution
to a timetabling problem instance. Timetabling problems require assignment of time-
slots (periods) and possibly some other resources to a set of events, subject to a set of
constraints. Numerous researchers deal with different types of timetabling problems
based on different types of constraints utilizing variety of approaches. Employee
timetabling, course timetabling and examination timetabling are the research fields
that attract the most attention. In this paper, seven heuristic selection methods and
five different acceptance criteria are analyzed in depth. Their performance is meas-
ured on well-known benchmark functions. Moreover, thirty-five hyper-heuristics
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generated by coupling all heuristic selection methods and all acceptance criteria with
each other, are evaluated on a set of twenty-one exam timetabling benchmark prob-
lem instances, including Carter’s benchmark [10] and Ozcan’s benchmark [25].

The remainder of this paper is organized as follows. In Section 2 background is
provided including hyper-heuristics, benchmark functions and exam timetabling.
Experimental settings and results for benchmarks are given in Section 3. Hyper-
heuristic experiments on exam timetabling are presented in Section 4. Finally, con-
clusions are discussed in Section 5.

2   Preliminaries

2.1 Hyper-heuristics

Hyper-heuristic methods are described by Cowling et al. [11] as an alternative
method to meta-heuristics. Metaheuristics are ‘problem-specific’ solution methods,
which require knowledge and experience about the problem domain and properties.
Metaheuristics are mostly developed for a particular problem and require fine tuning
of parameters. Therefore, they can be developed and deployed only by experts who
have the sufficient knowledge and experience on the problem domain and the meta-
heuristic search method. Hyper-heuristics, on the other hand are developed to be
general optimization methods, which can be applied to any optimization problem
easily. Hyper-heuristics can be considered as black box systems, which take the
problem instance and several low level heuristics as input and which can produce the
result independent of the problem characteristics. In this concept, hyper-heuristics use
only non problem-specific data provided by each low level heuristic in order to select
and apply them to candidate solution [3, 5, 11].

The selection mechanisms in the hyper-heuristic methods were emphasized in the
initial phases of the research period. Cowling et al. [11] proposed three types of low
level heuristic selection mechanisms to be used in hyper-heuristics; which are Simple,
Greedy and Choice Function. There are four types of Simple heuristic selection
mechanisms. Simple Random mechanism chooses a low level heuristic at a time ran-
domly. Random Descent mechanism chooses a low level heuristic randomly and
applies it repeatedly as long as it produces improving results. Random Permutation
mechanism creates an initial permutation of the low level heuristics and at each itera-
tion applies the next low level heuristic in the permutation. Random Permutation
Descent mechanism is the same as Random Permutation mechanism, except that it
applies the low level heuristic in turn repeatedly as long as it produces improving
results. Greedy method calls each low level heuristic at each iteration and chooses the
one that produces the most improving solution. Choice Function is the most complex
one. It analyzes both the performance of each low level heuristic and each pair of low
level heuristics. This analysis is based on the improvement and execution time. This
mechanism also considers the overall performance. It attempts to focus the search as
long as the improvement rate is high and broadens the search if the improvement rate
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is low. For each of these low level heuristic selection mechanisms two simple accep-
tance criteria are defined. These are AM, where all moves are accepted and OI where
only improving moves are accepted [11].

Burke et al. [5] proposed a Tabu-Search heuristic selection method. This mecha-
nism ranks low level heuristics. At the beginning of the run each heuristic starts the
execution with the minimum ranking. Every time a heuristic produces an improving
movement its rank is increased by a positive reinforcement rate. The rank of the heu-
ristics cannot exceed a predetermined maximum value. Whenever a heuristic cannot
make an improving move; its rank is decreased by a negative reinforcement learning
rate. Similarly the rank of a heuristic cannot be decreased to a value less than a pre-
determined minimum value. In the case of worsening moves, the heuristic is also
added to the tabu list. Another parameter is the tabu duration which sets the maxi-
mum number of iterations a low level heuristic can stay in the tabu list. The tabu list
is emptied every time there is a change in the fitness of the candidate solution [5].

Burke et al. [8] introduce a simple generic hyper-heuristic which utilizes construc-
tive heuristics (graph coloring heuristics) to tackle timetabling problems. A tabu-
search algorithm chooses among permutations of constructive heuristics according to
their ability to construct complete, feasible and low cost timetables. At each iteration
of the algorithm, if the selected permutation produces a feasible timetable, a deepest
descent algorithm is applied to the obtained timetable. Burke et al. used this hyper-
heuristic method in exam and university course timetabling problem instances. The
proposed method worked well on the related benchmark problem instances [8].

Burke et al. [9] proposed a case based heuristic selection approach. A knowledge
discovery method is employed to find the problem instances and situations where a
specific heuristic has a good performance. The proposed method also explores the
similarities between the problem instance and the source cases, in order to predict the
heuristic that will perform best. Burke et al. applied Case-Based Heuristic Selection
Approach to the exam and university course timetabling [9].

Ayob and Kendall [2] emphasized the role of the acceptance criterion in the hyper-
heuristic. They introduced the Monte Carlo Hyper-heuristic which has a more com-
plex acceptance criterion than AM or OI criteria. In this criterion, all of the improving
moves are accepted and the non-improving moves can be accepted based on a prob-
abilistic framework. Ayob and Kendall defined three probabilistic approaches to
accept the non-improving moves. First approach, named as Linear Monte Carlo
(LMC), uses a negative linear ratio of the probability of acceptance to the fitness
worsening. Second approach named as, Exponential Monte Carlo (EMC), uses a
negative exponential ratio of the probability of acceptance to the fitness worsening.
Third approach, named as Exponential Monte Carlo with Counter (EMCQ), is an
improvement over Exponential Monte Carlo. Again, the probability of accepting
worsening moves decreases as the time passes. However if no improvement can be
achieved over a series of consecutive iterations then this probability starts increasing
again. As the heuristic selection mechanism, they all use simple random mechanism
[2].

Kendall and Mohamad [21] introduced another hyper-heuristic method which also
focuses on acceptance criterion rather than selection method. They used the Great
Deluge Algorithm as the acceptance criterion and Simple Random as heuristic selec-
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tion method. In the Great Deluge Algorithm initial fitness is set as initial level. At
each step, the moves which produce fitness values less than the level are accepted. At
each step the level is also decreased by a factor [21].

Gaw et al. [17] presented a research on the choice function hyper-heuristics, gen-
eralized low-level heuristics, and utilization of parallel computing environments for
hyper-heuristics. An abstract low level heuristic model is proposed which can be
easily implemented to be a functional low level heuristic tackling a specific problem
type. The choice function hyper-heuristic and the low-level heuristics are improved to
evaluate a broader range of the data. Two types of distributed hyper-heuristic ap-
proaches are introduced. The first approach is a single hyper-heuristic, multiple low-
level heuristics which are executed on different nodes and focus on different areas of
the timetable. The second approach utilizes multiple hyper-heuristics each of which
work on a different node. In this approach, hyper-heuristics collaborate during the
execution [17].

According to this survey it is concluded that several heuristic selection methods
and acceptance criteria are introduced for hyper-heuristics framework. Each pair of
the heuristic selection and acceptance mechanism can be used as a different hyper-
heuristic method. Despite this fact, such combinations have not been studied in the
literature. In this study, seven heuristic selection mechanisms, which are Simple Ran-
dom, Random Descent, Random Permutation, Random Permutation Descent, Choice-
Function, Tabu-Search, Greedy heuristic selection mechanisms, are implemented. For
each heuristic selection method five acceptance criteria: AM, OI, IE, a Great Deluge
and a Monte Carlo are used. As a result a broad range of hyper-heuristic variants are
obtained. These variants are tested on mathematical objective functions and exam
timetabling Problems.

2.2    Benchmark Functions

Well-defined problem sets are useful to measure the performance of optimization
methods such as genetic algorithms, memetic algorithms and hyper-heuristics.
Benchmark functions which are based on mathematical functions or bit strings can be
used as objective functions to carry out such tests. The characteristics of these
benchmark functions are explicit. The difficulty levels of most benchmark functions
are adjustable by setting their parameters. In this study, fourteen different benchmark
functions are chosen to evaluate the hyper-heuristics.

The benchmark functions presented in Table 1 are continuous functions, and Royal
Road Function, Goldberg’s 3 bit Deceptive Function [18], [19] and Whitley’s 4 bit
Deceptive Function [31] are discrete functions. Their deceptive nature is due to the
large Hamming Distance between the global optimum and the local optima. To in-
crease the difficulty of the problem n dimensions of these functions can be combined
by a summation operator.

The candidate solutions to all the continuous functions are encoded as bit strings
using gray code. The properties of the benchmark functions are presented in Tab. 1.
The modality property indicates the number of optima in the search space (i.e. be-
tween bounds). Unimodal benchmark functions have a single optimum. Multimodal
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benchmark functions contain more than one optimum in their search space. Such
functions contain at least one additional local optimum in which a search method can
get stuck.

Tab. 1. Properties of benchmark functions, lb indicates the lower bound, ub indicates the
upper bound of the search space, opt indicates the global optimum in the search space

Function, [Source] lb ub opt Continuity Modality
Sphere, [13] -5.12 5.12 0 Continuous Unimodal
Rosenbrock, [13] -2.048 2.048 0 Continuous Unimodal
Step, [13] -5.12 5.12 0 Continuous Unimodal
Quartic, [13] -1.28 1.28 1 Continuous Multimodal
Foxhole, [13] -65.536 65.536 0 Continuous Multimodal
Rastrigin, [28] -5.12 5.12 0 Continuous Multimodal
Schwefel, [29] -500 500 0 Continuous Multimodal
Griewangk, [19] -600 600 0 Continuous Multimodal
Ackley, [1] -32.768 32.768 0 Continuous Multimodal
Easom, [15] -100 100 -1 Continuous Unimodal
Rotated Hyperellipsoid,[13] -65.536 65.536 0 Continuous Unimodal
Royal Road, [23] - - 0 Discrete -
Goldberg, [17, 18] - - 0 Discrete -
Whitley, [30] - - 0 Discrete -

2.3 Exam Timetabling

Burke et al. [4, 6] applied a light or a heavy mutation, randomly selecting one, fol-
lowed by a hill climbing method. Investigation of various combinations of Constraint
Satisfaction Strategies with GAs for solving exam timetabling problems can be found
in [22]. Paquete et. al. [27] applied a multiobjective evolutionary algorithm (MOEA)
based on pareto ranking for solving exam timetabling problem in the Unit of Exact
and Human Sciences at University of Algarve. Two objectives were determined as to
minimize the number of conflicts within the same group and the conflicts among
different groups. Wong et. al. [32] used a GA utilizing a non-elitist replacement strat-
egy to solve a single exam timetabling problem at École de Technologie Supérieure.
After genetic operators were applied, violations were fixed in a hill climbing proce-
dure.

Carter et. al. [10] applied different heuristic orderings based on graph coloring.
Their experimental data became one of the commonly used exam timetabling bench-
marks. Gaspero and Schaerf [14] analyzed tabu search approach using graph coloring
based heuristics. Merlot et al. [23] explored a hybrid approach for solving the exam
timetabling problem that produces an initial feasible timetable via constraint pro-
gramming. The method, then applies simulated annealing with hill climbing to im-
prove the solution. Petrovic et al. [28] introduced a case based reasoning system to
create initial solutions to be used by great deluge algorithm.  Burke et al. [7] proposed
a general and fast adaptive method that arranges the heuristic to be used for ordering
exams to be scheduled next. Their algorithm produced comparable results on a set of
benchmark problems with the current state of the art. Ozcan and Ersoy [25] used a
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violation directed adaptive hill climber within a memetic algorithm to solve exam
timetabling problem.  A Java tool named FES is introduced by Ozcan in [26] which
utilizes XML as input/output format.

Exam timetabling problem can be formulated as a constraint optimization problem
by a 3-tuple (V, D, C). V is a finite set of examinations, D is a finite set of domains of
variables, and C is a finite set of constraints to be satisfied. In this representation a
variable stands for an exam schedule of a course. Exam timetabling involves a search
for a solution, where values from domains (timeslots) are assigned to all variables
while satisfying all the constraints.

The set of constraints for exam timetabling problem differs from institution to in-
stitution. In this study, three constraints are defined and used as described in [25]:

(i) A student cannot be scheduled to two exams at the same time slot.
(ii) If a student is scheduled to two exams in the same day, these should not be as-

signed to consecutive timeslots.
(iii) The total capacity for a timeslot cannot be exceeded.

3 Hyper-heuristics for Benchmark Functions

3.1 Benchmark Function Heuristics

Six heuristics were implemented to be used with hyper-heuristics on benchmark
functions. Half of these are hill-climbing methods and the remaining half are muta-
tional operators combined with a hill climber.

Next Ascent Hill Climber makes number of bits times iterations at each heuristic
call. Starting from the most significant bit, at each iteration it inverts the next bit in
the bit string. If there is a fitness improvement, the modified candidate solution is
accepted as the current candidate solution [24]. Davis’ Bit Hill Climber is the same as
Next Ascent Hill Climber but it does not modify the bit sequentially but in the se-
quence of a randomly determined permutation [12]. Random Mutation Hill Climber
chooses a bit randomly and inverts it. Again the modified candidate solution becomes
the current candidate solution, if the fitness is improved. This step is repeated for total
number of bits in the candidate solution times at each heuristic call [24].

Mutational heuristics are Swap Dimension, Dimensional Mutation and Hypermu-
tation. Swap Dimension heuristic randomly chooses two different dimensions in the
candidate solution and swaps them. Dimensional Mutation heuristic randomly
chooses a dimension and inverts each bit in this dimension with the probability 0.5.
Hypermutation randomly inverts each bit in the candidate solution with the probabil-
ity 0.5. To improve the quality of candidate solutions obtained from these mutational
heuristics, Davis’ Bit Hill Climbing is applied.
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3.2 Experimental Settings

The experiments are performed on Pentium IV, 2 GHz Linux machines with 256 Mb
memory. Fifty runs are performed for each hyper-heuristic and problem instance pair.
For each problem instance, a set of fifty random initial configurations are created.
Each run in an experiment is performed starting from the same initial configuration.
The experiments are allowed to run for 600 CPU seconds. If the global optimum of
the objective function is found before the time limit is exhausted, then the experiment
is terminated.

The candidate solutions are encoded as bit strings. The continuous functions in
benchmark set are encoded in Gray Code. The discrete functions have their own di-
rect encoding. Foxhole Function has default dimension of 2. The default number of
bits per dimension parameter is set to 8, 3, and 4 for the Royal Road, Goldberg, and
Whitley Functions respectively. The rest of the functions have 10 dimensions and 30
bits are used to encode the range of a variable.

3.3 Experimental Results

The experimental results of performance comparison of 35 heuristic selection – ac-
ceptance criteria combinations on 14 different benchmark functions are statistically
evaluated. For each benchmark function the combinations are sorted according to
their performance. The average number of fitness evaluations needed to converge to
global optimum is used as the performance criterion for the experiments with 100%
success rate. The average best fitness reached is used for the experiments with suc-
cess rates lower than 100%. The performances are evaluated statistically using t-test.
Each combination has been given a ranking. Confidence interval is set to 95% in t-
test to determine significant performance variance. The combinations that do not have
significant performance variances are grouped together and have been given the same
ranking. The average rankings of heuristic selection methods and move acceptance
criteria are calculated to reflect their performance. In Table 2, average rankings for
the heuristic selection methods are provided on each problem. The averages are ob-
tained by testing the selection methods on each acceptance criteria. In Table 3, aver-
age rankings of acceptance criteria are given where the averages are obtained by
testing acceptance criteria on each selection method this time. Lower numbers in
these tables denote a higher placement in the ranking and indicate better performance.
The average ranking of each selection method on all of the functions is depicted in
Fig. 1, and the average ranking of each acceptance criterion on all of the functions in
Fig. 2.

No heuristic selection and acceptance criterion couple came out to be a winner on
all of the benchmark functions. Choice Function performs well on Sphere and
Griewangk functions. Simple Random performs well on Sphere Function. Random
Descent and Random Permutation Descent perform well on Rotated Hyperellipsoid
Function. Greedy performs well on Rosenbrock Function. The performance variances
of heuristic selection methods on remaining functions were not as significant as these
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cases. Choice Function performs slightly better than remaining selection methods on
average. IE acceptance criterion performs well on Rastrigin, Schwefel, Easom, Ro-
tated Hyperellipsoid, and discrete deceptive functions. OI acceptance criterion per-
forms well on Rosenbrock Function. MC acceptance criterion performs well on Fox-
hole Function. IE acceptance criterion indicates significantly a better performance
than the remaining acceptance criteria on average.

Tab. 2. Average ranking of each selection method on each problem; CF stands for Choice
Function, SR for Simple Random, RD for Random Descent, RP for Random Permutation, RPD
for Random Permutation Descent, Tabu for Tabu Search, GR for Greedy.

Name CF SR RD RP RPD TABU GR
Sphere 7.0 7.0 24.5 14.0 24.5 24.5 24.5
Rosenbrock 20.2 22.0 16.0 23.8 16.0 16.0 12.0
Step 17.7 17.7 17.7 18.9 17.7 17.7 18.6
Quartic w/ noise 17.9 17.9 17.9 17.9 17.9 17.9 18.6
Foxhole 15.7 15.7 15.7 19.3 15.7 15.7 28.2
Rastrigin 17.9 17.5 18.5 17.3 18.5 17.7 18.6
Schwefel 17.0 17.0 18.8 17.0 18.8 18.8 18.6
Griewangk 11.8 17.2 17.2 17.2 17.2 17.2 28.2
Ackley 16.5 16.5 16.5 23.5 16.5 16.5 20.0
Easom 16.0 16.0 21.7 16.0 21.7 21.7 12.9
Rotated Hyperellipsoid 20.4 21.2 13.4 21.6 14.8 19.8 15.6
Royal Road 16.8 17.6 17.1 17.4 17.1 17.8 22.2
Goldberg 18.6 19.3 16.6 19.4 17.4 16.1 18.6
Whitley 17.9 17.9 17.9 17.9 17.9 17.9 18.6
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Fig. 1. Average ranking of each selection method on all problem instances

In Fig. 3 average number of evaluations to converge to global optimum by a selected
subset of hyper-heuristics is depicted on a subset of benchmark functions, which are
Sphere, Ackley and Goldberg’s Functions. Fig. 3 (a), (c), and (e) visualize the per-
formance comparison of the heuristic selection methods using IE acceptance criterion
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for Sphere, Ackley and Goldberg’s Functions respectively and Fig. 3 (b), (d), and (f)
the performance comparison of the acceptance criteria using Choice Function heuris-
tic selection method for Sphere, Ackley and Goldberg’s Functions respectively.
Lower average number of evaluations intends faster convergence to the global opti-
mum and indicates better performance.

Table 3. Average ranking of each acceptance criterion on each problem; AM stands for All
Moves Accepted, OI for Only Improving Moves Accepted, IE for Improving and Equal Moves
Accepted, MC for Monte Carlo Acceptance Criterion, and GD for Great Deluge Acceptance
Criterion.

Name AM OI IE MC GD
Sphere 19.5 17.0 17.0 17.0 19.5
Rosenbrock 23.8 12.0 16.0 23.8 16.0
Step 29.1 18.6 17.7 18.9 17.7
Quartic w/ noise 29.1 17.4 14.5 14.5 14.5
Foxhole 12.4 27.7 26.5 11.1 12.4
Rastrigin 29.1 10.6 7.6 23.9 18.8
Schwefel 29.1 10.6 7.6 22.6 20.1
Griewangk 11.9 27.7 26.5 11.9 11.9
Ackley 19.0 19.0 16.5 16.5 19.0
Easom 23.3 11.6 8.5 23.3 23.3
Rotated Hyperellipsoid 25.1 11.7 8.8 22.4 22.6
Royal Road 28.1 10.6 7.6 23.0 20.7
Goldberg 29.1 10.6 7.6 22.4 20.4
Whitley 23.9 10.6 7.6 23.9 23.9
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Fig. 2. Average ranking of each acceptance criterion on all problem instances

For Sphere Model, distinct performance variances are observed between heuristic
selection methods in Fig. 3 (a) on the other side the difference is not so prominent
between acceptance criteria in Fig. 3 (b). Fig. 3 (a) shows that Random Permutation
and Choice Function heuristic selection methods achieved faster convergence than
remaining selection methods. In Fig. 3 (c) and (d) it can be observed that Choice
Function heuristic selection method and IE acceptance criterion accomplished a faster
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convergence to global optimum on Ackley Function. Fig. 3 (e) and (f) show that
Choice Function heuristic selection method and IE acceptance criterion performed
best on Goldberg’s Function. Fig. 3 (f) shows that the performance variances be-
tween different acceptance criteria are enormous on the same function. Also AM
acceptance criterion cannot reach the global optimum on Goldberg’s Function and no
average number of evaluations to converge to global optimum value is depicted for
this criterion in the same figure.
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Fig. 3. Average number of evaluations to converge to global optimum of hyper-heuristics
consisting of all heuristic selection methods using IE acceptance criterion on (a) Sphere Model
function, (c) Ackley Function (e) Goldberg Function, and average number of evaluations to
converge to global optimum of hyper-heuristics consisting of Choice Function heuristic selec-
tion method and all acceptance criteria on (b) Sphere Model function, (d) Ackley Function (f)
Goldberg Function.
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4 Hyper-heuristics for Solving Exam Timetabling Problems

4.1 Exam Timetabling Problem Instances and Settings

Carter’s Benchmark [10] and Yeditepe University Faculty of Architecture and Engi-
neering [25] data sets are used for the performance comparison of hyper-heuristics.
The characteristics of as illustrated in Tab. 4.

Tab. 4. Parameters and properties of the exam timetabling problem instances

Instance Exams Students Enrollment Density Days Capacity
Carf92 543 18419 54062 0.14 12 2000
Cars91 682 16925 59022 0.13 17 1550
Earf83 181 941 6029 0.27 8 350
Hecs92 81 2823 10634 0.20 6 650
Kfus93 486 5349 25118 0.06 7 1955
Lsef91 381 2726 10919 0.06 6 635
Purs93 2419 30032 120690 0.03 10 5000
Ryes93 486 11483 45051 0.07 8 2055
Staf83 139 611 5539 0.14 4 3024
Tres92 261 4360 14901 0.18 10 655
Utas92 622 21267 58981 0.13 12 2800
Utes92 184 2749 11796 0.08 3 1240
Yorf83 190 1125 8108 0.29 7 300
Yue20011 140 559 3488 0.14 6 450
Yue20012 158 591 3706 0.14 6 450
Yue20013 30 234 447 0.19 2 150
Yue20021 168 826 5757 0.16 7 550
Yue20022 187 896 5860 0.16 7 550
Yue20023 40 420 790 0.19 2 150
Yue20031 177 1125 6716 0.15 6 550
Yue20032 210 1185 6837 0.14 6 550

Hyper-heuristics consisting of Simple Random, Random Descent, Tabu Search,
Choice Function, and Greedy heuristic selection mechanisms and all the acceptance
criteria, described in Section 2.1 are tested with each benchmark exam timetabling
problem instance.  The fitness function used for solving the exam timetabling prob-
lem takes a weighted average of the number of constraint violations. The fitness
function is multiplied by -1 to make the problem a minimizing problem.
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In the equation (1), wi indicates the weight associated to the ith constraint, gi indicates
the number of violations of ith constraint for a given schedule T.  The value 0.4 is
used as the weight for the first and the third constraint and 0.2 for the second con-
straint as explained in Section 2.3.

4.1 Heuristics for Exam Timetabling

Candidate solutions are encoded as an array of timeslots where each locus represents
an exam to be scheduled. Four heuristics are implemented to be used with the hyper-
heuristics for solving an exam timetabling problem. Three of these heuristics utilize
tournament strategy for choosing a timeslot to reschedule a given exam to improve a
candidate solution based on a constraint type, while the last one is a mutation opera-
tor. Heuristics for the constraints (i) and (ii) work similarly. Each improving heuristic
targets a different conflict. Both heuristics randomly choose a predetermined number
of exams and select the exam with the highest number of targeted conflict among
these. Also a predetermined number of timeslots are randomly chosen and the number
of targeted conflicts are checked when the exam is assigned to that timeslot. The
timeslot with the minimum number of targeted conflict is then assigned to the se-
lected exam.

The heuristic which targets the capacity conflicts (iii) randomly chooses a prede-
termined number of timeslots and selects the timeslot with the maximum capacity
conflict among these. A predetermined number of exams that are scheduled to this
timeslot are chosen randomly and the exam that has the most attendants is selected
among them. Again a group of timeslots are chosen randomly and the timeslot with
the minimum number of attendants is assigned to the selected exam. Mutational heu-
ristic passes over each exam in the array and assigns a random timeslot to the exam
with a predetermined probability (1/number of courses).

4.2 Experimental Results

The experimental results of performance comparison of Simple Random, Random
Descent, Tabu Search, Choice Function, and Greedy heuristic selection method and
all acceptance criteria combinations on 21 different exam timetabling problem in-
stances are statistically evaluated. Each pair has been assigned to a ranking. Confi-
dence interval is set to 95% in t-test to determine the significant performance vari-
ance. Similar to the previous experiments, the combinations that do not have signifi-
cant performance variances are assigned to the same ranking.

Average best fitness values for best performing heuristic selection-acceptance cri-
terion combination are provided in Table 5. If several hyper-heuristics share the same
ranking, than only one of them appears in the table, marked with *. Seven combina-
tions that have the top average rankings are presented in Fig. 4. According to the
results, Choice Function heuristic selection combined with Monte Carlo acceptance
criterion has the best average performance on exam timetabling problems. The hyper-
heuristic combinations with acceptance criteria AM and OI do not perform well on
any of the problem instances.
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Tab. 5. Average best fitness values for best performing heuristic selection-acceptance criterion
combinations on each problem instance; AM stands for All Moves Accepted, OI for Only Im-
proving Moves Accepted, IE for Improving and Equal Moves Accepted, MC for Monte Carlo
Acceptance Criterion, GD for Great Deluge Acceptance Criterion.

Instance (Av. B. Fit., Std. Dev.) H.Heuristic Alg.
Carf92 (-1.02E-02, 1.18E-03) TABU_IE *
Cars91 (-1.93E-01, 1.20E-01) TABU_IE *
Earf83 (-7.27E-03, 4.94E-04) CF_MC
Hecs92 (-2.19E-02, 2.43E-03) CF_MC *
Kfus93 (-3.40E-02, 4.30E-03) SR_GD
Lsef91 (-1.42E-02, 1.38E-03) CF_MC
Purs93 (-1.41E-03, 6.98E-05) SR_IE
Ryes93 (-1.08E-02, 1.37E-03) CF_MC
Staf83 (-2.68E-03, 1.04E-05) SR_MC *
Tres92 (-6.79E-02, 1.08E-02) SR_GD
Utas92 (-1.87E-02, 1.79E-03) TABU_IE *
Utes92 (-2.27E-03, 8.64E-05) CF_MC
Yorf83 (-8.32E-03, 4.57E-04) CF_MC
Yue20011 (-9.02E-02, 1.07E-02) SR_GD
Yue20012 (-7.54E-02, 9.38E-03) SR_GD
Yue20013 (-2.50E-01, 0.00E+00) SR_MC *
Yue20021 (-3.45E-02, 4.55E-03) SR_GD
Yue20022 (-1.26E-02, 9.08E-04) CF_MC
Yue20023 (-1.52E-02, 2.69E-04) CF_MC *
Yue20031 (-1.59E-02, 1.65E-03) CF_MC
Yue20032 (-5.42E-03, 3.68E-04) CF_MC

Tab. 6. The performance rankings of each heuristic selection-acceptance criterion on all prob-
lem instances. Lower rankings indicate better performance.

(a)
H.-h. Carf92 Cars91 Earf83 Hecs92 Kfus93 Lsef91 Purs93
SR_AM  30.5 26.5 26 26 26 26 26
SR_OI 19.5 19 12.5 16 19 16 8
SR_IE 7.5 7.5 12.5 16 9 11.5 1
SR_MC 15 15 7 7.5 15 11.5 23
SR_GD 7.5 6 8 7.5 1 4.5 9
RD_AM 30.5 31.5 30 31 31 29.5 31.5
RD_OI 19.5 19 20 16 19 20 12.5
RD_IE 7.5 3 12.5 16 9 11.5 4
RD_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RD_GD 30.5 31.5 30 31 31 29.5 31.5
RP_AM 30.5 31.5 34.5 31 31 34.5 34.5
RP_OI 19.5 19 20 16 19 20 12.5
RP_IE 7.5 3 12.5 16 9 11.5 4
RP_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RP_GD 30.5 31.5 34.5 31 31 34.5 34.5
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RPD_AM 30.5 31.5 30 31 31 29.5 31.5
RPD_OI 19.5 19 20 16 19 20 12.5
RPD_IE 7.5 3 12.5 16 9 11.5 4
RPD_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RPD_GD 30.5 31.5 30 31 31 29.5 31.5
CF_AM 30.5 26.5 30 31 31 33.5 27
CF_OI 19.5 19 20 16 19 20 12.5
CF_IE 7.5 3 12.5 16 9 11.5 4
CF_MC 7.5 9 1 1.5 3 1 16.5
CF_GD 19.5 19 20 16 19 20 12.5
TABU_AM 30.5 31.5 30 31 31 29.5 28.5
TABU_OI 19.5 19 20 16 19 20 12.5
TABU_IE 7.5 3 12.5 16 9 11.5 4
TABU_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
TABU_GD 30.5 31.5 30 31 31 29.5 28.5
GR_AM 24.5 24.5 24 24.5 24.5 24.5 24.5
GR_OI 19.5 23 20 16 23 20 16.5
GR_IE 7.5 7.5 12.5 16 9 11.5 7
GR_MC 7.5 14 6 1.5 2 4.5 18
GR_GD 24.5 24.5 25 24.5 24.5 24.5 24.5

(b)
H.-h. Ryes93 Staf83 Tres92 Utas92 Utes92 Yorf83
SR_AM 26 31 26 26 26 26
SR_OI 19.5 16 19.5 15 16 19.5
SR_IE 8 16 8.5 3.5 16 12
SR_MC 15 4.5 15 19 7 7
SR_GD 8 4.5 1 9 8 8
RD_AM 31 31 31 32.5 31 29.5
RD_OI 19.5 16 19.5 19 16 19.5
RD_IE 8 16 8.5 3.5 16 12
RD_MC 8 4.5 8.5 11.5 4 3.5
RD_GD 31 31 31 32.5 31 29.5
RP_AM 31 31 31 32.5 31 34.5
RP_OI 19.5 16 19.5 19 16 19.5
RP_IE 8 16 8.5 3.5 16 12
RP_MC 8 4.5 8.5 11.5 4 3.5
RP_GD 31 31 31 32.5 31 34.5
RPD_AM 31 31 31 32.5 31 29.5
RPD_OI 19.5 16 19.5 19 16 19.5
RPD_IE 8 16 8.5 3.5 16 12
RPD_MC 8 4.5 8.5 11.5 4 3.5
RPD_GD 31 31 31 32.5 31 29.5
CF_AM 31 26 31 27 31 33
CF_OI 19.5 16 19.5 19 16 19.5
CF_IE 8 16 8.5 3.5 16 12
CF_MC 1 4.5 2 8 1 1
CF_GD 19.5 16 19.5 19 16 19.5
TABU_AM 31 31 31 28.5 31 29.5
TABU_OI 19.5 16 19.5 19 16 19.5
TABU_IE 8 16 8.5 3.5 16 12
TABU_MC 8 4.5 8.5 11.5 4 3.5
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TABU_GD 31 31 31 28.5 31 29.5
GR_AM 24.5 24.5 24.5 24.5 24.5 24.5
GR_OI 19.5 16 19.5 23 16 19.5
GR_IE 8 16 8.5 7 16 12
GR_MC 8 4.5 8.5 14 4 6
GR_GD 24.5 24.5 24.5 24.5 24.5 24.5

(c)
H.-h. Y011 Y012 Y013 Y021 Y022 Y023 Y031 Y032
SR_AM 26 26 22.5 26 26 9.5 26 28.5
SR_OI 19.5 19.5 31.5 19.5 16 17.5 16 17.5
SR_IE 12 11.5 14 12 12 17.5 16 9
SR_MC 6 11.5 4 8 7.5 3.5 7.5 6.5
SR_GD 1 1 8 1 7.5 7 7.5 8
RD_AM 31 31 22.5 03 29.5 9.5 30 28.5
RD_OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5
RD_IE 12 11.5 14 12 12 17.5 16 17.5
RD_MC 6 5 4 4.5 4 1.5 4 3.5
RD_GD 31 31 22.5 30 29.5 9.5 30 28.5
RP_AM 31 31 22.5 34.5 34.5 34.5 34.5 34.5
RP_OI 19.5 19.5 31.5 19.5 20 28 16 17.5
RP_IE 12 11.5 14 12 12 17.5 16 17.5
RP_MC 6 5 4 4.5 4 25 4 3.5
RP_GD 31 31 22.5 34.5 34.5 34.5 34.5 34.5
RPD_AM 31 31 22.5 30 29.5 31.5 30 28.5
RPD_OI 19.5 19.5 31.5 19.5 20 28 16 17.5
RPD_IE 12 11.5 14 12 12 17.5 16 17.5
RPD_MC 6 5 4 4.5 4 25 4 3.5
RPD_GD 31 31 22.5 30 29.5 31.5 30 32.5
CF_AM 31 31 22.5 30 33 9.5 30 32.5
CF_OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5
CF_IE 12 11.5 14 12 12 17.5 16 17.5
CF_MC 3 5 4 4.5 1 1.5 1 1
CF_GD 19.5 19.5 31.5 19.5 20 17.5 16 17.5
TABU_AM 31 31 22.5 30 29.5 31.5 30 28.5
TABU_OI 19.5 19.5 31.5 19.5 20 28 16 17.5
TABU_IE 12 11.5 14 12 12 17.5 16 17.5
TABU_MC 6 5 4 4.5 4 25 4 3.5
TABU_GD 31 31 22.5 30 29.5 31.5 30 28.5
GR_AM 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5
GR_OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5
GR_IE 12 11.5 14 12 12 17.5 16 17.5
GR_MC 2 2 4 4.5 4 3.5 4 6.5
GR_GD 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5
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Fig. 4. Top seven heuristic selection method-acceptance criterion combinations considering
the average ranking over all problem instances.

5   Conclusion

An empirical study on hyper-heuristics is provided in this paper. As an iterative
search strategy, a hyper-heuristic is combined with a move acceptance strategy.  Dif-
ferent such pairs are experimented on a set of benchmark functions. According to the
outcome, experiments are expanded to cover a set of exam timetabling benchmark
problem instances.

The experimental results denote that no combination of heuristic selection and
move acceptance strategy can dominate over the others on all of the benchmark func-
tions used. Different combinations might perform better on different objective func-
tions. Despite this fact, IE heuristic acceptance criterion yielded better average per-
formance. Considering heuristic selection methods, Choice Function yielded a
slightly better average performance, but the difference between performance of
Choice Function and other heuristic selection methods were not as significant as it
was between acceptance criteria. The experimental results on exam timetabling
benchmark indicated that Choice Function heuristic selection method combined with
MC acceptance criterion performs superior than the rest of the hyper-heuristic combi-
nations.
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Abstract. The students of the Industrial Design department at the TU
Eindhoven are allowed to design part of their curriculum by selecting
courses from a huge course pool. They do this by handing in ordered pref-
erence lists with their favorite courses for the forthcoming time period.
Based on these informations (and on many other constraints), the depart-
ment then assigns courses to students. Until recently, the assignment was
computed by human schedulers who used a quite straightforward greedy
approach. In 2005, however, the number of students increased substan-
tially, and as a consequence the greedy approach did not yield acceptable
results anymore.
This paper discusses the solution of this real-world timetabling problem:
We present a complete mathematical formulation of it, and we explain all
the constraints resulting from the situation in Eindhoven. We present an
elegant integer linear programming model for this problem that easily can
be put into CPLEX. Finally, we report on our computational experiments
and results around the Eindhoven real-world data.

Keywords: University timetabling; network flow formulation; NP-
completeness; integer programming formulation.

1 Introduction

In February 2005, outraged students of the Industrial Design department were
protesting at the TU Eindhoven (The Netherlands). Uproar and revolt were in
the air. What had happened? Here is the story. The academic year of these
roughly 350 students of Industrial Design is split into a number of periods. In
every period, every student must do a number of small courses. There is a pool
of roughly 55 courses to choose from, and every student submits an ordered
preference list with his/her 10 favorite courses to the department. Based on all
the ordered preference lists, a scheduler at the department then assigns roughly
4 courses to every student. Until recently, the scheduler was a human decision-
maker who essentially applied a hand-woven greedy assignment procedure.

In February 2005, the students were absolutely dissatisfied with the work of
the human scheduler: Many of them did not get the courses which they would
have liked to get. Many of them were assigned to courses which they really did
not want to do. And more than 150 out of the 350 students received courses that
were not listed on their preference list!
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The department of Industrial Design realized that they had a problem. They
also realized that they did not know how to settle this problem. The number of
students had increased substantially, and the timetabling problem had become
much larger, much harder, and much more complex. Hence, the department
contacted the local experts on the campus: Us. They were hoping to find a
somewhat better assignment through computer programs. They explained their
problem to us (in a certain problem formulation No. 1), and we happily told
them that we are able to solve it: The problem (in formulation No. 1) could
be modeled as a network flow problem, and hence is solvable in polynomial
time. Unfortunately, it turned out that formulation No. 1 was not a complete
formulation of the problem: They had forgotten to inform us about a number of
additional restrictions that lead to a new, more difficult assignment problem (in
formulation No. 2), which eventually turned out to be NP-hard.

This paper is a report on the course assignment problem of the Industrial
Design department: We will describe the assignment problem in its (incomplete)
formulation No. 1 and in its (complete) formulation No. 2. We show that formu-
lation No. 1 yields a tractable problem, whereas formulation No. 2 yields an in-
tractable problem. Our main contribution is a careful case study of the complete
problem formulation. We design an elegant integer linear programming model
for it, with roughly 9000 variables and roughly 7000 constraints. Putting this
ILP model into CPLEX yields excellent results within moderate computation
times. We describe the ILP model in detail, and we report on our computational
experiments with the real-world data of the Industrial Design department.

Structure of the paper. The rest of the paper is structured in the following way. In
Section 2 we give a literature review of university and school time tabling. Section
3 contains a detailed description of the problem we solved for the department of
Industrial Design. The problem is formulated as an integer linear program which
will be described in Section 4. Section 5 contains the computational results. Some
conclusions are given in Section 6.

2 Literature Review

The literature contains a large number of variants of the timetabling problem.
These variants differ from each other by the type of institution involved (univer-
sity or high school) and by the type of constraints. The annotated bibliography
of timetable construction by Schmidt & Ströhlein [12] lists many papers that
appeared before 1980. Schaerf [11] gives a survey of the various formulations of
timetabling problems and classifies the timetabling problem into the following
three main classes:

School timetabling: The weekly scheduling of all the classes of a high school.
Avoid that teachers meet two classes at the same time, and avoid that classes
meet two teachers at the same time.

Examination timetabling: The scheduling of the exams of several university
courses. Avoid that exams of courses with common students overlap. Spread
out the exams for every student as much as possible over time.
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Course timetabling: The weekly scheduling for all the lectures of several uni-
versity courses. Minimize the overlaps of lectures of courses with common
students.

Of course this classification is crude, and there are many real-world timetabling
problems that fall in between two of these classes.

The basic school timetabling problem is also known as the class-teacher
model. The simplest problem consists in assigning lectures to periods in such
a way that no teacher or class is involved in more than one lecture at a time.
Even, Itai & Shamir [5] proved that there always exists a solution of this simplest
version of the school timetabling problem, unless a teacher or class is involved
in more lectures than there are time slots. Alternative formulations of the school
timetabling problem with more constraints can be found for example in Even,
Itai & Shamir [5], Garey & Johnson [7] and de Werra [4].

The main differences between course timetabling and examination time-
tabling are that examination timetabling has only one exam for each course,
that the time conflict condition is strict, and that several exams can be done
simultaneously in one room. Examples for additional soft constraints are: Stu-
dents can do at most one exam per day, and students may not have too many
consecutive exams. Schaerf [11] gives an integer linear programming formulation
of the examination timetabling problem and describes some alternative variants
of the problem.

The course timetabling problem consists in scheduling a set of lectures for
each course within a given number of rooms and time period. The main difference
from the school timetabling problem is that university courses can have common
students, whereas school classes are disjoint sets of students. De Werra [4] gives
a binary integer programming formulation. Schaerf [11] discusses some of the
most common variants of the basic formulation.

One variant is called the grouping subproblem or student scheduling problem.
If the number of students is too large for one room, courses are split into groups
of students and there are conditions on the minimum and maximum number
of students that can be assigned to each group. A student is required to take a
certain number of courses, which they have to select themselves after a timetable
is made available. The problem consists of assigning a student to a specific group
of a course for a given fixed timetable such that students are satisfied and there
are no time conflicts, see Busam [2], Feldman & Golumbic [6] and Laporte &
Desrochers [8].

Cheng, Kruk & Lipman [3] discuss the Student Scheduling Problem (SSP) as
it generally applies to high schools in North America. They define the problem
as the assignation of courses and a specific section to each student. The objective
is to fulfil student requests, providing a conflict-free schedule. They show that
the problem is NP-hard and discuss various multi-commodity flow formulations
with fractional capacities and integral gains. The main difference between the
SSP and our timetabling problem is that for the SSP all courses on the preference
list of the students have to be assigned to students. This results in most practical
cases into an empty feasible solution set.
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Laporte & Desrochers [8] give a mathematical formulation of the student
scheduling problem. They formulate the problem as an optimization problem
splitting the requirements into hard and soft ones. The only hard constraint in
their model is that student course selections must be respected. Time conflicts
for students are soft constraints. When time conflicts occur students are advised
to make a different course selection. The problem is then solved in three phases:
In the first one the algorithm searches for an admissible solution, in the second
section enrollments are balanced and in the third the room capacities have to
be respected. Tripathy [13] formulated the student scheduling problem as an
integer linear programming problem and uses Lagrangian Relaxation to solve it.
Sabin & Winter [10] use a greedy approach that is moderated by an intelligent
ordering of the students. Miyaji, Ohno & Mine [9] apply goal programming.

3 Problem Description

At our first meeting, the Industrial Design department explained the problem
to us in a certain problem formulation No. 1; see Subsection 3.1. This problem
can be modeled as a network flow problem, and hence is solvable in polynomial
time; see Ahuja, Magnanti & Orlin [1].

Unfortunately, we learnt after some time that formulation No. 1 was not
a complete formulation of the problem. They actually had forgotten to tell us
about a number of additional restrictions that lead us to a new, more difficult as-
signment problem formulation No. 2. Subsection 3.2 describes formulation No. 2.

3.1 Problem Formulation No. 1

At the first meeting with the Industrial Design department, they told us that
every student hands in a preference list of at most 10 courses and requests a
certain number of courses. The only constraints are that a student can not do
two courses at the same time and there is a maximum number of students that
can be assigned to a course. This subsection contains a more detailed description
of problem formulation No. 1.

A set C of courses and for each course c an upper bound Cmax
c on the number

of students is given. This number depends on the preference of the teacher and
the room capacity in which the course is given. For each course also the weekly
meeting time is already assigned. This weekly meeting time always consists of
two consecutive hours. Two such consecutive hours are defined as one time slot.
The weekly meeting time of a course is chosen from a set T of disjoint time slots.
T (c) is defined as the time slot which is the weekly meeting time of course c.
Hence, one of the constraints in the model is that courses ci and cj can not be
assigned to one student if T (ci) = T (cj).

We define S as the set of students. For each student s the requested number
rs of courses is given. Ps is defined as the set of positions on the preference
list for which student s filled in a course. Most students have Ps = {1, . . . , 10}.
There are also students that hand in a smaller preference list. For instance, a
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student almost finishing his bachelor and only one course left to do, which has
to be a math course, hands in a preference list with only math courses. For a
student s with only six courses on its preference list we have Ps = {1, . . . , 6}.
Table 1 gives a few examples of preference lists. Column Pi gives the encoded
course name of the course on position i of the preference list. The parameter csp

is introduced and is equal to c if course c is on position p of the preference list
of student s.

Table 1. Example of preference lists

Student rs P1 P2 P3 . . . P10

s040202 4 DAC03 DA247 DA125 . . . DA405
s040203 4 DA619 DA125 DA201 . . . DA616
s040204 4 DA418 DA242 DA402 . . . DA621

In summary: The input of problem formulation No. 1 consists of:

– a set T of time slots.
– a set C of courses; for every course c ∈ C a time slot T (c) and a maximum

number Cmax
c of participating students is given.

– a set S of students; for every student s ∈ S a set Ps of filled positions of the
preference list, a course csp for each position p ∈ Ps and a requested number
rs of courses is given.

The goal is to assign as many courses to students as possible, while:

– the number of courses assigned to student s does not exceed the requested
number rs.

– courses assigned to a student are on its preference list.
– courses assigned to a student do not conflict in time.
– no course exceeds its maximum number of assigned students.

This problem can be modeled as a network flow problem. A description of this
network flow model is given in Appendix A.

3.2 Problem Formulation No. 2

As we received the first data set from the Industrial Design department, we were
very surprised: there suddenly were also lower bounds Cmin

c on the number of
students participating in course c. This yields the new constraint that a course
either will not be given at all, or otherwise has at least Cmin

c participating
students. This new constraint can not be modeled as a flow-constraint, and
hence the maximum flow model in Appendix A becomes obsolete. In fact, the
new constraint makes the problem NP-hard; see Appendix B. After looking
at the data more carefully and after conversations with the Industrial Design
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department we noticed there were a lot more restrictions. The remainder of this
subsection explains these extra restrictions and defines the problem into more
detail.

An academic year is divided into a certain number of periods. The length of
such a period depends on the number of periods in which the academic year is
split. For instance, the academic year 2005-2006 is divided into six periods of
five weeks. We define such a period as a block. The Industrial Design department
wants us to schedule two blocks simultaneously. Therefore, set B is introduced
as the set of blocks that have to be scheduled simultaneously.

In problem formulation No. 1 we assumed the workload of all courses was
equal. However, there are courses with a workload of 40 hours and courses with
a workload of 80 hours. This can not be modeled with a flow constraint. In the
remainder of this paper a workload of 1 corresponds with a workload of 40 hours.
In Appendix B we prove that having courses with a workload 1 and courses with
a workload 2 makes the problem already NP-hard. For each course c ∈ C and
block b ∈ B the parameter w(c, b) is defined as the workload of course c in block
b. Hence for a course c with a workload of 80 hours in block b we have w(c, b) = 2.

In problem formulation No. 1, rs was defined as the requested number of
courses of student s. This definition is adjusted in problem formulation No. 2
into the requested workload of student s for |B| blocks together. For every stu-
dent s, a maximum requested workload rsb for each block b ∈ B separately is
given, because the requested workload of a student is not always equally divided
over all blocks b ∈ B. For instance, if blocks b1 and b2 have to be scheduled
simultaneously and rs = 3, then parameters rsb1 and rsb2 are both equal to 2. In
this case the model is allowed to choose the block in which student s is assigned
two courses. Another example, if student s has to do a practical training in block
b2 he has: rs = 2, rsb1 = 2 and rsb2 = 0.

It was assumed in problem formulation No. 1 that a course has one meeting
every week, hence it has one time slot. But there are also courses which have
two weekly meetings, hence have two time slots. If such a course is assigned to a
student, the student has to be available at both time slots. If courses with two
time slots are introduced into problem formulation No. 1, the problem can not
be modeled as a network flow problem.

The set C of courses offered to the students contains courses with multiple
sections, meaning that the course is repeated during the week. Table 2 contains
course DA242 as an example. The time slots in the table are encoded. For ex-
ample, code B1TM2 stands for the second part of Tuesday morning in block 1.
The workloads of a course in block 1 and 2 are denoted with wlb1 and wlb2. The
course DA242 has five sections which all have two time slots as meeting times.
The first meeting is for all sections on the same time slot and the other is on
a different time slot for each section. The first meeting is a class in one large
lecture room and the second is a meeting where exercises have to be made in
smaller groups.

We define I as the set of sections offered to the students. For every section
i ∈ I its course c(i) ∈ C is given. In problem formulation No. 2 there are
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no maximum and minimum number of students for a course like in problem
formulation No. 1, but a minimum number Cmin

i and a maximum number Cmax
i

of students for each section i ∈ I. The meeting times for each section i ∈ I are
given as the set of time slots T (i) ⊆ T . There are a few courses, for example
literature studies, which are not assigned to a time slot and thus T (i) = ∅.

Table 2. Examples of courses

Course Section Time slots of meetings wlb1 wlb2 Min Max

DA242 DAG242-1 B1TM2, B1TA1 1 0 0 30
DAG242-2 B1TM2, B1TA2 1 0 0 30
DAG242-3 B1TM2, B1WA1 1 0 0 30
DAG242-4 B1TM2, B1WA1 1 0 0 30
DAG242-5 B1TM2, B1WA2 1 0 0 30

DA247 DAG247-1 B1WA2, B2WA2 1 1 5 15
DAG247-2 B1WA2, B2WA2 1 1 5 15

Another constraint arises if students have specific needs, for instance when
they almost finish their studies and only have one course left to pass. Then a
course on the preference list of the student can be set to urgent. As long as the
maximum number of students (all with an urgency) is not assigned to this course,
the course has to be assigned to the student. A course which is urgent for one
student has to be given. In this case, it doesn’t matter whether the minimum
number of students is reached or not. We define U as the set containing all
combinations (s, p) for which course csp is urgent for student s.

A few courses have meeting times which are spread over two blocks. See
for example course DA247 in Table 2. This course has two sections and a total
workload of two which is equally spread over the two blocks. If a student is
assigned to a section of this course in one block he needs to be assigned to the
same section of this course in the next block. Hence, it is also possible that courses
are given in two blocks which are not scheduled simultaneously. If this occurs,
this implies there are students already preassigned to sections if the schedule of
the second block is made. Therefore, we introduce the set F of fixations which
contains combinations (s, p, i) for which section i of course csp is already assigned
to student s.
In summary: the input of problem formulation No. 2 consists of:

– a set B of blocks that have to be scheduled simultaneously.
– a set T of time slots.
– a set C of courses; for every course c its workload w(c, b) for each block b is

given.
– a set S of students; for every student s a total requested workload rs, a

requested workload rsb for each block separately, a set Ps of filled positions
on the preference list and for each position p ∈ Ps a course csp is given.
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– a set I of sections; for every section i its course c(i), a minimum Cmin
i and

maximum Cmax
i number of students and a set of time slots T (i) ⊆ T is given.

– a set U of combinations (s, p) for which course csp is urgent for student s.
– a set F of combinations (s, p, i) for which section i of course csp is already

preassigned to student s.

Our main goal is to assign workload to students as much as possible, while:

– maintaining the number of students in a section below a maximum size
prescribed.

– the total workload assigned to student s is less than or equal to rs.
– the workload assigned to student s in block b is less than or equal to rsb.
– sections assigned to a student do not conflict in time.
– students are only assigned to a section of a course on their preference list.
– students are only assigned to one section of a course.
– student s is assigned to section i if (s, p, i) ∈ F .

Soft constraints are for example spreading students over sections, a section needs
to be assigned to at least a certain minimum number of students and student s
has to be assigned to course csp if (s, p) ∈ U .

4 The Integer Linear Programming Model

To build a schedule which best fits the needs for the students, the problem is split
into four subproblems which are formulated as an integer linear programming
problem. These subproblems are solved sequentially, keeping the objective value
of the foregoing subproblems the same. The goals of the four subproblems are:

1. Maximize the number of assigned courses with an urgency.
2. Minimize the shortage of students to reach the minimum number of students

of a section. Because of urgencies, some sections must be taught, but don’t
have enough students with this course on their preference list. We assign as
many students as possible to those sections.

3. Maximize the total assigned workload. We try to assign a workload rs to
every student s.

4. ’Optimize’ the timetable. For example by assigning courses to students which
rank high on their preference list.

All parameters are already introduced in Section 3. Left to define are the
decision variables. These are defined as follows:

xsp :=
{

1 if course csp is assigned to student s
0 otherwise

yi :=
{

1 if section i is assigned to one or more students
0 otherwise

zspi :=
{

1 if section i of course csp is assigned to student s
0 otherwise
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The following constraints have to be fulfilled in all four subproblems:

xsp =
∑

i∈I|csp=c(i) zspi ∀s ∈ S, ∀p ∈ Ps (1)
∑

p∈Ps

∑
i∈I|csp=c(i) w(csp, b)zspi ≤ rsb ∀s ∈ S, ∀b ∈ B (2)

∑
p∈Ps

∑
i∈I|csp=c(i)

∑
b∈B w(csp, b)zspi ≤ rs ∀s ∈ S (3)

∑
s∈S

∑
p∈Ps,csp=c(i) zspi ≤ Cmax

i yi ∀i ∈ I (4)
∑

p∈Ps

∑
i∈I|csp=c(i),t∈T (i) zspi ≤ 1 ∀s ∈ S, ∀t ∈ T (5)

zspi = 1 ∀s ∈ S, ∀p ∈ Ps,

∀i ∈ I|(s, p, i) ∈ F (6)
xsp ∈ {0, 1} ∀s ∈ S, ∀p ∈ Ps (7)
yi ∈ {0, 1} ∀i ∈ I (8)

zspi ∈ {0, 1} ∀s ∈ S, ∀p ∈ Ps, ∀i ∈ I (9)

Constraint (1) takes care that at most one section of a course is assigned to
a student. The workload assigned to a student has to be less than or equal to
the requested workload each block separately and all blocks together. This is
fulfilled by constraints (2) and (3). Constraint (4) enforces that the maximum
number of students for a section is not exceeded and constraint (5) takes care
that at each time slot only one section is assigned to each student. If (s, p, i) ∈ F
then section i of course csp has to be assigned to student s, which is fulfilled by
constraint (6).

As explained above, the problem is split into four subproblems which are
solved sequentially. The goal of the first subproblem is to maximize the number
of assigned courses with an urgency. The constraint that a section needs to have
more than a minimum number of students is not a restriction in this subproblem,
because at least one section of a course must be given if there is a student with
an urgency for this course. This first subproblem can be solved with the following
ILP formulation:

Umax = max
∑

(s,p)∈U xsp

(x,y,z) satisfy (1)-(9)

The next step is to minimize the shortage of students to reach the mini-
mum number of students of a section, keeping the maximum number of assigned
courses with an urgency equal to Umax. There are sections that have to be given
because they are assigned to students with an urgency for the corresponding
course. Those sections are assigned to other students such that the minimum
number of students for those sections is reached. The decision variable si is de-
fined as the shortage of students for section i, i.e. the minimum number Cmin

i

of students subtracted with the number of students assigned to section i. The
second subproblem minimizes the total shortage Smin of students. This results
into the following ILP formulation:

Smin = min
∑

i∈I si
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∑
(s,p)∈U xsp = Umax

∑
s∈S

∑
p∈Ps,csp=c(i) zspi + si ≥ Cmin

i yi ∀i ∈ I

si ∈ Z+, ∀i ∈ I

(x,y,z) satisfy (1)-(9)

The third subproblem maximizes the total workload assigned to students with
the restrictions that Umax and Smin keep their optimal values. This maximum
workload is denoted by Wmax and is determined by the following model:

Wmax = max
∑

s∈S

∑
p∈Ps

∑
b∈B w(csp, b)xsp

∑
i∈I si = Smin

∑
(s,p)∈U xsp = Umax

∑
s∈S

∑
p∈Ps,csp=c(i) zspi + si ≥ Cmin

i yi, ∀i ∈ I

si ∈ Z+, ∀i ∈ I

(x,y,z) satisfy (1)-(9)

To ’optimize’ the final timetable we assign courses as high as possible on the
preference lists, spread the students as equally as possible over the sections of
a course and discourage that one student gets a lot of courses which are on the
bottom of his preference list. Therefore, the fourth subproblem is solved. The
objective function is separated into three terms and has to be minimized under
the restrictions that Umax, Smin and Wmax keep their optimal values.

The term in the objective function to assign courses as high as possible on
the preference lists is: Wp

∑
s∈S

∑
p∈Ps

∑
b∈B w(csp, b)(82− (10− p)2)xsp. As-

signing a course on top of a preference list, p = 1 for this course, adds a lot
less to the objective function than assigning a course on the bottom of the list,
p = 10 for this course. Wp is a weighting factor and also the workload is taken
into account.

If a course has multiple sections, students have to be spread as equally as
possible over the sections. Therefore, Imax

c is introduced as the number of stu-
dents assigned to the section of course c with the most students assigned. Also
the spread Sc of course c is introduced and is equal to the sum over all sections
of the difference between Imax

c and the assigned number of students in each
section. Sc is added to the objective function with a weighting factor Ws.

We also discourage that one student gets a lot of courses of his 7th up to 10th
position of his preference list. A constraint is added to the model that enforces
that every student gets at most one course from these positions, else a penalty
We is paid for each ’extra’ course from these positions. Therefore, the decision
variable Es is introduced for every student s. This variable is equal to the ’extra’
number of courses assigned to student s which are on the 7th up to 10th position
of his preference list.
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This results into the final ILP formulation:

min Wp

∑

s∈S

∑

p∈Ps

∑

b∈B

w(csp, b)(82− (10− p)2)xsp + Ws

∑

c∈C

Sc + We

∑

s∈S

Es

Imax
c(i) ≥ ∑

s∈S

∑
p∈Ps,csp=c(i) zspi ∀i ∈ I

Sc =
∑

i∈I|c=c(i)(I
max
c −∑

s∈S

∑
p∈Ps,csp=c zspi) ∀c ∈ C

∑10
p=7 xsp ≤ 1 + Es ∀s ∈ S∑

s∈S

∑
p∈Ps

∑
b∈B w(csp, b)xsp = Wmax

∑
i∈I si = Smin

∑
(s,p)∈U xsp = Umax

∑
s∈S

∑
p∈Ps,csp=c(i) zspi + si ≥ Cmin

i yi, ∀i ∈ I

Es ∈ N ∀s ∈ S

Imax
c , Sc ∈ N ∀c ∈ C

si ∈ Z+ ∀i ∈ I

(x,y,z) satisfy (1)-(9)

5 The Computational Results

The computational results for the academic year 2005-2006 are given in this
section. This academic year was divided into six blocks. Blocks 1 & 2, blocks 3
& 4 and blocks 5 & 6 were scheduled simultaneously.

In all blocks the meetings were on Tuesday morning, Tuesday afternoon,
Wednesday morning and Wednesday afternoon. Every morning and afternoon
was split into two parts. So both blocks contained eight time slots. More details
about the input are given in Table 3. The abbreviation wl stands for workload.

The number of students that requested workload in blocks 1 & 2 was 356 and
the total workload they requested was 1416. Hence, for each block, an average
of two courses of the preference list of 10 courses had to be assigned. Note that
the large number of urgencies in blocks 1 & 2 can be explained by the fact that
first year students are preassigned to courses, because they are not able to make
a choice themselves.

Table 3. Input information for academic year 2005-2006

Blocks |S| |C| |I| |U | offered wl requested wl

1 & 2 356 51 79 590 1504 1416

3 & 4 328 64 88 279 1545 1288

5 & 6 302 58 89 151 1544 1333
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The models introduced in Section 4 are solved by the standard IP solver
CPLEX 10.0. The computations are done on an Intel Pentium M, 2.0 GHz
processor with 1.0 GB internal memory. The values of the weighting factors
were Wp = 10,Ws = 1 and We = 100. The results for the academic year 2005-
2006 are given in Table 4. What can be noted is that the computation time of
CPLEX is negligible.

Table 4. Results for the academic year 2005-2006

block 1 & 2 block 3 & 4 block 5 & 6

Runtime CPLEX (s) 1.38 1.53 1.67

Umax 439 273 134

Smin 0 0 0

W max 1369 1261 1300

average position 3.30 3.64 3.87

bad positions 8 16 39

In blocks 1 & 2 a requested workload of 47, in blocks 3 & 4 a requested
workload of 27 and in blocks 5 & 6 a requested workload of 33 could not be
assigned. Especially in blocks 1 & 2 this is caused by the small difference between
the requested and offered workload. However, the main causes are preference lists
for which it was impossible to assign the requested workload. Some examples of
such wrongly chosen preference lists are:

– an empty preference list, because students didn’t hand it in on time.
– a preference list with less than 10 courses.
– a preference list with not enough different time slots in one of the two blocks.
– a preference list with the same course on more positions. There was even a

student with ten times the same course on his preference list.

If all students would hand in a preference list with 10 courses and enough differ-
ent time slots, then in blocks 1 & 2 only five students would not be assigned to
their requested number of courses, in blocks 3 & 4 and blocks 5 & 6 only three
students.

Table 4 also shows that in blocks 1 & 2 only 439 out of 590 urgency requests
could be assigned. This can be explained by the fact that in these blocks all
courses on the preference list of first year students are set as urgent. Most of
those preference lists contain 6 suitable urgent courses of which at most 4 are
assigned. This means at least two not assigned courses with an urgency for each
first year student.

The average position denotes the average of the positions of all courses as-
signed to a student. On average students request a workload of 4, which mostly
corresponds with four courses. Hence, it can be concluded that students get a
lot of courses which are on top of their preference list. A bad position is a course
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assigned to a student who has the course on 7th up to 10th position on its pref-
erence list. Also from the number of bad positions it can be concluded that the
courses assigned to students are on top of their preference lists.

6 Conclusions

We have formulated, analyzed and solved a real-world timetabling problem that
showed up at the department of Industrial Design of the TU Eindhoven. Our suc-
cessful approach was based on an Integer Linear Programming formulation. The
running time that CPLEX needs for solving the resulting instances is negligible.

The administration and the students of the department of Industrial Design
were highly satisfied with the timetables generated by our program. Most stu-
dents now receive courses that are on top of their preference lists. There still
are a few students who are not satisfied, but in most cases this turned out to
be solely their own fault: they failed to specify correct preferences in the correct
format.
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12. G. Schmidt and T. Ströhlein. Timetable construction - an annotated bibliography.
The Computer Journal 23, 307–316, 1980.

13. A. Tripathy. Computerised decision aid for timetabling - a case analysis. Discrete
Applied Mathematics 35(3), 313–323, 1992.

Timetabling Problems at the TU Eindhoven 153



A Max-Flow Model of Problem Formulation No. 1

Full details of the definition of this network flow problem will be given in the
full version of this paper.
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Fig. 1. The network flow model

B Some NP-hardness Results

The timetabling problem defined in Subsection 3.2 is an NP-hard problem. We
prove this by identifying two independent NP-hard subproblems. Both subprob-
lems result from adding one additional constraint to the problem formulation
No. 1.

In the first subproblem, the additional constraint are lower bounds on the
number of students in the courses. There are no time slots, there is only one
section for each course c with a minimum and a maximum number of partici-
pating students. The workload of all courses is one, and only one block has to
be scheduled. Formally, problem Pmin is defined as follows:

Instance: A set C of courses; for every course c ∈ C a minimum capacity
Cmin

c and a maximum capacity Cmax
c of participating students. A set S

of students; for every student s ∈ S a preference list of some courses in
C, and a number rs of requested courses.

Question: Does there exist an assignment such that (i) every student s
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gets exactly rs courses from its preference list, and such that (ii) for every
course c the number of assigned students is either zero (if the course does
not take place) or falls between the bounds Cmin

c and Cmax
c ?

Theorem 1. Problem Pmin is NP-hard.

Proof. The proof is done by reduction from the exact cover by 3-sets problem:
Given a ground set X = {x1, . . . , xn} and a set T = {t1, . . . , tm} of 3-element
subsets of X, can one select T ′ ⊆ T such that every element of X occurs in
exactly one member of T ′?

From an instance of the exact cover by 3-sets problem, we construct a cor-
responding instance of problem Pmin with n students x1, . . . , xn and with m
courses t1, . . . , tm. Every student s has a demand of one course (rs = 1), and
every course c has minimum and maximum capacity three (Cmin

c = Cmax
c = 3).

Assume X possesses an exact cover T ′. Assign student xs to course tc if and
only if xs ∈ tc and tc ∈ T ′. Since T ′ is an exact cover of X, every student
xs will be assigned to exactly one course tc. The course tc is assigned to three
students if it is in T ′, and to zero students if it is not in T ′. This shows that the
constructed instance of Pmin is a yes-instance. The converse statement can be
seen in a similar way. ut

In the second subproblem, we take problem formulation No. 1 and addition-
ally allow courses with a workload of 2. We consider a situation with only one
section for each course c, only a single block, and without any time slots. (And
there is no minimum capacity of courses.) Problem Pwl is defined as follows:

Instance: A set C of courses; for every course c ∈ C a workload wlc ∈
{1, 2} and a maximum capacity Cmax

c of participating students. A set S
of students; for every student s ∈ S a preference list of some courses in
C, and a desired workload rs.

Question: Does there exist an assignment such that (i) every student
s gets courses with a total workload rs from Ps, and such that (ii) for
every course c the number of assigned students is at most Cmax

c ?

Theorem 2. Problem Pwl is NP-hard.

Proof. The proof is done by reduction from the 3-SAT variant where every vari-
able occurs exactly twice in negated and exactly twice in unnegated form. Con-
sider an arbitrary instance of this 3-SAT variant.

– For every variable xi, we introduce two corresponding students st(xi) and
st(xi) which both request a workload of two.

– For every variable xi, we also introduce a corresponding variable-course
C(xi) which has a workload of two and a capacity of one. C(xi) is in the
preference list of st(xi) and st(xi).

– For every clause cj , we introduce a clause-course C(cj) with a workload of
one and a capacity of two. Clause-course C(cj) is in the preference list of a
student st(xi) (respectively st(xi)) if and only if xi (respectively xi) occurs
as a literal in clause cj .
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Note that in any feasible assignment, student st(xi) (respectively student
st(xi)) will either do course C(xi) or the two courses C(cj1) and C(cj2) for
which literal xi (respectively literal xi) occurs in clauses cj1 and cj2.

Assume that the 3-SAT instance is a yes-instance, and consider a correspond-
ing satisfying truth-assignment. If xi is set to TRUE, then we assign student
st(xi) to the variable-course C(xi), and student st(xi) to the two clause-courses
that correspond to the clauses containing xi. If xi is set to FALSE, we assign
st(xi) to the courses that correspond to the clauses containing xi, and stu-
dent st(xi) to C(xi). Then each student receives his requested workload, and
every course C(xi) gets only a single student. Since every clause has at most
two FALSE literals, the corresponding clause-courses will get at most two stu-
dents. So every yes-instance of the 3-SAT problem leads to a yes-instance of the
timetabling problem.

Now assume that the constructed instance of problem Pwl is a yes-instance.
Then every student st(xi) receives a workload of 2, which implies that the student
must either be assigned to one course C(xi), or to two clause-courses C(cj1)
and C(cj2). If student st(xi) is assigned to the variable-course C(xi), we set
xi to TRUE. If student xi is assigned to some clause-courses, then we set xi

to FALSE. Since each clause-course C(cj) is assigned to at most two students,
every clause contains at most two FALSE literals. Hence, every yes-instance of
Pwl corresponds to a yes-instance of 3-SAT. ut
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Abstract. Today’s highly competitive economy calls for new methods of man-
agement. Advanced practices have been proposed to manage human resources, 
often acclaimed to be the most important assets of any organisation. However, 
computer models and applications to support these methods are often not avail-
able, or not until it is much too late. This paper presents several directions for 
advances in strategic employee scheduling, as well as our approach for imple-
menting these concepts.  

Introduction 

It is commonly observed that human resource (HR) models and applications take time 
to keep up with emerging management best practices (MBP). For example, the han-
dling of homogeneous employees first published in 1950’s, is still subject to research 
today (see [10, 14]), while scheduling employees with multiple skills have been dis-
cussed since 1980’s. To accelerate this process, this paper describes in § 1, a consis-
tent set of MBP that would make up a Strategic Employee Scheduling (SES) system. 
A definition of SES is given in § 2 and we compare it with existing terminology and 
models. We will describe our approach in implementing such a system in § 3 with 
some details based on Mixed Integer Programming.  

In this paper, we do not consider simpler working conditions where only days-off 
needs to be scheduled or where the requirements are cyclic, i.e. they repeat systemati-
cally after a given period of time, typically weekly. In addition, we do not consider 
shift creation, which assumes cyclic requirements over a given day of the week.  

1 Management Best Practices 

This part describes the many concepts that managers need to consider in producing 
“strategic” schedules, i.e. scheduling with a strategy. Like multi-skilled staff, these 
concepts are not new. However, computing models and applications that handle them 
are only partially available today, e.g. [12].  
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1.1 Creating, Operating and Retaining Flexible Teams 

It is common knowledge that multiple skilled workers are more productive since they 
can change jobs to meet changing customer needs. The underlying principle is flexi-
bility; i.e. teams that can easily and quickly adapt to changing market conditions; see 
[6]. Through our experience, operating a flexible team involves concepts such as:  
– Multi-term : Annualized hours allow people to work more on certain weeks with-

out incurring overtime. In order to avoid abuse, this flexibility is accompanied by 
maximal work limits at various horizons (e.g. daily, weekly, monthly or quarterly) 
and minimal rest duration at the day and week levels. Capacity planning becomes a 
necessity to avoid paying fines when these limits are violated. This important con-
cept, similar to that of “Planning and Scheduling”, is discussed further in § 1.2. 
Since 2000, annualized work time has become legal for many sectors of the econ-
omy in many European countries. We have been working in this area [4], [5]. 

– Multi-contracts : People may come from different walks of life with different 
work durations and times, e.g. students, house-wives, retired or semi-retired peo-
ple. For economic reasons, different populations may be hired to cater for peak pe-
riods; their differences may be used to adapt team availability to different customer 
demands in the day, over the week or over a season (e.g. summer/winter season). 

– Multi-site/multi-project : People may work on different sites or projects, accord-
ing to the needs of the moment. Rather than hiring and training new personnel, it 
might be more efficient to have them travel across sites, e.g. during meal breaks.  

In addition to operation, the team needs to be created and its members retained. 
Team creation involves the identification of key roles within the team, the assignment 
of available individuals to these roles and the recruitment of new staff for the missing 
roles. This aspect is out of the scope of the paper, being a one-time activity for which 
automation may not be cost-effective. 

We think that retaining team members is an aspect that accompanies team opera-
tion. Other than better pay, motivation can come by work times adapted to individual 
needs which can change over time, better working conditions (such as security and 
hygiene), creation of a team spirit or through professional mobility. For example, 
highly skilled staff can act as tutors to new employees.  

1.2 Capacity Planning and Scheduling and Strategic Employee Scheduling 

Recently, the concept of Integrated Planning and Scheduling has been introduced, 
initially in the domain of autonomous systems where actions must be planned using 
AI-based methods and then scheduled for execution; e.g. see [13]. The constituent 
domains have been studied separately until recently. Both are highly combinatorial 
problems and their resolution methods are not dissimilar. Their integration and/or 
simultaneous execution within the same application are motivated by creating near-
perfect schedules, to solve the problems faster, or to solve even larger ones.  

We argue that AI-based planning is not always relevant in general management 
practices. Here, the goals are well defined in advance and do not necessarily evolve 
over time. In many classical scheduling areas, the concept of planning is typically 
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based on capacity reasoning. So that given activities can take place as scheduled, it is 
necessary that all required resources and constituents be present in adequate number, 
in space and in time.  

For example, in manufacturing where machines need to be scheduled (at the job-
shop level), Materials Requirements Planning (MRP) software is used to organize 
activities so that constituent parts are available on time (at the same factory/site) and 
in required quantities. Resource capacity constraints are normally taken into account 
in Manufacturing Resource Planning (MRP2) software. Currently, such software’s 
run independently in different departments of the company. Plans that respect capac-
ity can be created in MRP2 that cannot be scheduled in MRP.  

We see capacity planning as a natural extension to detailed scheduling, with the 
goal of ensuring that needed resources and materials be available in time and in quan-
tity so that the schedule can actually be implemented. We expect the capacity plan-
ning and scheduling processes would be running step-in-step. Many of the scheduling 
definitions would come from capacity planning, such as team size, skill compositions, 
etc. When capacity planning shows that there is excessive unused capacity, it may be 
empowered to launch new activities.  

Within the more general context of flexible teams such as that described in §1.1, 
we would refer to the Capacity Planning and Scheduling concept as Strategic Em-
ployee Scheduling, so as to avoid confusion with AI-based Planning and Scheduling.  

1.3 Benefice = Revenue - Costs 

We see that flexible teams seek to adapt team availability to customer requirements so 
that requirements can be fulfilled so that the business opportunities are not lost. The 
underlying concept is that the employees be fully and usefully occupied. In other 
words, avoid downtime. To avoid downtime, managers launch additional activities or 
projects. For the same fixed costs, increasing revenue would produce more benefices. 
– Detect if there is enough slack to launch a new activity, while allowing for some 

slack to cater for unforeseen circumstances.  
– Choice of a new job/mission/production to introduce/launch; this may depend on 

availability thresholds 
– Which item to make to stock: it depends on available manpower (or what’s miss-

ing and must be completed by hires), stocks of spare parts and stocking newly as-
sembled parts.  

– Compact schedules are those that have work periods (hours/days/weeks) over the 
shortest possible horizon. Create compact schedules at the highest possible level 
(e.g. quarterly), so that people can be reassigned elsewhere or on other projects.  

2 Strategic Employee Scheduling: A Definition 

Strategic Employee Scheduling is the process of producing detailed daily schedules 
for individual employees while taking the organisation’s strategic goals into consid-
erations at different time horizons (such as monthly, quarterly or yearly). This defini-
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tion stems from the term “Strategic Scheduling” for example in manufacturing, where 
lead times for business decisions range from 3 months to several years. Strategic 
Scheduling is a general management methodology to consider an organization’s stra-
tegic goals and scheduling all resources to meet them. With a larger scope, it can 
achieve more important gains then ordinary scheduling. Models and applications have 
been proposed but they are necessarily specific to the domain or the combination of 
resources managed (manufacturing, transport, farm production, etc.). 

In certain cases, it may be possible to combine two existing models or tools to 
cover the strategic terms (long and middle) and the short term. Here, a good match is 
essential because we need both good strategies that can be scheduled and good short-
term schedules that are long-sighted. And we need to get them without having to 
adjust by hand the results of one to feed the other. In the following paragraphs, we 
offer a more precise definition in terms of objects and concepts manipulated. 

2.1 Scheduling workforces, nurses or employees 

Workforce scheduling is taken to be short-term assignment of tasks in time, with the 
attendant sequencing/precedence constraints. The people scheduled are assumed 
homogeneous such that individual skills are not taken into account, such as in techno-
logically mature industries. The first work started by [7], scheduling homogeneous 
workers is still a research subject today [10, 14].  

Employee scheduling, a term first used in [9], takes into account individual skills. 
Distinguishing full-time and part-time employees, each employee specifies the mini-
mum and maximum hours per week and duration and times during the week. In the 
literature, some authors misuse workforce scheduling to refer to employee scheduling. 

Nurse scheduling is generally more complex, producing subtly “balanced” sched-
ules for each employee according to their individual preferences; see e.g. [1].  

Some properties to be taken into account: 
– Set of skills and the level of proficiency for each employee. This allows him/her to 

be assigned to simple tasks in a new skill, thus allowing a gradual development. 
– We need to know the employees’ previous assignments so as to ensure minimum 

rest duration since yesterday’s work or enough rest days in the week, and to ensure 
that maximum work duration is not exceeded in the current month or quarter. 
Scheduling history can also be used to produce schedules that are balanced with 
respect to values of counters (such as number of night and/or weekend assign-
ments).  

– Contractual and preferred work periods and durations  
– Skill and proficiency level required for each activity type.  
– Per skill, the minimum assignment for each employee, thus taking into account his 

previous assignments. The minimum is to retain the skill qualification (for security 
reasons) or to upgrade it, depending on the organisation’s policy. 

– Company skills to develop, employees designated for training in these skills 
– Identification of activities that may be launched and the thresholds of excess man-

power that justifies their launching 
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2.2 Planning model 

The capacity planning model is an aggregated model using periods of one day, week, 
or month, over an annual horizon, for example. The needed amount of work (i.e. 
man-hours) per skill per period is forecast, either based on statistics with local correc-
tions for events in the new horizon, or activities validated by higher management. 
Other inputs are employees’ absence requests (i.e. summer/winter holidays). At the 
beginning of the year, such forecasts may be incomplete; requests formulated during 
the year may not be granted, especially during peak seasons.  

Capacity planning consists of determining the work duration per employee per pe-
riod and per skill. Other results are: 
– Planning off-peak seasons where employees can take annual vacations; these as-

signments are nominative but employees with the same skills may exchange them  
– Hiring additional hands when needs cannot be satisfied with available employees 
– Launching additional activities when available manpower exceeds requirements by 

a given margin.  
This component gives SES its strategic dimension over pure scheduling systems.  

 
 
 
 
 
 

Fig. 1: Capacity Planning 

2.3 Scheduling model 

The scheduling model is the detailed assignment of employees to activities or skills 
on each day of the week. The schedule must respect the different daily/weekly con-
straints on work and rest duration, total work duration and total work duration per 
skill. There are eventually ¼ hourly requirements per day of the week, similar to 
those in call centers. In the distribution sector, depending on the holidays in the week, 
a given weekly load curve can be broken down into standard load curves per day.  

 
 
 
 
 
 

Fig. 2: Scheduler 

The scheduler could also be used to verify if various parts of the annual capacity 
plan can be scheduled. Compared to conventional schedulers, it handles multi-skills 
and performance levels. It would also take into consideration some planning con-

Scheduler 
Assigns employees to 
activities or tasks 

Legal constraints: On work & rest durations; 
maximum continuous work before break 
Preference: work & break duration; work times; 
employees’ skills and scheduling historic 

Employees available 
Target total work duration 
and duration per skill 
Eventually detailed work 
load per skill 

Capacity Planner 
Employees available 
Project plans 
Training plans 
Absence requests 

Legal constraints: max work & min. rest durations 
Company policies; employee skills 

Assigns work durations per 
skill to employees over the year 
Eventual new hires or new 
activities launched 
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straints such as slack thresholds: if exceeded, it would abort and request the planner 
to activate additional tasks (which invalidates the current schedule anyway).  

It is the presence of the planning model and its integration to the scheduling model 
that transforms the whole into an SES. The integration may be at the model level, 
where the linear equations of both levels coexist.  

3 Our Approach to Strategic Employee Scheduling 

In this section, we describe our approach to solving the SES problem as described in 
§ 2. We propose two models for (a) capacity planning and (b) detailed scheduling. 
We solve a capacity planning problem at the annual horizon with weekly periods. 
Here the work hours of each employee are distributed so as to meet the forecasted 
demand, i.e. the number of hours of expected work NW (s, w) per skill s and per week 
w. The total working duration per week is bounded legally. The average working 
duration per week over 3 months and the total annual working duration are also 
bounded. Employees’ requests for summer / winter holidays may be integrated within 
the plan at this stage. With the weekly skill distribution known, we attempt to pro-
duce a detailed schedule for all days in the current weeks that is compatible with 
labor constraints such as maximum work and minimum rest durations per day and per 
week. If such a schedule is unfeasible, we recalculate the annual plan; in particular, 
we check the plan for the following weeks and eventually recalculate the detailed 
schedule for some weeks (if they are already calculated).  

In the following, we first detail the capacity planning step. The detailed scheduling 
step can be formulated as described in § 3.2. The set of employees is denoted Em-
ployees; the skills of employee e is denoted Skills (e); the periods in day d (or week 
w) is noted Periods (d) or Periods (w). We assume that each skill implies the site at 
which the skill can be exercised.  

The proficiency level of a skill is factored out of the mathematical model. Each 
combination of (Skill, Site, and proficiency level) is mapped into a different skill, e.g. 
s1 = (s°, Paris, high), s2 = (s°, Paris, medium), s3 = (s°, Paris, low). An employee 
expert in s° will have the three mapped skills and a trainee will have only s3. 

3.1 Capacity planning in SES 

The capacity planning problem uses the integer variables Y (e, s, w) representing the 
number of hours worked by employee e in a skill s over week w. The total work dura-
tion in the week w is given by (1). WD is a semi-continuous variable, bounded by the 
minimum and maximum contractual weekly work duration: CW Min  (e) and CW Max (e). 
It is null if employee e takes weekly holidays.  

WD (e, w) = ∑ s ∈ Skills(e) Y  (e, s, w), ∀ e, ∀ w. 
CW Min  (e) ≤ WD (e, w) ≤ CW Max (e). 

(1) 

The legal annual work limit CA Max (e) is assured by 
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∑ w = 1… 52 WD (e, w) ≤ CA Max (e), ∀ e. (2) 

Another legal limit is that the average weekly hours over all sliding horizons of 
CH=16 consecutive weeks must not exceed CH Max: 

∑ w = 0… CH-1 W (e, a + w) ≤ CH Max /CH, ∀ e, ∀ a = 1 … 52 – CH (3) 

The requirements constraint is given by NW (s, w) for skill s in week w: 

∑ e ∈ Employees Y  (e, s, w) ≥ NW (s, w), ∀ s, ∀ w. (4) 

Creation of compact plans at the week level 
The logical conditions that imply compact schedules (§ 1.3) is that when there is no 
work on weeks w and w+2, week w+1 must be off as well: 
If  WD (e, w) > 0 and WD (e, w+2) > 0 Then WD (e, w+1) > 0 

This condition may be translated into linear equations. We use binary variables Bi 
to hold when the WD variables > 0; M designates the bound CW Max (e) 
If  WD (e, w) > 0 Then X0 = 1   WD (e, w) ≤ M × B0; M × B0 – M ≤ WD (e, w); 
If  WD (e, w+2)>0 Then X2= 1 WD (e, w+2) ≤ M × B0; M × B0 – M ≤ WD (e, w+2); 
Next, we take the product of the variables B0 and B2 and link them to WD (e, w+1): 

B1 ≤ B2; B1 ≤ B0; B1 – 1 + B0 ≤ B1; B1 ≤ WD (e, w+1) 
Hence, over 52 weeks, we add 400 equations and 52 Boolean variables per employee. 
When single off weeks are requested by the employee, we have to avoid posting the 
corresponding equations.  

New hires 
Some dummy employees would be included during capacity planning. The lower 
bounds on total work duration per week would lead to employees either partially or 
completely unemployed over the year, which means that they can be removed. If the 
work load exceeds available work capacity of dummy and real employees, the linear 
relaxation of the system of equations would quickly prove to be infeasible.  

Launching new activities 
Projects that last more than a week, with different skill requirements during each 
week of the project life, need to be scheduled, i.e. assign them in time subject to re-
source capacity limits. We expect such projects to be decided and scheduled very 
early in the process and taken in account by NW (s, w). SES needs only to consider 
launching projects or activities that can be completed within the week, given enough 
manpower. 

To do so, capacity planning is activated without extra employees. At week w, the 
selection of projects to launch is a classical project selection problem with the 0-1 
variables Project (j, w) = 1 if project j is selected for the week w, 0 otherwise. Given a 
set of Projects, where each j requires a (j, s) hours of skill s, the basic requirement is  
∑ j ∈ Projects a (j, s) × Project (j, w) ≤ NW (s, w) - ∑ e ∈ Employees Y  (e, s, w), ∀ s, w 
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The objective function to maximize is ∑ j ∈ Projects c (j) × Project  (j, w), c (j) being the 
profit of the project j. These projects are selected and added to NW (s, w) before mov-
ing onto the scheduling step. 

Hence, handling new activities is not a direct MIP problem but requires updating 
the weekly requirements, may require user interaction to finalize the selected projects.  

3.2 Scheduling with 0-1 variables and patterns 

The scheduling problem of day d uses the 0-1 variables: X (e, s, p) takes the value 1 if 
employee e is assigned to work with skill s at the period p ∈ Periods (d), 0 otherwise.  

∑ s ∈ Skills(e) X  (e, s, p) ≤ 1, ∀ e, ∀ p. (5) 

The needs in skill s of each daily period p, designated by ND  (s, p), are covered if 

∑ e ∈ Employees X  (e, s, p) ≥ ND (s, p), ∀ s, ∀ p. (6) 

It is straight forward to link the variables X to those in capacity planning. If we de-
fine the auxiliary binary variables U (e, p) = ∑ s ∈ Skills (e) X  (e, s, p). They take the value 
1 if e is working on period p and 0 otherwise. 

WD (e, w) = ∑ p ∈ Periods (w) U(e, p), ∀ e, ∀ w (7) 

Y  (e, s, w) = ∑ p ∈ Periods (w) X  (e, s, p), ∀ e, ∀ s, ∀ w. (8) 

At this stage the model can be used to produce schedules that cover stated re-
quirements, but the employees may be required to work for periods scattered here and 
there and resting in between. Labor law stipulates that employees are paid a minimum 
duration of H Min periods on any day. To produce compact and cost-effective sched-
ules, we use patterns, similar to that proposed in [8]. 

Patterns on a daily horizon 
A pattern n in the set of Patterns is defined by the subset of periods that it covers, i.e. 
v (n, p) = 1 if pattern n covers period p. Valid patterns are those that require employ-
ees to work on compact schedules, with adequate meal/short breaks. We define a 
supplementary decision variable X’ (e, n) taking the value 1 when employee e is as-
signed to pattern n; the following equations hold: 

∑ n ∈ Patterns X’  (e, n) = 1, ∀ e. (9) 

∑ s ∈ Skills(e) X  (e, s, p) ≤ ∑ n ∈ Patterns X’  (e, n) v (n, p), ∀ e, ∀ p. (10) 

Equation (9) stipulates that each employee is assigned to one and only one pattern. 
For a given employee e and period p, if e is assigned to pattern n which covers p, then 
∑ s ∈ Skills(e) X  (e, s, p) ≤ 1 and e may be assigned to a skill s or to rest. If pattern n does 
not cover period p, the sum is 0 and ∑ s ∈ Skills(e) X  (e, s, p) ≤ 0, i.e. e must be at rest.  

Designating the cost of assigning employee e to pattern n by c (e, n), the total cost 
is  
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∑ e ∈ Employees ∑ n ∈ Patterns X’  (e, n) c (e, n) (11) 

Patterns render the schedule less flexible in assigning individual periods, although 
they interpret regulations such as minimum and maximum work durations (at the 
daily horizon in this case), acceptable break windows, etc. It allows valid solutions to 
be found rapidly but there may be over capacity on some periods. Without the equa-
tions (9) to (11), the model is limited to small instances with less than 15 employees, 
3 skills and 44 periods. The implicit short-term scheduling method can also produce 
solutions quickly, see [11], [3], [5], etc. It reasons on the number of assignment 
changes instead of the number of employees on the job: the resulting model cannot be 
directly related to the capacity planning model.  

Patterns on a weekly horizon 
We need to handle the sequence of patterns on successive days so as to respect mini-
mal rest between them. For example, an employee finishing at 11 pm would not take 
the morning shift starting at 7 am the following day. Instead of the variable n, we 
have n d ∈ Patterns, where d ∈ {1, 7} in the equations (9) to (11).  

Define a weekly pattern m by the Boolean variable u (m, n, d) = 1 if and only if n is 
the dth daily pattern of the valid weekly pattern m. Each employee is assigned to one 
and only one weekly pattern per week.  

∑ m ∈ Weekly Patterns X”  (e, m) = 1, ∀ e. (12) 

X’  (e, n d) = ∑ m ∈ W. Patterns X”  (e, m) u (m, n, d), ∀ e, ∀ n, ∀ d ∈ {1, 7}. (13) 

To handle the weekly horizon, we replace X’ (e, n d) by X’  (e, n, d). 

4 Conclusions 

In this paper, we discussed the concept of Strategic Employee Scheduling, its con-
stituents and one possible implementation. Scheduling employees with a strategy: this 
is different from existing concepts in human resource management by the ability to 
handle extra-scheduling features such as team sizing, launching extra activities, or 
taking into account considerations outside the usual scheduling horizon. We aim to 
convince researchers that the world of human resource management is very rich and 
there are many aspects that must be taken into account, instead of the homogeneous 
resources first discussed 50 years ago.  

To implement the planning and scheduling components, we proposed MIP models 
for capacity planning and detailed scheduling that can be directly related to each other 
(i.e. (8)). Building onto the pattern model of [8] published in April 2006, we see that 
patterns are well suited to planning at multiple horizons, since they implement sets of 
assignments of one level which may be manipulated at the next. We are currently in 
the process of validating the system and no computation results are available. It is not 
our aim to propose THE model for solving Strategic Employee Scheduling; we en-
courage researchers to look into the MBP described in § 1 and propose their models.  
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Abstract. Scheduling exams at universities can be formulated as a com-
binatorial optimization problem. Given a planning horizon with a fixed
number of periods the objective is to avoid situations, or at least to
minimize them, when a student is enrolled in two exams that are sched-
uled for the same period. Ant colony approaches have been proven to
be a powerful solution approach for various combinatorial optimization
problems. In this paper a Max-Min and a ANTCOL approach will be
presented. Its performance is compared with other approaches presented
in the literature and with modified graph coloring algorithms.

Key words: scheduling, exam timetabling, ant colony algorithms, Max-Min
approach, graph coloring

1 Introduction

The exam timetabling problem faces the problem of scheduling exams within a
limited number of available periods. As students plan to write different exams,
setting up a conflict free timetable is not a trivial task due to limited resources
like periods, examination rooms and teacher availability. The main objective is
to balance out student’s workload and to distribute the exams evenly within the
planning horizon. In particular, it should be avoided that a student has to write
two exams in the same period. Such situations will be referred to as conflicts of
order 0 in the sequel. Additionally, as few students as possible have to attend x
exams within y consecutive periods. Such conflicts can either be totally forbidden
by constraints or penalized in the objective function. For example, Carter et
al. proposed in [1] a cost function that imposes penalties Pω for a conflict of
order ω, i.e. whenever one student has to write two exams scheduled within
ω + 1 consecutive periods. In the literature ω normally runs from 1 to 5 with
P1 = 16, P2 = 8, P3 = 4, P4 = 2, P5 = 1.

Solving practical exam timetabling problems requires that additional con-
straints have to be considered, e.g. some exams have to be written before other
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exams or some exams can not be written within specific periods. References [2–4]
give comprehensive lists of possible hard and soft constraints.

The exam timetabling problem can be formulated as a graph coloring prob-
lem. Each node represents one exam. Undirected arcs connect two nodes if at
least one student is enrolled in both corresponding exams. Weights on the arcs
represent the number of student enrolled in both exams. The objective is to find
a coloring where no adjacent nodes are marked with the same color or to mini-
mize the weighted sum of the arcs that connect two nodes marked with the same
color. The exam timetabling problem is a generalization of the graph coloring
problem as in the objective function also conflicts of higher orders are penalized.

To solve exam timetabling problems, several algorithms have recently been
developed. In [1] Carter et al. applied some well known graph coloring heuristics
which they combined with backtracking.

In recent time various heuristical approaches have been developed. Most of
them use local search like tabu search, simulated annealing, great deluge or
adaptive search methods [5, 6, 1, 7, 8, 2, 9–11]. A comprehensive survey on the
literature on exam timetabling problems can be found in [4].

The aim of this paper is twofold: Originally, this research was motivated by
the need for a software tool for solving a practical exam timetabling problem.
As ant colony approaches have been proven to be a powerful tool for various
combinatorial optimization problems (c.f. the survey in [12]), it is apparent to
adapt this solution approach to the exam timetabling problem. In the literature
different variants of ant colony approaches have been presented. We will compare
some of these strategies with respect to their suitability for our problem.

This paper is organized as follows: In section 2 a detailed problem formu-
lation will be presented. Section 3 will give an introduction into ant colony
systems. The next sections will present a solution approach and test results for
some benchmark problems that were taken from the literature. Finally, section
6 summarizes the results and suggests discussion for future work.

2 Problem formulation

Before stating the problem formally, we introduce some notation.
R index set of rooms
I index set of exams
T index set of periods
Ω index set of order of conflicts
Krt capacity of room r in period t
cij number of students enrolled in exam i as well as in exam j
Ei number of students enrolled in exam i
Pω penalty imposed if one student has to write two exams

within ω + 1 periods
yit binary variable equal to 1 if exam i is scheduled in period t

and 0 otherwise
pirt number of students of exam i assigned to room r in period t
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Using this notation, the exam timetabling problem can be formulated as
follows:

min
∑

ω∈Ω

∑

i,j∈I,i 6=j

∑

t∈T,t>ω

Pωcijyityj(t−ω) (1)

s.t.
∑

t∈T

yit = 1 ∀i ∈ I (2)

pirt ≤ yitKrt ∀i ∈ I, ∀r ∈ R, ∀t ∈ T (3)

∑

r∈R

∑

t∈T

pirt = Ei ∀i ∈ I (4)

∑

i∈I

pirt ≤ Krt ∀r ∈ R, ∀t ∈ T (5)

∑

t∈T

cijyityjt = 0 ∀i, j ∈ I, i 6= j (6)

yit ∈ {0, 1} ∀i ∈ I,∀t ∈ T (7)

pirt ∈ N0 ∀i ∈ I, ∀r ∈ R, ∀t ∈ T (8)

The objective function (1) balances out students’ workload by minimizing the
weighted sum of all conflicts. Constraint (2) states that each exam is assigned
to exactly one period. If an exam is not assigned within a period, then no seats
should be reserved for that period in any room. This is imposed by constraint
(3). Constraints (4) and (5) assure that the number of seats reserved for an exam
will be equal to the number of students who are enrolled in that exam and that
the room capacities are not exceeded. Finally, constraint (6) avoids conflicts of
order 0, i.e. that a student has to write two exams in the same period.

The exam timetabling problem is a generalization of the graph coloring prob-
lem, which is known to be NP-hard [13]. Therefore, solution approaches try to
decompose the problem in order to solve it within a reasonable amount of time
[14]. One way is to split up the problem into the two following subproblems,
which can be solved sequentially:

Problem I: Scheduling of exams, i.e. assign exams to periods in order to bal-
ance out students’ workload as pursued by the objective function (1). Instead
of considering capacity constraints for the single rooms, only the total ca-
pacity of all available exam rooms within a period is considered. In the IP
formulation stated above this can be accomplished by replacing the set of
rooms by a artificial single room. For this problem a solution approach will
be presented in the next sections.
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Problem II: Room planning, i.e. distribute the exams of one period among the
available examination rooms. Finding a feasible room plan is not difficult if
the exams can take place in more than one room and if more than one exam
can take place in one room at the same time, provided that the room capacity
is not exceeded. If exams are split up into different rooms one could consider
the campus layout and try to generate a room plan where these exams are
only assigned to rooms not too far from each other in order to minimize
walking distances. We will not consider this problem in the following.

3 Ant algorithms

Ant colony optimization algorithms represent special solution approaches for
combinatorial optimization problems derived from the field of swarm intelligence.
They were first introduced by Colorni, Dorigo and Maniezzo in the early nineties
[15]. See [12] for an in depth introduction into ant systems.

Ant algorithms were inspired by the observation of how real ant colonies find
shortest paths between food sources and their nest. This observation was first
implemented in algorithms for solving the traveling salesperson problem (TSP).
This type of ant colony optimization algorithm is known in the literature as ant
systems (AS). We will briefly describe the basic principle of AS algorithms by
means of the TSP. This solution approach to the TSP will be adopted to solving
the exam timetabling problem in the next section.

The solution approach consists of n cycles. In each of these cycles first each
of the m ants constructs a feasible solution. In AS each ant builds a complete
tour that visits all nodes. Obviously, this solution neither has to be optimal nor
must it be even close to the (unknown) optimal value. Improved solutions can
be obtained if the knowledge gathered by other ants in the past on how good
solutions can be obtained is incorporated into the ant’s decision. Assume that an
ant is located in a node i. To choose the next node j that has not yet been visited
by that ant one may apply one of the following two randomized strategies:

Strategy I: Constructive heuristic. Apply one priority rule like randomized
nearest neighbor. Decision values for all nodes j are determined by the in-
verse of the distance from node i to that node j. The next node the ant
moves to is then randomly chosen according to the probabilities determined
by those decision values. Consequently, if node j1 is closer to i than node j2
it is more likely to choose node j1. The decision values of the constructive
heuristic will be later referred to as ηij .

Strategy II: Pheromone trails. This strategy is mainly inspired by the way real
ants find shortest paths. While commuting between two places on different
possible pathes ants deposit a chemical substance called pheromone. The
shorter the path is the more often the ant will use this path within a limited
period of time and, consequently, the larger the amount of pheromone will
be on that path. Thus, whenever an ant has to choose between different
available paths it will prefer the one with higher amount of pheromone.
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To adapt these observations to the TSP, the amount of pheromone is stored
in a matrix τ which is initialized with 0 for all arcs (i, j). After an ant has
completed a tour, the values of the cells that belong to the arcs the ant has
chosen are updated by the inverse of the obtained objective function value,
i.e. the length of the tour. The amount of pheromone trail τij associated to
arc (i, j) is intended to represent the learned desirability of choosing node
j when in node i. Consequently, arcs belonging to good solutions receive a
high amount of pheromone.

AS algorithms combine these two strategies. The probability that an ant ν
located in node i chooses the next node j is determined by the following formula:

pν
ij =

{
(τij)

α(ηij)
βP

k∈Nν
i

(τik)α(ηik)β if j ∈ Nν
i

0 otherwise
(9)

α and β are a given weighting factors and Nν
i is the set of nodes that have

not yet been visited by ant ν currently located in node i.
Excepting the TSP, AS algorithms have been implemented for various com-

binatorial optimization problems, such as the quadratic assignment problem or
the sequential ordering problem. Different variants of AS algorithms have been
suggested in the literature, like e.g. ant colony systems (ACS) or Max-Min ant
systems (MMAS), which obtained much better results than AS (c.f. [12]). In par-
ticular, MMAS, which was first proposed by Stützle and Hoos [16], generated
significantly better solutions for the TSP than AS. Socha et al. [17] compared
the MMAS variant with ACS and found out that MMAS outperformed the ACS
approach for the considered timetabling problem.

The main modification of MMAS are related to the way how the matrix τ
is initialized and how pheromone values are updated. Additionally, MMAS uses
local search to improve the solutions found by the ants. Details will be discussed
in the next section.

As far as the author is aware, ant colony algorithms to scheduling problems
have only been applied by Colorni et al. [15] and by Socha et al. [17]. The
former article focuses on the job shop scheduling problem, the latter one on
the timetabling problems for university classes, which are slightly different from
the exam timetabling problem considered here. Finally, Costa and Hertz [18]
used an ant colony approach to solve assignment type problems, in particular
graph coloring problems. Recently, Dowsland and Thomson as well as Vesel and
Zerovnik modified and improved in [19, 20] this graph coloring algorithm with
respect to the examination scheduling problem.

4 An ant algorithm for the exam scheduling problem

4.1 General modifications for the exam timetabling problem

Like in AS, the solution approach consists of n cycles. In each of these cycles first
each of the m ants constructs a feasible solution using therefore the constructive
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heuristic and the pheromone trails. These exam schedules are then evaluated
according to the given objective function and the experience accumulated during
the cycle is used to update the pheromone trails.

Depending on the choice of a constructive heuristic and the way the pheromone
values are used, there are different ways how this basic solution approach can
be adapted to the exam timetabling problem.

– At each stage of the construction process in the AS approach of Costa and
Hertz [18] called ANTCOL the ant chooses first a node i and then a feasible
color according to a probability distribution equivalent to (9). The matrix
τ provides information on the objective function value, i.e. the number of
colors required to color the graph, which was obtained when nodes i and j
are colored with the same color.
In contrast to elite strategies where only the ant that found the best tour from
the beginning of the trial deposits pheromone, all ants deposit pheromone
on the paths they have chosen. According to [12] this strategy is called ant
cycle strategy.
Different priority rules were tested as constructive heuristic. Among those
chosen in each step, the node with the highest degree of saturation, i.e. the
number of different colors already assigned to adjacent nodes, achieved the
best results with respect to solution quality and computation times.

– In Socha et al. [17] a pre-ordered list of events is given. Each ant chooses
the color for a given node probabilistically similar to the formula (9). The
pheromone trail τij contains information on how good the solution was, when
node i was colored by color t. The constructive heuristic employed in their
approach is not described.

For the exam timetabling problem the way the information in matrix τ is
used in both approaches is not meaningful. Due to the conflicts of higher orders
the quality of a solution does not depend on how a pair of exams is scheduled
nor on the specific period an exam is assigned to. For example, assigning two
exams i and j with cij = 0 to the same period can either result in a high or in
a low objective function value as the quality of the solution strongly depends
on when the remaining exams are scheduled. In the following we implemented a
two step approach.

Step I: Determine the sequence according to the exams is scheduled. Like for
the TSP we assume that an ant located in a node, corresponding to an
exam, has to visit all other nodes, i.e. it has to construct a complete tour.
The sequence according to this ant constructs the tour corresponds to the
sequence in which the exams are scheduled.

Step II: Find the most suitable period for an exam which should be scheduled.
Therefore, all admissible periods are evaluated according to the given penalty
function.

Following this two step approach probabilities pν
ij for choosing the next node

j that has to be scheduled are computed according to (9). Pheromone values τij
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along the ants’ paths are updated by the inverse of the objective function value.
For the heuristic value ηij the following simple priority rule for graph coloring
was implemented. The exam with the smallest number of available periods is
selected. A period would not be available for an exam if it caused a conflict of
order 0 with another exam that has already been scheduled. This priority rule
corresponds to the saturation degree rule (SD) which was tested in [1]. The value
ηij is chosen to be the inverse of the saturation degree.

4.2 MMAS specifications

MMAS approaches mainly differ from AS algorithms in the way they use the
existing information (c.f. [16]):

– Pheromone trails are only updated by the ant that generated the best solu-
tion in a cycle. The corresponding values τij are updated by ρτij + 1/f best

where f best is equal to the best objective function value found so far. For
all other arcs (i, j) that are not chosen by the best ant τij is updated by
(1 − ρ)τij . ρ ∈ [0, 1] represents the pheromone evaporation factor, i.e. the
percentage of pheromone that decays within a cycle.

– Pheromone trail values are restricted to the interval [τmin, τmax], i.e. when-
ever after a trail update τij < τmin or τij > τmax then τij is set to τmin or
τmax, respectively. The rationale behind this are that if the differences be-
tween some pheromone values were too large, all ants would almost always
generate the same solutions. Thus, stagnation is avoided.

– Pheromone trails are initialized to their maximum values τmax. This type of
pheromone trail initialization increases the exploration of solutions during
the first cycle.

The solution quality of ant colony algorithms can be considerably improved
when it is combined with additional local search. In hybrid MMAS only the best
solution within one cycle is improved by local search. For the exam timetabling
problem a hill climber procedure has been implemented. Within an iteration of
the hill climber two sub-procedures are carried out in succession. The hill climber
is stopped if no improvement can be found within an iteration.

Within the first sub-procedure of the hill climber for all exams the most
suitable period is examined. Beginning with the exam that causes the biggest
contribution to the objective function value, all feasible periods are checked and
the exam is assigned to its best period. The first sub-procedure is stopped if
all exams have been checked without finding an improvement. Otherwise the
contributions to the objective function value are recalculated and the process is
repeated.

The second sub-procedure tries to decrease the objective function value by
swapping all exams within two periods, i.e. all exams assigned to period t′ are
moved to period t′′ and the exams of that period are moved to period t′. There-
fore all pairs of periods are examined and the first exchange that leads to an
improvement is carried out. Again, the process is repeated as long as the objec-
tive function value is decreased.
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Finally, the use of a so called candidate list has been proven to reduce re-
quired computational times as well as to improve solution quality at the same
time (c.f. [12]). Such a list provides additional local heuristic information as it
contains preferred nodes to be visited from a given node. Instead of scanning
all other exams only the exams in the candidate list are examined and only in
case all exams in this list have already been scheduled, the remaining exams are
considered.

5 Computational experiments

The proposed Max-Min algorithm was implemented in Borland Delphi 7.0. It
will be referred to as MMAS-ET in the sequel. Test runs were carried out on a
computer with 3.2 GHz clock under Windows XP.

5.1 Test cases

To benchmark algorithms test cases of twelve practical examination problems can
be found on the site of Carter (c.f. [21]). Table 1 summarizes some characteristics
of these problems. To make a comparison meaningful all algorithms must use the
same objective function. Therefore, Carter proposed weighting conflicts accord-
ing to the following penalty function: P1 = 16, P2 = 8, P3 = 4, P4 = 2, P5 = 1,
where Pω is the penalty for the constrain violation of order ω. The cost of each
conflict is multiplied by the number of students involved in both exams. The ob-
jective function value represents the costs per student. As the proposed MMAS-
ET algorithm does not guarantee that no conflicts of order 0 occur, additionally,
the penalty P0 was imposed and set to 10000.

Table 1. Test cases from Cater et al. [1, 21, 22]

test case # exams # students # student exams problem density # periods

car-f-92 543 18419 55522 13.8 % 32
car-s-91 682 16925 56877 12.8 % 35
ear-f-83 190 1125 8109 26.7 % 24
hec-s-92 81 2823 10632 42.0 % 18
kfu-s-93 461 5349 25113 5.6 % 20
lse-f-91 381 2726 10918 6.3 % 18
pur-s-93 2419 30032 120681 2.9 % 43
rye-f-92 486 11483 45051 7.5 % 23
sta-f-83 139 611 5751 14.4 % 13
tre-s-92 261 4360 14901 5.8 % 23
uta-s-92 622 21267 58979 12.6 % 35
ute-s-92 184 2750 11793 8.5 % 10
yor-f-83 181 941 6034 28.9 % 21
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5.2 Adjustment of the parameters

The required parameters were specified as follows. The number of cycles was
set to 50. Within each cycle 50 ants were employed to construct solutions. The
candidate list contained the 20% of exams with the lowest number of available
periods. Several test runs were carried out in order to determine the required
parameters appropriately:

– The evaporation rate ρ was set to 0.3. Like in [16] it turned out that this
parameter is quite robust, i.e. the parameter ρ does not clearly influence the
performance.

– For the restrictions of the pheromone interval values to strategies were tested.
Setting τmax = 1/ρ obtained slightly better results than in the case of vari-
able τmax and τmin as proposed in [16].

– Different values for the weighting factors α and β were tested. It turned out
that the approach performed best when α was set to one and β was chosen
high. Best results were obtained for β equal to 24. But the difference was on
the average less than one percent when β was bigger than eight. A high β
forces that exams which can be scheduled, due to zero order conflicts, only in
a few remaining periods are scheduled first as they are given a much higher
probability in (9). Remember that ηij is the inverse of the saturation degree
as explained in section 4.1. Thus, a high β value has the same effect like a
candidate list. This could be a reason why the use of the candidate list did
not improve the solutions. Whereas, for small values of β, i.e. values lower
than 5, solutions with zero order conflicts could not always be avoided.

– As the approach is non-deterministic each test case was solved twenty times.

After determining the parameters in such a way, it turned out that less than
2 % of the solutions were generated more than once. Thus, stagnation, that is
caused by the fact that many ants generate almost the same solutions, could not
be observed.

5.3 Test results for the MMAS-ET approach

Table 2 displays the results for different approaches. For each approach the
minimal objective function value and the average result after twenty test runs
are given. Results of the proposed MMAS-ET approach are given in the second
column.

In order to find out how much the hill climber contributes to the solution
the MMAS-ET approach was also tested without making use of the hill climber.
Comparing the results in the second and in the third column it is obvious that
the hill climber considerably improves the solutions.

Thus, one could ask how much the ants contribute to the solution or if solu-
tions of the same quality could also be achieved by applying only the hill climber
on a random starting solution. Therefore a third version of the MMAS-ET ap-
proach was implemented where each ant constructs an exam timetable without
interacting with the other ants, i.e. the matrix τ is not updated at all. This

Ant Algorithms for the Exam Timetabling Problem 175



approach can be seen as a randomized greedy heuristic. As in MMAS-ET with
50 ants and 50 cycles 2500 exam timetables were generated. The best solutions
of this approach are displayed in the last column of table 2.

As the MMAS-ET approach without ants generates the worst solutions it is
obvious, that the ant colony has a positive impact on the diversification of the
solution space, i.e. the ants guide the search process into promising regions of
the solution space where the hill climber can find good solutions.

Increasing the number of ants and the number of cycles to 100 in the MMAS-
ET approach did not result in achieving better solutions. Neither the average
value of all twenty iterations was improved nor were better solutions found during
the twenty iterations.

Table 2. Results for three different variants of the MMAS-ET approach for twenty
test runs

MMAS-ET MMAS-ET MMAS-ET
without hill climber without ants

test case best avg. best avg. best avg.

car-f-92 4.8 4.9 7.8 8.0 10.9 13.3
car-s-91 5.7 5.9 9.3 9.5 11.9 13.9
ear-f-83 36.8 38.6 50.4 53.0 49.5 62.4
hec-s-92 11.3 11.5 14.8 15.8 11.6 15.5
kfu-s-93 15.0 15.5 23.9 24.6 19.5 22.0
lse-f-91 12.1 12.7 19.3 19.8 16.7 25.4
pur-s-93 5.4 5.6 12.2 12.5 11.7 14.6
rye-s-93 10.2 10.4 18.0 18.7 12.2 14.2
sta-f-83 157.2 157.5 160.6 161.9 157.3 157.7
tre-s-92 8.8 9.1 12.4 12.8 9.2 13.1
uta-s-92 3.8 3.8 6.2 6.3 8.2 9.9
ute-s-92 27.7 28.6 33.6 34.5 27.7 30.1
yor-f-83 39.6 40.3 50.5 51.3 62.9 73.0

5.4 Comparison with other exam timetabling approaches

The proposed MMAS-ET approach was compared with the following approaches:

– LD, SD, LDW and LE: Carter et al. compared in [1] four different priority
rules largest degree (LD), saturation degree (SD), largest weighted degree
(LWD) and largest enrollment (LE).

– Wal: Tabu search approach with longer-term memory proposed by White et
al. in [11].

– GS: Tabu search approach proposed by Di Gaspero and Schaerf in [2].
– Cal: Local search approach of Caramia et al. [6].
– BN: Great deluge local search approach developed by Burke and Newall [5].
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– Mal: Simulated annealing approach of Merlot et al. [9].
– Ga: Multi-neighborhood search approach presented by Di Gaspero [8]
– PS: Tabu search approach of Paquete and Stützle [10].
– CT: Randomized adaptive search algorithm of Casey and Thomson [7].

The results of the benchmarks are taken from the literature [11] and from
the internet (c.f. the timetabling database at the University of Melbourne [22]).
Table 3 displays the best solution and the average solution achieved when each
test case was solved twenty times. The results of table 3 can be summarized as
follows:

Table 3. Best (b.) and average (a.) solution after twenty test runs for the benchmark
test cases from Carter et al.[1, 21, 22]

test LD SD LWD LE Wal GS Cal BN Mal Ga PS CT MMAS
case -ET

car b. 7.6 6.6 6.6 6.2 4.6 5.2 6.0 4.0 4.3 - - 4.4 4.8
-f-92 a. 7.6 6.6 6.6 6.2 4.7 5.6 6.0 4.1 4.4 - - 4.7 4.9

car b. 7.9 7.1 7.4 7.6 5.7 6.2 6.6 4.6 5.1 5.7 - 5.4 5.7
-s-91 a. 7.9 7.1 7.4 7.6 5.8 6.5 6.6 4.7 5.2 5.8 - 5.6 5.9

ear b. 36.4 46.5 37.3 42.3 45.8 45.7 29.3 36.1 35.1 39.4 40.5 34.8 36.8
-f-83 a. 36.4 46.5 37.3 42.3 46.4 46.7 29.3 37.1 35.4 43.9 45.8 35.0 38.6

hec b. 10.8 12.7 15.8 15.9 12.9 12.4 9.2 11.3 10.6 10.9 10.8 10.8 11.3
-s-92 a. 10.8 12.7 15.8 15.9 13.4 12.6 9.2 11.5 10.7 11.4 12.0 10.9 11.5

kfu b. 14.0 15.9 22.1 20.8 17.1 18.0 13.8 13.7 13.5 - 16.5 14.1 15.0
-s-93 a. 14.0 15.9 22.1 20.8 17.8 19.5 13.8 13.9 14.0 - 18.3 14.3 15.5

lse b. 12.0 12.9 13.1 10.5 14.7 15.5 9.6 10.6 10.5 12.6 13.2 14.7 12.1
-f-91 a. 12.0 12.9 13.1 10.5 14.8 15.9 9.6 10.8 11.0 13.0 15.5 15.0 12.7

pur b. 4.4 4.1 5.0 3.9 - - 3.7 - - - - - 5.4
-s-93 a. 4.4 4.1 5.0 3.9 - - 3.7 - - - - - 5.6

rye b. 7.3 7.4 10.0 7.7 11.6 - 6.8 - 8.4 - - - 10.2
-s-93 a. 7.3 7.4 10.0 7.7 11.7 - 6.8 - 8.7 - - - 10.4

sta b. 162.9 165.7 161.5 161.5 158.0 161.0 158.2 168.3 157.3 157.4 158.1 134.9 157.2
-f-83 a. 162.9 165.7 161.5 161.5 158.0 167.0 158.2 168.7 157.4 157.7 159.3 135.1 157.5

tre b. 11.0 10.4 9.9 9.6 8.9 10.0 9.4 8.2 8.4 - 9.3 8.7 8.8
-s-92 a. 11.0 10.4 9.9 9.6 9.2 10.5 9.4 8.4 8.6 - 10.2 8.8 9.1

uta b. 4.5 3.5 5.3 4.3 4.4 4.2 3.5 3.2 3.5 4.1 - - 3.8
-s-92 a. 4.5 3.5 5.3 4.3 4.5 4.5 3.5 3.2 3.6 4.3 - - 3.8

ute b. 38.3 31.5 26.7 25.8 29.0 29.9 24.4 25.5 25.1 - 27.8 25.4 27.7
-s-92 a. 38.3 31.5 26.7 25.8 29.1 31.3 24.4 25.8 25.2 - 29.4 25.5 28.6

yor b. 49.9 44.8 41.7 45.1 42.3 41.0 36.2 36.8 37.4 39.7 38.9 37.5 39.6
-f-83 a. 49.9 44.8 41.7 45.1 42.5 42.1 36.2 37.3 37.9 40.6 41.7 38.1 40.3

Although, the MMAS-ET approach does not generate outstanding results
its performance is comparable with other approaches. Beside the graph coloring
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heuristics of Carter et al. it also finds better solutions than the Wal, the GS, the
PS, the Ga and the CT approach for most test cases.

In addition, it is striking that no approach outperforms all other approaches
for all test cases. Thus, there are some test cases where MMAS-ET outperforms
the approaches Cal, BN and CT, although one must confirm that these three
approaches generate better solutions for most of the test cases. For example,
MMAS-ET found better solutions than the Ca approach in four out of the 13
test cases, i.e. for the test cases car-f-92,car-s-91, sta-f-83 and tre-s-92.

5.5 Comparison with the approach of Costa and Hertz

Finally, the results of MMAS-ET were compared with a modified version of the
ANTCOL algorithm of Costa and Hertz [18], which originally was developed for
solving graph coloring problems. This approach will be called ANTCOL-ET in
the sequel. Within that approach the ANT DSATUR(1) procedure was used as
a constructive method as described in [18]. The objective function was modified
in order to consider conflicts of higher order too. Test runs were carried out to
adjust the parameters appropriately. The parameter α was set to 1, β to 35. ρ
was set equal to 0.3. Again, each test case was solved twenty times.

Table 4 shows the results for the thirteen test cases and compares them with
the MMAS-ET approach. Surprisingly, the simple AS like approach ANTCOL-
ET outperformed the MMAS-ET for some test cases. In particular, this result is
contrary to other results presented in the literature where MMAS algorithms ob-
tained better results for various combinatorial optimization problems by avoiding
stagnation (c.f. [12, 16]).

Thus, ANTCOL-ET was modified by implementing additionally the hill climber
already incorporated in the MMAS-ET approach. This modified version of the
Costa and Hertz approach provided on the average better solutions than the
MMAS-ET approach and

Like the MMAS-ET approach the ANTCOL-ET approach in particular im-
proves the test cases that already achieved the best solutions. For example, it
again outperformed the approach of Caramia et al. in the test cases car-f-92,
car-s-91, sta-f-83 and tre-s-92. White et al. argued in [11] that these test cases
seem to be in a way easier.

Computing times for the MMAS-ET approach lay in the range of 10 seconds
for the smallest test cases, i.e. hec-s-92, to 2.5 hours for the pur-s-93 problem.
Compared to the MMAS-ET approach the computing time of the ANTCOL-ET
combined with the hill climber was on the average 80 % higher. Thus, one can
conclude that ANTCOL-ET takes more time but gets a better solution quality
than MMAS-ET. Please note that the same stopping stopping criteria was used
for both algorithms, namely, 2500 solutions.

6 Conclusion

In this paper different strategies for solving exam timetabling problems were
tested. Ant colony approaches are capable of solving large real world exam
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Table 4. Comparison between different ant colony approaches.

test case MMAS-ET ANTCOL-ET ANTCOL-ET
without hill climber with hill climber

car-f-92 best 4.8 4.5 4.3
avg. 4.9 4.6 4.4

car-s-91 best 5.7 5.3 5.2
avg. 5.9 5.4 5.2

ear-f-83 best 36.8 40.3 36.8
avg. 38.6 41.4 38.3

hec-s-92 best 11.3 12.2 11.1
avg. 11.5 12.6 11.4

kfu-s-93 best 15.0 15.4 14.5
avg. 15.5 15.8 14.9

lse-f-91 best 12.1 11.9 11.3
avg. 12.7 12.2 11.7

pur-s-93 best 5.4 4.8 4.6
avg. 5.6 4.9 4.6

rye-s-93 best 10.2 10.2 9.8
avg. 10.4 10.7 10.0

sta-f-83 best 157.2 158.2 157.3
avg. 157.5 159.3 157.5

tre-s-92 best 8.8 8.8 8.6
avg. 9.1 9.0 8.7

uta-s-92 best 3.8 3.6 3.5
avg. 3.8 3.7 3.5

ute-s-92 best 27.7 28.9 26.4
avg. 28.6 29.4 27.0

yor-f-83 best 39.6 42.2 39.4
avg. 40.3 43.7 40.4

timetabling problems. The implemented algorithms generated comparable re-
sults like other high performance algorithms from the literature.

Unlike for other combinatorial optimization problems like the TSP or the
QAP for the exam timetabling problem the MMAS approach did not outperform
the simpler AS strategy. Of course, it goes without saying but proper adjusting
parameters can improve the performance of an algorithm considerably.

A self-evident extension would be to incorporate additional constraints and
requirements like e.g. scarce room resources or precedence constraints between
exams.

References

1. M.W. Carter, G. Laporte, and S.Y. Lee. Examination timetabling algorithmic
strategies and applications. Journal of the Operational Research Society, 47:373–
383, 1996.

Ant Algorithms for the Exam Timetabling Problem 179



2. L. Di Gaspero and A. Schaerf. Tabu search techniques for examination timetabling.
Lecture Notes in Computer Science, 2079:104–117, 2001.
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Abstract. KTS is a web-based software system for solving high school
timetabling problems, freely accessible on the Internet. This paper de-
scribes KTS, including its data model, user interface, and solver. The
solver uses operations research models in a polynomial-time heuristic
framework to produce high quality solutions in a few seconds. Results
are presented for six instances taken from Australian high schools.

1 Introduction

Research into automated timetabling has had many successes in recent years.
Examination timetabling and university course timetabling have yielded to meta-
heuristic methods, as the proceedings of recent PATAT conferences [1, 2] show.

High school timetabling has had much less success [3], probably because it
is dominated by hard constraints, to which meta-heuristics seem less well suited
[8]. There may also be non-technical reasons, such as fewer researchers in the
field and less ready access to data.

KTS is a web server for high school timetabling created by the author. Its web
interface puts the system on the desk of the timetable planner, and its polynomial
time heuristic solver delivers a very good timetable in a few seconds. Together
these features support non-traditional requirements such as rapid evaluation of
alternative scenarios and incorporation of late changes, as well as the traditional
one of solving a fixed instance to near-optimality. The system is fully operational
and available continuously on the Internet [6].

This paper is a general overview of the KTS system. Section 2 presents a
detailed specification of the high school timetabling problem as defined by KTS.
Section 3 describes the user interface. Section 4 describes the solver, and Section
5 presents results for six instances taken from Australian high schools.

2 Data model

The KTS data model is object-oriented. It is described in this section, with a
few minor omissions.

An account object, or just account, represents one user’s account with the
KTS system. Each account contains any number of institutions, representing
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educational institutions for which the user wishes to construct timetables. Each
institution contains any number of instances, each representing that institution’s
timetabling problem for a particular year, or semester, etc.

Each instance contains a time group object, holding all information about
time. KTS has a simple time model in which time is divided into individual times

of equal duration, ordered chronologically, with each time optionally separated
from the next by a break, which could be a meal break or the end of a day, etc.
The full sequence of times is called the cycle.

A sequence of one or more times that follow each other chronologically and
do not span a break is called a time block. Any set of times may be viewed
as a set of time blocks, by grouping the times into blocks of maximal size. The
sizes of these blocks, written as a sequence of integers, form the block structure of
the set of times. For example, the set of times {Mon1, Mon2, Tue5, Tue6, Thu3}
presumably has block structure 2 2 1. The order in which the elements of a block
structure are written does not matter; non-increasing order is used by convention.
Meetings may specify that their times should have a particular block structure.

In addition to the instance’s set of available times, the time group contains
any number of time subgroups, which are subsets of the times, used when defining
workload limits and time conditions. These latter place requirements on the sets
of times assigned to meetings, and are either limit conditions, which limit the
number of times from a given subgroup that a meeting may contain, for example
limiting to 1 the number of undesirable times, or spread conditions, which require
the time blocks assigned to a meeting to be spread evenly over a sequence of
time subgroups, such as the days of the week.

An instance also contains any number of resource group objects, represent-
ing collections of resources (participants in meetings). Although not mandatory,
there would typically be three resource groups, called Student Groups, Teach-

ers, and Rooms. KTS is intended for high school timetabling problems, in which
groups of students are timetabled, not individual students.

A resource group may contain divisions, representing administrative units
such as faculties or departments (for teachers) and forms or years (for students).
If a resource group has divisions, then each of its resources lies in exactly one of
those divisions.

A resource group may also have capabilities, which are subsets of its set of
resources. For example, an English capability would be the subset of teachers
qualified to teach English; a ScienceLab capability would be the subset of rooms
in which Science classes may be held. A resource may lie in any number of
capabilities, and a capability may contain any number of resources. A division
is usable as a capability, as is the resource group as a whole.

Each resource may have a set of times when it is unavailable to attend classes.
It may also have workload limits, which might specify, for example, that the
resource may attend meetings for at most 30 times over the cycle, and at most
7 times on each day. A limit may be placed on the number of occupied times in
any subset of the times of the cycle, defined by a time subgroup. Each limit may
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have a hard component, a number of times which must not be exceeded, and a
soft component, for which violations are penalized but not prohibited.

One resource may follow another. For example, a room may follow a partic-
ular teacher, meaning that it is considered first when assigning room selections
in meetings to which that teacher is assigned. Such a room is often called the
home room of a teacher.

An instance also contains meetings, which specify that certain resources are
to meet together at certain times.

A meeting’s times are specified by a single time selection, which requests that
a particular number of times be assigned. It may request that the times conform
to a given block structure, and include preassigned times. All time conditions
defined in the time group apply to all time selections, as far as the time selection’s
block structure and preassigned times allow.

A meeting’s resources are specified by any number of resource selections.
For example, a meeting in which class 7A studies Science might contain a Stu-

dent Groups resource selection requesting student group 7A, a Teachers resource
selection requesting one teacher with the Science capability, and a Rooms selec-
tion requesting one ScienceLab. A resource selection may include preassigned
resources.

An instance may contain any number of solve profiles, which are named col-
lections of options for controlling the solver. The solver may be invoked with this
set of options by a single click on the appropriate link. An instance may also
contain any number of display profiles, which are named collections of options de-
scribing a timetable display or print: whether to use HTML, PDF, or PostScript;
whether to display large planning timetables or individual resources’ timetables;
whether to display the whole timetable, or just one division or resource; and so
on. Again, one click produces a display using these options.

An instance may also contain a current solution. This consists of assignments
of particular times and resources to some (hopefully all) of its time and resource
selections. A resource assignment may be a split assignment, in which one quali-
fied resource is assigned for some of the times of the meeting and a different one
to the remaining times; or it may be a partial assignment, in which a particular
resource is assigned for some of the times of a meeting but there is no assignment
for the remaining times.

KTS objects are persistent: they exist permanently on disk, but can be up-
dated in memory while the system is running. They are stored externally in
UTF-8 text files, updated by a two-phase algorithm which protects against acci-
dental corruption. Each account and its institutions occupies one file, and each
instance occupies one file, including all the instance’s objects (typically 10 to
20 kilobytes of data). Most operations concern a single instance, and they be-
gin by reading this file and end by writing it. Instances are represented using
a simple specification language, also called KTS, which is a descendant of the
well-known TTL language [4]. The user may upload and download KTS instance
files, although there is no strong motive for doing so.
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Fig. 1. Screen shot of the user interface to one small meeting. A page header and
navigation links precede this box and are not shown here. After the header line, the
first inner box holds the time selection, here requesting 5 times including block struc-
ture 2 1. The next box holds a Student Groups resource selection, requesting student
group resource 07A. This box accepts preassignments only, in accordance with an op-
tion set on the Student Groups resource group page. The following boxes request one
ScienceYr7-10 teacher and one ScienceLab room. Split assignments are usually allowed;
the Splittable boxes let the user disallow them for individual resource selections. Teach-
ers have workload limits, so the Teachers selection offers a Special Workload box which
allows the workload associated with this selection to be reduced (e.g. to 0 for staff
meetings).

3 User interface

The KTS system is not distributed to users for installation on their own systems.
Instead, there is a unique copy running on a server at the author’s institution,
publicly accessible via the web, using HTML and CGI for its user interface.
This has several advantages: it makes KTS available instantly on any computer
connected to the Internet; the software may be upgraded centrally at any time;
and the data is held on the server where it may be captured for research purposes,
in accordance with an agreement that users enter into when they create their
accounts.

The user interface has one page for each object, beginning with a header and
some navigation links, and continuing with updatable displays of the object’s
attributes. Most pages contain paragraphs of text describing their fields, so are
self-documenting. The exception is the page which displays a meeting (Figure
1), where there is too much detail to document on the spot. Instead, a set of
examples of meetings of increasing complexity is offered, which shows step-by-
step how each meeting is built up. There is also an overview document explaining
the capabilities of the system, and a glossary.
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Fig. 2. Screen shot of the summary table from the evaluation page. Each underlined
number is a link leading to a detailed list of defects. Below this table are other tables
giving an intermediate level of detail, such as the number of time conditions defects
affecting each student form, the number of soft workload overloads per teacher, etc.

When there is a solution, KTS offers an evaluation page summarizing its
defects (Figure 2), with links to more detailed evaluations. The most interesting
of these detects sets of resource slots that cannot all be assigned to, owing to a
shortage of resources (Figure 3).

Entry of a complete instance takes some hours. Short-cut operations for cre-
ating a time group and the usual three resource groups help somewhat, as do
operations for copying resources and meetings. There is also an operation for
copying a complete instance, which saves time when moving to a new year or
semester.

4 The solver

The KTS solver aims to produce a very good and comprehensible timetable
in ten seconds or less. It has five stages: column layout, tile construction, time

assignment, time adjustment, and resource assignment. The basic approach ap-
peared in an earlier paper by the author [5], but the present work describes a
completely rewritten solver, with more and better results.

The following five subsections describe the five stages. Some details have been
omitted, since a full description would be too lengthy for this paper, which aims
to present a balanced view of the whole system.
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Fig. 3. Screen shot of a detailed evaluation, showing that a set of three simultaneous
Art classes cannot all be assigned teachers, because there are only two Art teachers.
The analysis is based on finding the Hall sets of a bipartite matching between all the
tixels demanded by the instance and all the tixels supplied (a tixel is one resource at
one time). Two versions of this analysis are carried out, one before time assignment
and one after. Hall sets can be much more complex than this very simple example;
they might reveal that the supply of English and History teachers, taken together, is
insufficient to cover all the English and History classes even before time assignment,
and so on. KTS merely prints the Hall sets; the user must find the explanations.

4.1 Column layout

As far as possible, the meetings in a high school timetable should overlap exactly
in time, or not at all. This makes the timetable comprehensible, and simplifies
resource assignment.

KTS’s method of achieving such regularity begins by dividing the cycle into
columns: sets of times which make good choices for assigning to meetings, and
which meetings are encouraged to use wherever possible. The reader may be fa-
miliar with this approach from its use in North American universities, where the
columns Mon-Wed-Fri 9-10am, Mon-Wed-Fri 10-11am, and so on, are frequently
used. A traditional column plan in Australian high schools divides a cycle of 40
times into six columns each with six times, and one column with four times pre-
assigned those times when the whole school attends Sport and optional religious
instruction.

There is no requirement that meetings fit exactly into columns. In the se-
nior years they usually do, but in the junior years the school offers many small
subjects, often with little resemblance to any column plan.
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Day 1 Day 2 Day 3 Day 4 Day 5

Time 1 Column 1 Column 6 Column 2 Column 2 Column 5

Time 2 Column 1 Column 6 Column 2 Column 2 Column 5

Time 3 Column 6 Column 3 Column 4 Column 3 Column 3

Time 4 Column 6 Column 3 Column 4 Column 3 Column 6

Time 5 Column 5 Column 2 Column 1 Column 4 Column 4

Time 6 Column 5 Column 5 Column 1 Column 4 Column 7

Time 7 Column 4 Column 1 Column 5 Column 6 Column 7

Time 8 Column 2 Column 7 Column 3 Column 1 Column 7

Fig. 4. A typical layout of a week of 40 times into six columns of width 6 plus one of
width 4. Breaks are not shown, but occur after the fourth and sixth times each day
except Friday, when they occur after the third and fifth. This diagram was generated
in PostScript by KTS.

Although a column plan could easily be inferred from the time selections of
the meetings, it is such a basic part of the timetable planner’s thinking that
it seems better to have the user enter it, including a number of times, block
structure, and optional preassigned times for each column. Given this plan, the
solver’s first task is to assign specific times to each column, aiming to ensure that
each column satisfies the time conditions, so that meetings assigned to them will
do so. An example of such a column layout appears in Figure 4. Producing it is
quite easy in practice. The solver does it in two steps.

First, the time blocks naturally present in the cycle (between one break
and the next) are partitioned into smaller blocks whose sizes exactly match the
complete set of block sizes of the columns. KTS does this heuristically, checking
after each break that the columns’ block sizes can be packed into the current
cycle breakdown, and with an eye to the time conditions defined by the user: if
meetings should be spread evenly over five days, then the solver aims to have
the same number of time blocks on each day, and so on. Blocks of preassigned
times already present in meetings are used wherever possible.

Second, the time blocks created by breaking down the cycle’s blocks are as-
signed to columns. After an initial round-robin assignment, a simple hill climber
swaps pairs of equal-width time blocks between columns until no swap exists that
reduces the badness of the columns as measured against the time conditions.

4.2 Tile construction

KTS continues its efforts to build a regular timetable by first timetabling small
sets of meetings together into larger entities called tiles.

Figure 5 contains two examples of tiles. The students are grouped by abil-
ity for Mathematics, so the five Mathematics classes must run simultaneously
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Time 0 Time 1 Time 2 Time 3 Time 4 Time 5
8CKOAS-Maths 8C-History

8K-History
8O-History
8A-History
8S-History

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5
8C-English
8K-English 8K-English
8O-English 8O-English
8A-English 8A-English
8S-English 8S-English

8C-Music
8K-Music

8O-Music
8A-Music

8S-Music

Fig. 5. Two examples of tiles from the bghs98 instance. Each row is the timetable of one
student group resource; each column is one time. The wedges indicate block structure.

and are combined into one large meeting in the input data. The adjacent His-
tory meetings do not have to run simultaneously, but fitting them neatly along-
side Mathematics forces them to. The second tile illustrates a construction, well
known to manual timetablers, called the runaround. There are only two Music
teachers and two Music rooms, so the five Music classes cannot run simultane-
ously. By interleaving them among other meetings as shown, the tile demands
only one of each at any one time.

Tiles are built in three steps. First, the meetings of each student form are
grouped into buckets. Any meeting containing all the form’s student group re-
sources goes into a bucket by itself; meetings which are identical except for their
student group resources share a bucket; any meetings which cannot be analysed
in a similar manner go into a leftovers bucket.

Second, a series of decisions is taken to merge certain sets of buckets. These
decisions are made by a sequential heuristic which produces one merged bucket
per iteration. Buckets that cannot be timetabled effectively because of a lack of
resources are merged with other buckets. For example, the bucket holding the
Music classes from Figure 5 is not viable alone and must be merged. Other rel-
evant factors include preassigned times, the presence of student group resources
from several forms, and a preference for tiles whose width (number of times) is
a multiple of the usual column width, for regularity.

Finally, the meetings within each bucket are timetabled with respect to each
other, producing tiles. This is a general time assignment problem, on a small
scale, and the time assignment algorithm described in the next subsection is
used to solve it. This step is interleaved with the previous one: if the bucket’s
timetable turns out to be more defective than its meetings individually, the
bucket merging heuristic tries alternative bucket mergings.
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4.3 Time assignment

After tiles are built, the next stage is to timetable them into the times of the
cycle, producing a complete time assignment for all meetings.

The time assignment software module is called from three places within the
KTS solver: to timetable submeetings into their meetings, meetings into their
tiles, and tiles into the cycle. These problems are all essentially the same, differing
only in scale. This description will speak of timetabling meetings into the cycle,
rather than introducing unilluminating general terminology.

The meetings to be timetabled are first grouped into layers: sets of meetings
required to be disjoint in time, typically because they contain the same preas-
signed student resources. The layers are sorted so that the most difficult ones
(those requiring the most resources) come first, and timetabled one by one with
no backtracking. A meeting may lie in more than one layer, in which case it is
timetabled along with its first layer. In the time assignment stage of the solver
there is one layer per student form, plus one layer for each staff meeting.

Within each layer, each meeting is timetabled in turn, widest first, if possible
into a single column. A few assignments are tried for each meeting, but without
backtracking; instead, forward checks, involving two kinds of bipartite matchings
that monitor the availability of resources, keep the solver on track. These checks
are described in detail in a companion paper [7]. A timetable created by this
algorithm, plus time adjustment, appears in Figure 6.

4.4 Time adjustment

After a complete time assignment is obtained, time adjustment attempts to im-
prove it by hill climbing: swapping time blocks around while this produces an
improvement. Hill climbing is very effective here, since it corrects simple prob-
lems resulting from the lack of backtracking during time assignment, in time
proportional to the number of improvements it makes.

Although no resources have yet been assigned to meetings, there are never-
theless two useful evaluations that can be made at this point: checking the sets of
times assigned to meetings for their conformance to time conditions, and check-
ing that resources are sufficient at each time to cover the resource demands made
by meetings assigned that time (using a bipartite matching at each time between
resource demands and resources). A neighbour is accepted if it reduces problems
with resources, or improves time conditions without increasing problems with
resources.

There are several promising neighbourhoods that could be tried. The current
implementation explores two, repeating until neither gives any improvement.

The first neighbourhood takes each pair of time blocks of equal size assigned
to columns, such that none of the times involved is preassigned to any meeting
or column, and tries swapping these time blocks globally through every meeting.
This might reduce resource problems as well as time condition problems, because
resources’ unavailable times stay fixed, and a swap might move resource demands
away from the unavailable times of the resources they need.
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M1 M2 W5 W6 T7 R8 W1 W2 R1 R2 M8 T5 T3 T4 R3 R4 W8 F3 W3 W4 R5 R6 M7 F5 M5 M6 F1 F2 T6 W7 M3 M4 T1 T2 R7 F4 F6 F7 F8 T8
07A 7A-HPP-Sport 7A-Sci 7A-La 7AS-D&T123 7A-Ma 7A-Mu 7A-Sci 7AS-A 7AS-D&T12-A 7A-Ge 7A-Mu 7A-Ge 7A-La 7A-History 7A-HPP-Sport 7A-Ge 7A-His 7A-English 7A-Maths 7A-Sci 7A-Ma 7A-Science 7AS-A 7-Opti
07S 7S-HPP-Sport 7S-Languages 7S-Sci 7S-His 7S-Science 7S-Mu 7S-His 7S-Mu 7S-Ge 7S-His 7S-HPP-Sport 7S-Ge 7S-Mat 7S-English 7S-Maths 7S-Ge 7S-Science
07C 7C-English 7C-Ge 7C-En 7C-HPP-Sport 7C-Sci 7C-En 7C-Maths 7CKO-D&T12- 7CKO-Art12-D 7C-Science 7C-Geography 7C-La 7C-HP 7CKO-D&T12- 7C-His 7C-Mu 7C-Ma 7C-La 7C-Sci 7C-Mu 7C-History 7C-Sci 7C-HP 7C-Maths
07K 7K-HPP-Sport 7K-English 7K-Science 7K-HPP-Sport 7K-Sci 7K-Ge 7K-HPP-Sport 7K-Maths 7K-Science 7K-Ma 7K-Ge 7K-La 7K-Mu 7K-History 7K-English 7K-La 7K-Mu 7K-His 7K-Ge 7K-Maths
07O 7O-English 7O-Science 7O-HPP-Sport 7O-Sci 7O-Ge 7O-HPP-Sport 7O-HPP-Sport 7O-Maths 7O-Ge 7O-Mu 7O-La 7O-History 7O-Science 7O-His 7O-La 7O-Mu 7O-Ge 7O-Maths
08A 8A-English 8A-His 8A-En 8CKOAS-Math 8A-Science 8CKO 8A-Sci 8-LPD-1234 8A-Mu 8A-Ge 8AS-Art12-D& 8A-Sport 8CKOAS-Math 8-LPD-5678 8AS-D&T12-A 8A-Ge 8A-His 8-LPD-5678 8A-Science 8A-Ge 8A-Mu 8AS-D&T123 8A-His 8-Opti
08S 8S-English 8S-Mu 8S-Eng 8S-Science 8S-Sci 8S-Mu 8S-Ge 8S-Sport 8S-History 8S-Science 8S-Geography 8S-His
08C 8C-Science 8C-En 8C-Sci 8C-English 8C-Mu 8C-His 8C-Mu 8C-English 8CKO-D&T12- 8C-Sport 8C-Geography 8CKO-D&T12- 8C-History 8CKO-Art12-D 8C-Ge
08K 8K-Science 8K-En 8K-Sci 8K-English 8K-Mu 8K-His 8K-Mu 8K-English 8K-Sport 8K-Geography 8K-History 8K-Ge
08O 8O-Science 8O-Music 8O-English 8O-Sci 8O-His 8O-English 8O-Sport 8O-Geography 8O-History 8O-Ge
09-1 E9-7 9-PD-1 E9-4 E9-6 E9-4 E9-6 9-English-1 E9-5 E9-7 E9-5 9-Science-1 9-Musi 9-Scie 9-Maths 9-Sport 9-Opti
09-2 9-PD-2 9-English-2 9-Science-2 9-Musi 9-Scie
09-3 9-Science-3 9-English-3 9-PD-3 9-Science-3 9-Musi
09-4 9-PD-4 9-English-4 9-Science-4 9-Musi
09-5 9-PD-5 9-English-5 9-Musi 9-Science-5
10-1 E10-6 E10-7 E10-4 E10-5 E10-4 E10-5 10-Science 10-English 10-Maths E10-7 10-PD E10-5 E10-4 10-Sport 10-Opt
10-2
10-3
10-4
10-5
Year11 11-3-Maths/12-3 11-1 11-4/12-4-Maths 11-5/12-5 11-2/12-1 11-6 11-Sport 11-Opt
Year11-2-OAS
Year11-3-OAS 11-3/1 11-3/12-3-OAS
Year11-4-OAS 11-3-Maths/12-3 11-4/1 11-4/12-4-OAS-B 11-4/12-4-OAS
Year11-5-OAS 11-4/12-4-Maths 11-5/1 11-5/12-5-OAS-A 11-5/12-5-OAS
Year12 12-2 11-5/12-5 12-6 12-7 12-Opt
Year12-2-OAS 12-2-O 12-2-OAS-B 12-2-OAS-A
Year12-3-OAS 11-3/1 11-3/12-3-OAS-A 11-3/12-3-OAS 12-2
Year12-4-OAS 11-3-Maths/12-3 11-4/1 11-4/12-4-OAS-B 11-4/12-4-OAS
Year12-5-OAS 11-4/12-4-Maths 11-5/1 11-5/12-5-OAS-A 11-5/12-5-OAS
Other Mathe Studen Histor Englis PDFac Sport StaffM
Other ExecutiveMeeting

Fig. 6. A planning timetable for the bghs98 instance. Each row except the last two
represents the timetable of one student group resource. The columns represent times,
permuted to bring the times of the columns (in the column layout sense: six of width 6
and one of width 4) together, making them and the tiles within them clearly visible. An
example of a time adjustment, swapping Science with Personal Development, appears
in the row of student group 09-3. This diagram was generated in PostScript by KTS.

The second neighbourhood takes pairs of meetings that contain the same
preassigned resources (typically student group resources) and swaps blocks of
their times of equal width. Since this can disrupt the regularity of a timetable,
these swaps are only accepted if they reduce problems with resources, and indeed
are only tried at times where there are such problems.

4.5 Resource assignment

Resource assignment is the assignment of particular resources to the resource
slots of meetings. The solver does this after times are all assigned.

Each resource group may be assigned independently of the others, apart
from a slight connection caused by ‘follows’ requirements. For each resource
group in turn, in an order influenced by the presence of ‘follows’ requirements,
preassignments are first converted to assignments, then assignments arising from
‘follows’ requirements are made, then all remaining unassigned slots are assigned.
Some preassignments may fail to convert owing to resource unavailabilities and
workload limits; their slots remain unassigned and become defects in the solution.

The resource assignment problem comes in two versions, depending on how
acceptable split assignments are. Typically, split assignments are undesirable
when assigning teachers, but acceptable when assigning rooms, provided classes
do not have to change rooms part-way through a time block.
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Avail M1 M2 W5 W6 T7 R8 W1 W2 R1 R2 M8 T5 T3 T4 R3 R4 W8 F3 W3 W4 R5 R6 M7 F5

Gibbons 0 8C-Science 7A-Scie 8C-Scie 7K-Science 8A-Science 7A-Scie 8A-Scie Student 12-5-Chemistry
Kassab 0 7O-Science 8S-Science 7O-Scie 8S-Scie 10-Science2 11-5-Biology
Kidd 0 12-3-Physics 7C-Scie 10-Science1 7C-Science
Prasad 0 8K-Science 8K-Scie 12-2-GeneralScience-1 10-Science3
Saule 0 8O-Science 12-2-Biology 10-Science5 12-5-Biology
Smith 1 9-Science-3 7S-Scie 7S-Science 8O-Scie 10-Science4 11-5-Physics
Unassigned 7K-Scie 7K-Science

M5 M6 F1 F2 T6 W7 M3 M4 T1 T2 R7 F4 F6 F7 F8 T8

Gibbons 9-Science-1 9-Scienc 8A-Science 7A-Scie Sport StaffMe
Kassab 11-2-GeneralScience 7O-Science 8S-Science
Kidd 9-Science-5 7C-Scie 7C-Scie ExecutiveMeeting
Prasad 9-Science-4 11-6-Chemistry-1 Sport
Saule 11-6-Chemistry-2
Smith 9-Science-3 11-6-Biology 7S-Science
Unassigned

Fig. 7. Planning timetable showing the teacher assignment for the Science faculty of
the bghs98 instance. (The resource assignment algorithm assigns all faculties simultane-
ously, but it is convenient to analyse its results faculty by faculty.) The second column
gives the remaining unused workload of each teacher. Split and partial assignments are
shown in italic font. There are three unassigned tixels. This diagram was generated in
PostScript by KTS.

Room assignment is not difficult. The solver assigns each time block of each
meeting, largest blocks first, choosing a qualified resource whose use does not
increase the number of resource problems at any of the block’s times (the usual
bipartite matching checks this condition), and preferring a resource which has
already been assigned to another block of the meeting. If a block of two or more
times is encountered for which this is not possible, it is split into blocks of width
1; if a block of width 1 cannot be assigned, it is passed over and becomes a defect
in the solution.

The teacher assignment algorithm tries much harder to avoid split assign-
ments (Figure 7). It is based on the alternating path method familiar from bi-
partite matching and similar problems, used as a heuristic, since the optimality
guarantees that usually accompany it are absent.

Choose a currently unassigned teacher slot of maximum width. If there is a
qualified teacher able to fill this slot (i.e. without causing clashes or exceeding
workload limits), assign that teacher and move to the next widest slot. Oth-
erwise, see if there is a teacher who could fill the slot if only some one of the
assignments currently given to that teacher were deassigned and given to some
other teacher able to fill it. If so, make the indicated chain of two assignments
and one deassignment, and move on. If not, look for a longer chain, and so on.
At each moment when there are no workload overloads or clashes, compare the
whole set of assignments with the best so far, and replace it if it is better.

The KTS High School Timetabling System 191



Table 1. The six instances tested, showing the number of times, resources, and meet-
ings in each.

Instance Times Student Groups Teachers Rooms Meetings

bghs93 40 23 53 46 155
bghs95 40 27 52 48 147
bghs98 40 30 56 45 152
tes98 30 11 33 20 95
tes99 30 13 37 26 86
sahs96 60 20 43 36 131

Two methods of controlling the size of the search are used. One is the tradi-
tional one of marking each possible assignment and deassignment visited when
it is first considered, and refusing to reconsider it during the course of the search
(it becomes available again when we move to the next slot). The other method is
to allow revisiting but to strictly limit the depth of the search, to the empirically
determined value of 5 (three assignments and two deassignments). The searches
are repeated until there is no improvement.

At each slot, in addition to searching for ordinary assignments, the solver
finds a qualified resource which is available for as many times as possible, and
generates all split assignments which have that resource and those times as the
first branch, and one other qualified resource with the remaining times as the
second branch. The alternating path search continues down the second branch.
A single partial assignment is also generated, holding the first branch as before
but omitting the second.

5 Results

This section analyses the performance of the solver on six instances taken from
three high schools in Sydney, Australia. Statistical descriptions of these instances
appear in Table 1, run times are given in Table 2, and the quality of the solutions
is summarized in Tables 3, 4, and 5. The solver always assigns the correct number
of times to each meeting, never introduces student group clashes, and prefers
to leave teacher and room slots unassigned rather than introducing teacher and
room clashes and workload overloads. So the possible defects are time assignment
problems (wrong block structure, meeting spread over too few days, etc.) and
unsatisfactory room and teacher assignments (split, partial, and missing).

The sahs96 instance has a two-week cycle, and all its teacher slots are pre-
assigned. These two factors make time assignment very slow. It is encouraging
that only 3.1% of these preassigned teacher tixels could not be assigned (Table
5), given that the solver is not optimized to handle instances that are highly
constrained in this way. However, the solver’s desperate attempt to satisfy all
these preassignments leads to a quite irregular timetable.

The other instances are more typical of the solver’s intended domain of appli-
cation. Run times are under ten seconds. Block structure defects are somewhat
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Table 2. Run times in seconds for the major stages and in total. The tests used a
3.2GHz Pentium machine running Linux. Run times are as reported by the Linux time
command, which is accurate to one second. Column layout time was always 0.0 seconds
so has been omitted. Time assignment includes time adjustment by hill climbing, never
more than one second. The times given for resource assignment essentially measure
teacher assignment only, since room assignment is very fast. Total times were checked
against wristwatch time.

Instance Tile construction Time assignment Resource assignment Total

bghs93 0.0 3.0 3.0 6.0
bghs95 0.0 1.0 7.0 8.0
bghs98 0.0 1.0 6.0 7.0
tes98 1.0 1.0 0.0 2.0
tes99 0.0 1.0 0.0 1.0
sahs96 1.0 31.0 0.0 32.0

Table 3. Evaluation of time assignments, showing the absolute number of meetings
with defective block structure, uneven spread through the cycle, and more than one
undesirable time, plus this number as a percentage of the total number of meetings.

Instance Block structure Spread Undesirable times

bghs93 48 (31.0%) 51 (31.2%) -
bghs95 20 (13.6%) 44 (29.9%) 7 (4.8%)
bghs98 5 (3.3%) 31 (21.1%) 0 (0.0%)
tes98 36 (37.9%) 22 (23.2%) 2 (2.1%)
tes99 37 (43.0%) 27 (31.4%) -
sahs96 2 (1.5%) 74 (56.5%) 18 (13.7%)

high (Table 3). This problem awaits analysis but should be correctable. Time
conditions defects are probably acceptable now, given their relative unimpor-
tance, although there is room for improvement.

Resource assignment can be evaluated either in terms of the number of de-
fective assignments (split, partial, or missing), or the number of unassigned in-
dividual tixels (a tixel is one resource at one time, either supplied or demanded).
Some tixels are inevitably unassignable given a particular time assignment – for
example, if the time assignment requires five Science laboratories to be avail-
able at some time, but the school has only four. These are shown in the fourth
column of Tables 4 and 5, while the number of unassigned tixels after resource
assignment is shown in the fifth column.

Room assignment (Table 4) is virtually perfect. The room assignment algo-
rithm always assigns every room tixel that time assignment permits, because it
breaks time blocks up into individual times if necessary, and, using a bipartite
matching between room demands and rooms at each time, it never allows the
number of unassignable rooms at any time to increase. This is why the fourth
and fifth columns of Table 4 are equal. The fact that only two split assignments
were ever introduced shows how easy this problem is in practice.
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Table 4. Evaluation of room assignments, showing the absolute number of split assign-
ments, partial and missing assignments, unassignable tixels after time assignment (1),
and unassigned tixels after resource assignment (2), plus this number as a percentage
of the number of room assignments or tixels demanded. In this table, a split assignment
is one in which a class has to change rooms part-way through a time block.

Instance Split Partial/missing Tixels (1) Tixels (2)

bghs93 0 (0.0%) 7 (3.1%) 15 (1.2%) 15 (1.2%)
bghs95 0 (0.0%) 6 (2.9%) 9 (0.7%) 9 (0.7%)
bghs98 0 (0.0%) 5 (2.1%) 7 (0.5%) 7 (0.5%)
tes98 2 (2.2%) 5 (5.5%) 7 (1.5%) 7 (1.5%)
tes99 0 (0.0%) 5 (3.7%) 7 (1.3%) 7 (1.3%)
sahs96 0 (0.0%) 27 (11.2%) 15 (1.0%) 15 (1.0%)

Table 5. Evaluation of teacher assignments, showing the absolute number of split as-
signments, partial and missing assignments, unassignable tixels after time assignment
(1), and unassigned tixels after resource assignment (2), plus this number as a percent-
age of the number of teacher assignments or tixels demanded, as appropriate. In this
table, a split assignment is one in which a class is taught by two teachers.

Instance Split Partial/missing Tixels (1) Tixels (2)

bghs93 3 (0.7%) 7 (1.5%) 5 (0.3%) 9 (0.6%)
bghs95 17 (3.7%) 15 (3.3%) 7 (0.5%) 27 (2.0%)
bghs98 24 (5.4%) 10 (2.3%) 8 (0.5%) 17 (1.2%)
tes98 7 (3.8%) 13 (7.1%) 14 (3.0%) 14 (3.0%)
tes99 2 (1.1%) 9 (5.1%) 9 (1.7%) 9 (1.7%)
sahs96 0 (0.0%) 27 (11.2%) 47 (3.1%) 47 (3.1%)

Unassigned room tixels typically request specialized laboratories whose de-
mand is very tight. This problem is quite common in high schools and is not of
major concern, since, given its low relative frequency, it is not difficult to ensure
that no class meets in an inappropriate room for more than one of its times,
and the teacher would organize the classroom material accordingly. An option
to assign inappropriate rooms where necessary, spreading them fairly among the
classes affected, could easily be added.

Split teacher assignments and unassigned teacher tixels (Table 5) are the
main areas of concern. How acceptable these results are it is hard to say. Hand-
generated timetables also have these problems. Split assignments are quite rou-
tine. Unassigned tixels are handled in various ways: by excusing a teacher from
a faculty meeting, having an available but unqualified teacher supervise a class,
and so on. Unlike other defects, every unassigned teacher tixel is a real problem
requiring the attention of the timetable planner.

One unassignable tixel in a teacher slot spoils the assignment of the entire
slot. This suggests that finding time assignments with fewer unassignable teacher
tixels would be more helpful than improving the teacher assignment algorithm.
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6 Conclusion

This paper has presented KTS, a freely accessible web-based system for high
school timetabling which produces good timetables in a few seconds.

The fast response time makes KTS well suited to exploring alternative sce-
narios and incorporating late changes to requirements. However, KTS does not
yet address the problem of making minimal changes to a published solution in
response to changes in requirements.

The data model is mature, except perhaps in its treatment of time, and the
overall structure of the solver is quite successful. It seems likely that future work
will focus on improving the existing solver components, rather than radically
redesigning the solver. The time assignment stage is the obvious next target
for improvement. In fact, since this paper was written, the author has designed
and implemented a more flexible approach to time assignment and adjustment
which should allow the algorithms described here to be varied and generalized
in several interesting ways [7].

In parallel with these efforts, the KTS system will be promoted to Australian
high schools. At the time of writing, 60 accounts have been created, but only
a few are active. More users will bring a larger and more diverse set of test
instances, which should lead to further progress.
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Abstract. A hierarchical timetable is one made by recursively joining
smaller timetables together into larger ones. Hierarchical timetables ex-
hibit a desirable regularity of structure, at the cost of some limitation
of choice in construction. This paper describes a method of specifying
hierarchical timetables using mathematical operators, and introduces a
data structure which supports the efficient and flexible construction of
timetables specified in this way. The approach has been implemented in
KTS, a web-based high school timetabling system created by the author.

1 Introduction

The basic timetable construction problem is to assign times and resources (stu-
dents, teachers, rooms, etc.) to a set of meetings so that the resources have as
few timetable clashes as possible. To this basic problem many other constraints
are typically added, such as that the times allocated to a meeting be spread
evenly through the week, that workload limits placed on some resources not be
exceeded, and so on. Timetable construction is an NP-complete problem with
an extensive literature [3–7].

Informally, a regular timetable is one in which a pattern may be discerned
which makes the timetable easy to understand and remember. Regularity may
take many forms, but this paper will be chiefly concerned with regularity in the
choice of times. For example, North American universities commonly require all
courses to occupy three hours per week, offered in one of the sets of time slots
Mon-Wed-Fri 9-10am, or Mon-Wed-Fri 10-11am, and so on, producing a very
regular timetable.

Even when such a strict rule as this is not possible, still some regularity
might be achievable, perhaps by attempting to minimize the number of pairs of
meetings that share at least one time, in addition to the usual objectives.

Regular timetables are easy to assign resources to. For example, in the North
American university system, each meeting can meet in the same room for all
three of its times. This point is particularly significant in high school timetabling,
where teachers are assigned as well as rooms. Teacher assignment is the main area
where the author’s previous work in high school timetabling [8, 10] is deficient.
Thus, regularity is more than just an aesthetic consideration.
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This paper introduces a method of specifying regular timetables hierarchi-
cally, using timetable expressions analogous to algebraic expressions, and a data
structure, the layer tree, which represents these expressions and efficiently sup-
ports the basic assignment and deassignment operations on which most timetable
construction algorithms are built. This author’s KTS timetabling system [11, 12],
a free, public web site for high school timetabling, uses layer trees. They are par-
ticularly effective when sets of meetings can be identified that must be disjoint
in time. In high school timetabling, each set of meetings attended by a given
student group satisfies this condition.

Our focus is on the efficient implementation of the basic assignment and
deassignment operations, rather than their use with any particular timetable
construction algorithm. If these operations are efficient, many algorithms, in-
cluding construction heuristics, tree searches, and local searches, become avail-
able. Although efficiency is a key goal, it has not been considered useful to report
running times, since the operations to be presented are all polynomial time, and
running times say more about the algorithms built on these operations than the
operations themselves. KTS typically produces a good timetable in about ten
seconds [12], showing that layer trees can support practical timetabling.

Much of this paper is concerned with constraint propagation, but the empha-
sis here is on the efficient implementation of a particular set of constraints rele-
vant to timetabling, rather than the use of a general-purpose constraint program-
ming system to solve timetabling problems. Some of the algorithms used here, for
example weighted bipartite matching, do not seem to be available in any exist-
ing constraint programming system [2, 9], although some recent research into the
all different constraint [13], which implements unweighted bipartite matching, is
a step in that direction.

The algorithms used here have appeared in previous timetabling work by
the author and others [8, 10, 14]. This paper’s contribution is to show how these
algorithms can be incorporated into a flexible, efficient, hierarchical constraint
framework. Section 2 introduces timetable expressions, and Section 3 introduces
the layer tree data structure. Section 4 analyses the problem of efficiently prop-
agating constraints related to time through this data structure as assignments
and deassignments occur, and Section 5 does the same for resource constraints.
Section 6 surveys some other, less fundamental features implemented in KTS.

2 Timetable expressions

The idea of using an expression to specify a problem is well known in logic.
Consider a Boolean expression such as

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)

The expression defines an instance of the satisfiability problem, for which a so-
lution consists of an assignment of values to the variables which satisfies the ex-
pression. In the same way, timetable expressions will be used to specify timetable
construction problems.
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The simplest kind of timetable expression is the time variable, a variable v
whose domain is some subset of the set of available times T . This domain may
change as solving proceeds; its value at some moment will be denoted tdom(v),
and its initial value, specified when the variable is created, will be denoted
tdom0(v). For example, if v may be assigned any time, then tdom0(v) = T ;
if v is preassigned to a specific time t, tdom0(v) = {t}. Other initial domains
may constrain times to be during the mornings, or on Mondays, and so on.

The ultimate aim is to assign an element of T to every time variable, just as
the aim is to assign a Boolean value to every variable when solving satisfiability
problems. However, it turns out that in hierarchical timetabling a more useful
basic operation is the unification of one time variable, v, to another, w, with the
meaning that v’s value is constrained to be equal to w’s. Unifying two variables
expresses the idea that two meetings are to occur simultaneously, without having
to say when.

Thus, our system offers two basic operations: unifying a variable v to one
other variable w, and removing the unification of v to w. A variable may be
unified to at most one other variable at any moment; but that other variable is
free to be unified to a third variable (or not), and many variables may be unified
simultaneously to one variable.

Two timetable expressions e1 and e2 may be joined using the concatenation
operator, written e1e2, meaning that the times assigned to the variables of e1

must be disjoint from those assigned to the variables of e2. For example, a
meeting requesting four times may be expressed by the timetable expression
v1v2v3v4, where v1, v2, v3, and v4 are time variables. Concatenation specifies
that the times assigned to these four variables must be distinct, as required.

If two meetings request the same resource, and it is a hard constraint that
that resource may have no clashes in its timetable, then the expressions rep-
resenting those two meetings may be concatenated. This is fundamental in the
high school timetabling work which motivates this paper: each student group is
such a resource, and the meetings it appears in must be disjoint in time.

Two timetable expressions e1 and e2 may be joined using the alternation
operator, written e1 + e2, meaning that e1 and e2 are to appear in the same
timetable, but there are no time constraints between their variables. In the high
school timetabling application, e1 might represent the meetings attended by one
student group, and e2 might represent the meetings attended by some other
student group. These two sets of meetings have no time interdependencies, so
joining them with + is appropriate. If there is a meeting that both student groups
attend, then its expression (v1v2v3v4 or whatever) will appear in both subex-
pressions, and its variables must be assigned times disjoint from those assigned
to the variables its expression is concatenated with in both subexpressions.

These operations are named by analogy with the corresponding operators of
regular expressions: e1+e2 signifies that e1 and e2 are alternative activities, while
e1e2 signifies that one activity must follow after the other. In timetable expres-
sions, however, both operators are associative and commutative. A distributive
law, (a + b)c = (ac + bc), also holds.
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Finally, there is the restriction operator, written

w1w2 . . . wk : e

where w1w2 . . . wk is a concatenation of time variables called restriction variables,
and e is a timetable expression. This specifies that each variable in e must not
appear outside e, and must be unified to one of the wi (which themselves must
be assigned disjoint times), restricting e to a timetable using at most k times.

Restriction introduces abstraction into a timetable expression. The expres-
sion e may be timetabled into w1w2 . . . wk independently of the rest of the prob-
lem, after which these variables are indistinguishable from an ordinary concate-
nation of variables describing a meeting.

Typically, the outermost level of a timetable expression is a restriction expres-
sion which limits the timetable to the available times. Letting T = {t1, t2, . . . , tn}
be the set of available times, this expression would have the form

w1w2 . . . wn : e

where tdom0(wi) = {ti} for all i. Although the operation of assigning a particular
time ti to a variable v is not offered, unifying v to wi is effectively the same thing.

Variants of the timetabling problem exist in which the exact number of avail-
able times is not given; instead, a timetable with as few times as possible is
sought, consistent with other requirements. The restriction notation could easily
be extended to cover such problems. However, the algorithms appearing later in
this paper assume a fixed number of variables, so any such ‘extensible restriction’
would have to be solved (or at least, its number of variables determined) before
incorporation into a larger timetable, forcing a bottom-up solution order.

An example of a small timetable expression appears in Figure 1.

3 The layer tree data structure

A timetable expression such as

(e1 + e2)(e3 + e4)

is difficult to handle, since it is not clear how many of the available times should
be allocated to e1 + e2, and how many to e3 + e4. While cases of this kind do
occur, they are beyond the scope of this paper, and we will now exclude them.

A simple timetable expression is one in which each alternation expression
e1 + · · ·+ em is immediately enclosed in a restriction expression. In such expres-
sions it is easy to determine how many times to allocate to each subexpression.
Furthermore, a simple timetable expression can be analysed into a tree (or forest
if the root is a concatenation expression) of expressions of the form

w1w2 . . . wn : (e11e12 . . . e1k1 + · · ·+ em1em2 . . . emkm
)

called a restricted sum of products. Here m may be 0, in which case the expression
just denotes a sequence of variables w1w2 . . . wn. Each eij is a restricted sum of
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t1 t2 t3 t4 t5

7A 7A-Hist 7A-English

7B

7AB-Mathematics

7B-English 7B-Hist

(a) A small timetable, or tile, occupying two student groups (7A and 7B) for five times
t1, t2, t3, t4, and t5.

w1w2w3w4w5 : m1m2ha1ea1ea2 + m1m2eb1eb2hb1

(b) A timetable expression for which (a) is a solution. Here w1w2w3w4w5 represent the
five available times, ha1 represents 7A-Hist, ea1ea2 represents 7A-English, and so on;
m1m2, representing 7AB-Mathematics, lies in two subexpressions.

w

w1

w

w2

w

w3

w

w4

w

w5

× ×

h

ha1

e

ea1

e

ea2

m

m1

m

m2

e

eb1

e

eb2

h

hb1

(c) A layer tree corresponding to (b). Variables are shown as labelled boxes; + nodes
are shown as concatenations of their variables.
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w4
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e
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e

ea2

m

m1

m

m2

e

eb1

e

eb2

h

hb1

(d) The layer tree of (c), showing unifications representing the timetable of (a). The ×
nodes have been omitted for clarity.

Fig. 1. Timetables, timetable expressions, layer trees, and unification.

products. Some of the eij may be shared, i.e. some epq and ers may be the
same subexpression. To solve a restricted sum of products is to unify each of the
restriction variables in each eij to one of the wi.

One way to solve a timetabling problem represented by a simple timetable
expression is to solve its restricted sums of products in bottom-up order. This pa-
per aims for more flexibility, however, in allowing unifications and de-unifications
within each restricted sum of products at any moment. For example, this would
permit the timetable of a small component to be adjusted (by local search, per-
haps) after that component is incorporated into a larger timetable. To achieve
this we need a data structure which represents the entire tree of restricted sums
of products, with the current state of the unifications of each.

The data structure we will use, which we call a layer tree, is essentially just
the expression tree corresponding to a simple timetable expression. A layer tree
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has two types of nodes: + nodes representing restricted sums of products and
containing their restriction variables, and × nodes representing concatenations.
Nodes of both types may have any number of children. Figure 1 gives an example
of converting a restricted sum of products into a layer tree.

Without loss of generality, we may assume that in every layer tree the root is
a + node, its children are × nodes, their children are + nodes, and so on, with
the node type alternating between + and × at each level. To bring an arbitrary
layer tree into this form, first use the associativity of concatenation to replace
every × node whose parent is a × node by its children. Then insert a × node
immediately above every + node whose parent is a + node. Finally, if the root
is a × node, remove it and solve each of its children independently.

Each variable v within each + node other than the root node requires unifi-
cation with a variable w in the + node two levels above it. Each such unification
is represented by a pointer in v to w (Figure 1d). Eventually, when all these vari-
ables are unified in this way, every variable may be said to have been assigned a
time, obtainable by following the chain of pointers to its end.

Any set of variables requiring distinct times is called a layer. The variables
lying in any + node form a layer; the variables lying in all the children of any
× node also form a layer.

For example, the author’s KTS system builds a layer tree with several levels.
Each meeting may contain submeetings which have to be timetabled into the
times of the meeting; each such meeting becomes a restricted sum of products.
Then small groups of compatible meetings are timetabled together, producing
tiles such as the one in Figure 1a; each tile is the solution of a restricted sum
of products whose child layers contain meetings. Finally, the times of the week
form a restricted sum of products whose child layers contain tiles.

4 Time constraints

This section explains how constraints on time assignment are propagated through
the layer tree, so that at any moment it is clear for each variable exactly which
variables it may be unified to without violating any time constraints.

Since each variable is unified to at most one other variable at any moment,
the unifications form a directed forest with edges pointing towards the roots.
The current unification of a variable v will be denoted p(v) (‘parent of v’) when
present, and the variable at the root of the tree of unifications containing v
(possibly v itself) will be denoted r(v). A root variable is a variable w such that
r(w) = w. Every variable in the root node of a layer tree must be a root variable,
but other variables may also be root variables: root variables are just variables
that are currently not unified to other variables.

Recall that each time variable v has its initial domain tdom0(v) of times that
it may be assigned initially, and its current domain tdom(v) of times that it may
be assigned to at the current moment. We require

tdom(v) ⊆ tdom0(v)
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since otherwise the original constraint has been lost.
Each time variable v has a second kind of domain, its variable domain

vdom(v), which is the set of variables that v may be unified to. Again, vdom0(v)
will denote the initial value of vdom(v), and we require vdom(v) ⊆ vdom0(v).
For each variable vij in the restricted sum of products

w1w2 . . . wm : (v11v12 . . . v1k1 + · · ·+ vm1vm2 . . . vmkm
)

we have vdom0(vij) ⊆ {w1, w2, . . . , wm}.
The two domains are related by the condition

w ∈ vdom(v) ⇒ tdom(w) ⊆ tdom(v)

(⇒ is implication). For example, this prohibits a preassigned variable from being
unified to an unpreassigned one; in general, it prevents w from being assigned a
time not acceptable to v.

The following formulas show how tdom(v) and vdom(v) may be kept up to
date as variables are unified and deunified:

tdom(v) = tdom0(r(v))

and
vdom(v) = {w ∈ vdom0(v) | tdom(w) ⊆ tdom(v)}

These follow easily from the discussion so far. Note that vdom(v) is only needed
at moments when v is not unified.

When a variable v is unified to another variable w, the variable domains of all
variables concatenated with v need to be reduced by removing w, since unifying
any of them with w would violate the constraint that concatenated variables
must be assigned distinct times. An efficient method of doing this is as follows.

Let the set of variables lying in the children of one × node be v1, . . . , vm;
these variables form a layer which we call L. The variables in the parent of that ×
node form another layer, which we call p(L). The variables of L must be unified
to the variables of p(L).

For each vj , define the child layer set, cl(vj), to be the set of × nodes which
are the parents of the + node containing vj . (As explained earlier, a + node may
have several parents, typically because the meeting it represents contains several
preassigned resources.) For each wi, define the parent layer set, pl(wi), to be the
union of the child layer sets of all variables unified directly to wi. Parent layer
sets must be maintained dynamically as unifications are done and undone.

Now modify the definition of vdom(v) given above to

vdom(v) = {w ∈ vdom0(v) | (tdom(w) ⊆ tdom(v)) ∧ (cl(v) ∩ pl(w) = ∅)}

This excludes w from vdom(v) when some other variable that shares a layer with
v is currently unified to w. The set operations may be implemented efficiently
using bit vectors.
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w2
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w3

w

w4

w
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v

v1
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v2

v

v3

v
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Fig. 2. An example of an unweighted bipartite matching graph between the variables
of a child layer L and its parent layer p(L), shown as dashed edges. One unification is
already present, from v4 to w5, ensuring that L ∈ pl(w5) and thus excluding w5 from
vdom(v) for all other v ∈ L. This particular matching could arise when v3 and w4 are
preassigned to the same time (tdom(v3) = tdom(w4) = {ti} for some ti ∈ T ), and
the other variables are free to be assigned any time. Note that w4 ∈ vdom(v1) but no
maximal matching would unify v1 to w4.

Given current values of vdom(v) for all variables v in some layer L, the next
question is whether it is possible to unify all the currently un-unified variables of
L to variables in p(L). Since the unifications must be to distinct variables, this
is an unweighted bipartite matching problem between the currently un-unified
variables of L and the variables of p(L), with edges defined by the current values
of the domains vdom(v) of the currently un-unified variables of L (Figure 2). We
will see in the next section that there are reasons for preferring some unifications
to others, converting the unweighted bipartite matching into a weighted one.

5 Resource constraints

In addition to requests for times, meetings contain requests for resources. These
may be for particular resources, called preassigned resources, or for any resource
of a certain type, such as a Science laboratory.

A typical meeting requests one preassigned student group resource, one teacher
which may or may not be preassigned, and one room, usually not preassigned.
However, it is very common for a whole collection of meetings to be required to
run simultaneously, to give the students a choice of activities. Such a collection
is modelled as a single large meeting with many resource requests.

A basic question which can be asked of any set of meetings is whether the
institution has sufficient resources to allow those meetings to run simultaneously.
For example, if the school has only two Music teachers and two Music rooms,
then at most two Music meetings may run simultaneously. As is well known, this
question can be answered using an unweighted bipartite matching model, called
a resource sufficiency matching [8], as follows.

For each request for a resource in each of the meetings involved, create one
node called a demand node. For each resource in the instance of the timetabling
problem being solved, create one node called a supply node. Connect each de-
mand node to those supply nodes capable of satisfying that demand. For exam-
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ple, a demand node for a particular student group resource would be connected
to just the supply node representing that resource; a demand node for a Sci-
ence laboratory would be connected to every supply node representing a Science
laboratory. The meetings may run simultaneously if a maximum matching in
this graph touches every demand node. The matching defines an assignment of
resources to requests which satisfies as many requests as possible.

This model allows supply nodes which are capable of satisfying several kinds
of demands: teachers who teach both English and History, rooms which are Sci-
ence laboratories but are usable as ordinary classrooms, and so on. The obvious
simpler method, of comparing the total number of demands of each type with
the total supply of resources of that type, fails to handle such cases.

We turn now to the implementation of these ideas within the layer tree.
Associated with each time variable is a set of demand nodes, which we call a
demand chunk. For example, a Music meeting might request student group 7C,
one Music teacher, and one Music room for four times, and then there will be
four variables, each with an associated chunk containing three demand nodes.
These chunks happen to be identical, but they are copies, not shared.

Any time variable may have a demand chunk, whether or not it derives from a
meeting. The variables of the root layer, for example, have chunks that express
resource unavailability: if resource r is unavailable at time ti, then the chunk
associated with root layer variable wi will contain a demand for r.

The layer tree treats time constraints as hard constraints, in that it is not
designed to track the number of violations of these constraints, merely to prohibit
them. For resource constraints however we have a free choice of whether to treat
them as hard or soft constraints, and we will follow the KTS implementation in
treating them as soft constraints. The aim is therefore not to fail when resources
are insufficient, but rather to report the number of unmatchable demand nodes.
This is calculated by having one bipartite graph for each root variable, in which
all the demand chunks of all the variables unified to that root variable directly
or indirectly are accumulated (since the unifications have caused these demands
to be simultaneous), and supply nodes for all the resources of the instance as
usual, and finding a maximum matching in each of these graphs.

The standard algorithm for unweighted bipartite matching has some useful
properties which permit matchings to be calculated in an incremental manner.
Briefly, one can push and pop demand chunks onto and off a matching graph in
stack order (last-in-first-out) without recalculating the matching from scratch.
The supply nodes remain constant throughout. Thus, when a unification of v to
w is made, one can simply push the demand chunks from v’s subtree (that is,
the chunks associated with v and every variable currently unified to v, directly
or indirectly) onto r(w)’s matching graph; when a de-unification of v to w is
made, one must pop chunks off r(w)’s graph until all v’s subtree’s chunks are
popped, then push back onto r(w)’s graph all chunks that were popped off
during this process that were not from v’s subtree. The KTS implementation
uses lazy evaluation, merely recording requests for pushes and pops, and not
doing anything until a request for the number of unmatchable nodes is received,
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at which point one sequence of pops followed by one sequence of pushes brings
the matching up to date.

We return now to the unweighted bipartite matching problem mentioned at
the end of the preceding section, between the un-unified variables of a layer L and
the variables of its parent layer p(L). For each un-unified variable v of L, we saw
that the current domain vdom(v) determines which edges to place in the bipartite
graph. Now with each such edge, from v to w say, we can associate a cost: the
number of additional unmatched nodes that would occur if v was unified to w,
calculated by matching the chunks of v’s subtree and r(w)’s subtree together
without actually making the unification. A maximum matching between L and
p(L) of minimum total cost will give a lower bound on the number of additional
unmatched demand nodes that will occur when the un-unified variables of L are
unified to variables of p(L). This model has been called weighted meta-matching
in [10], where it provides a valuable forward check.

The KTS implementation recalculates edge costs only when changes to the
demands at either end make that necessary. It calculates weighted matchings
lazily on demand, but not incrementally. Although a well-known algorithm exists
which can do this, by finding negative-cost cycles in the residual graph, it is
slow since it requires the use of the Bellman-Ford shortest path algorithm rather
than Dijkstra’s [1]. Fortunately the graphs are small, since the number of nodes
per layer is at most the number of times in the week (typically about 40), so
calculating these weighted matchings from scratch is not time consuming.

6 Other features

In this section we briefly survey some other features of the KTS layer tree. They
serve as examples of how the basic ideas can be extended.

Time blocks. A sequence of times that follow each other chronologically with-
out a break is called a time block. For example, the first four times on Monday
might form a time block. Then after a lunch break there might be four more
times followed by an end-of-day break. In KTS, meetings may request that their
times have a particular block structure. For example, a meeting with 6 times
might request two doubles (blocks of two times) and two singles.

The KTS layer tree allows time variables to be grouped into blocks. The time
variables of a layer of meetings are grouped into blocks defined by the meetings’
block structure requests; the time variables of the root layer (representing the
times of the week) are grouped into blocks representing the sets of times between
the naturally occurring breaks.

An initial problem is to determine whether the time blocks of some layer
can be packed into the time blocks of the week, allowing for the fact that (for
example) a block of four times on Monday morning can be split into two doubles,
or one double and two singles, or whatever is required. This is an NP-complete
bin packing problem, but real instances are small and easily solved.

Once such a packing has been found, and the large blocks of the week bro-
ken down into smaller blocks that exactly match the meetings’ block structure
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requests, the layer tree implements a weighted meta-matching between blocks
rather than individual variables. Two blocks are connected by an edge if they
have the same number of variables and corresponding variables within the blocks
would be connected by an edge in the unblocked matching. The cost of a block-
to-block edge is the sum of the costs of the variable-to-variable edges it replaces.

The layer tree offers a heuristic algorithm which simultaneously carries out
the bin packing and builds the blocked matching. Initially the matching contains
all the parent layer blocks as supply nodes, and no child layer demand blocks.
The child blocks are introduced into the matching one by one in decreasing width
order. If a child block fails to match, a series of repair operations is tried on the
parent blocks: larger blocks are split, variables not yet in any block are merged
into blocks, and so on. For each type of repair, all possible repairs of that type
are tried, and the one which produces a blocked matching of minimum cost is
accepted; or if none of them succeed in producing a matching which touches
every demand block, the algorithm proceeds to the next, less desirable, kind of
repair. As a last resort, one demand block (usually the one just introduced) is
dropped and replaced by its variables.

The decisions about how to split parent blocks made by this algorithm depend
on the state of resource sufficiency in those blocks’ variables. Consequently it is
not useful to build a blocked matching for every child layer of a restricted sum
initially. Rather, the usual unblocked matchings are built for each child layer,
then a child layer’s unblocked matching is replaced by a blocked matching as the
first step in assigning that layer. The blocked matching is a temporary structure,
only in existence while its layer is being assigned.

Blocked matchings suffer from an awkward problem. Suppose a meeting re-
quires one double and one single block. The matching unifies the double to the
first two times on Monday; it unifies the single to the third time on Monday. The
result is a triple, not a double plus a single. Finding a minimum-cost matching
which avoids this problem appears to be NP-complete. KTS’s weighted meta-
matching algorithm discourages such unifications by artificially increasing the
cost of augmenting paths that would produce them. The implementation has
been done with care, and runs in time which is often a small constant, and at
worst is proportional to the length of the augmenting path being considered.
The idea is purely heuristic, to be sure, but it seems to work well.

Many other conditions besides time blocks may be imposed on sets of times.
A meeting’s times may be required to be spread evenly through the week, the
times of the meetings attended by a student group may be required to be compact
(contain no gaps within any day), and so on. The author has not yet attempted
to support such conditions within the layer tree.

Regularity. The layer tree supports regularity by supporting hierarchical
timetable construction, but this does not of itself encourage regularity between
the child layers of each + node. We mentioned earlier a straightforward way to
do this, by partitioning the variables of the parent layer into sets, called columns,
whose size is a typical meeting size, and assigning meetings to entire columns
wherever possible. This was the North American universities’ approach.
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Columns are supported by the layer tree by allowing temporary reductions in
vdom(v). An algorithm might restrict the domains of the variables of a meeting
to one column, then check the total resource sufficiency badness of the entire
layer tree; if it has not increased, assigning that meeting to that column may be
good. The layer tree also maintains, for each set of variables representing one
meeting, a count of the number of distinct columns that that meeting’s variables
are assigned to. The total of all these counts measures the current irregularity.

Evenness. It is desirable for demand for a particular type of resource to be
spread evenly across the week, not concentrated at particular times. This is be-
cause resource assignment struggles at times when every resource of a particular
type is required: there are enough resources, perhaps, but there is little freedom
of choice. This property we call evenness.

Evenness, like resource sufficiency, depends on the resource demands made
at each time, so the layer tree’s support for it is very similar to its support for
resource sufficiency. (There does not seem to be any efficient way to extract
evenness information from the resource sufficiency matchings themselves.) The
total demand for each type of resource is maintained in root variables. The sum
of the squares of these totals is an effective and easily updated overall measure
of unevenness. For example, two root variables each demanding a quantity a
of some type of resource contribute 2a2 to total unevenness. If the timetable is
changed so that one demands quantity a− 1 and the other demands a+1, these
less even demands contribute 2a2 + 2 to unevenness. Demands from the same
faculty (e.g. Junior English and Senior English) are considered to be the same
type of demand, since they typically have many resources in common.

Overall badness. For the convenience of algorithms that use the layer tree,
the KTS implementation offers access to the current total badness of the tree,
as a triple whose first component is the number of resource sufficiency defects
implied by the current state (the total number of unmatched nodes in resource
sufficiency matchings, plus the total cost of all meta-matchings), and whose
second and third components are the irregularity and unevenness, measured as
just described. Each data structure responsible for calculating any badness value
at any point in the tree also takes responsibility for reporting any change to this
global badness object, or at least reporting itself as out of date and needing
recalculation the next time a badness value is requested.

7 Conclusion

This paper has defined a form of hierarchical timetable specification and shown
how support for it can be implemented efficiently using the layer tree data struc-
ture. Time assignments and deassignments may be carried out at any point in
the tree, and an efficient constraint propagation algorithm updates the domains
of the variables and reports the consequences for resource sufficiency at each
time. Extensions to the basic framework, supporting block structure, regularity,
and evennness, have been implemented in the author’s KTS system.
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Future work will try to add more features to the layer tree without com-
promising its efficiency. It may be possible to incorporate information about
workload limits into the resource sufficiency matchings, for example. A second
goal is to design new timetabling algorithms that fully exploit the flexibility of
this innovative data structure.
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Abstract. The planning of surgical operations forms a substantial el-
ement of hospital management. It is characterized by high complexity,
which is caused by the uncertainty between the capacity offered and
the true demand. Also, as emergency cases occur the planning require-
ments change. A semi-automated dialog-based system is therefore pre-
ferred rather than either fully manual or fully automated systems. This
is because of the inability of the later to recognize the changes in a
high dynamic environment and to take the responsibility for decisions
made. As it has to be possible to add new tasks in the planning process
“on the fly” and to adequately plan new situations, we involve a human
planner in the scheduling activity. The planner acts as a “sensor” to
identify changes as they occur and integrates his knowledge as well as
his decision-making competence into the planning process. The propos-
als for the schedules are however made with the help of the heuristics.
In order for a schedule to be accepted by those involved, it should take
account of the interests and preferences of all the human actors. Existing
systems do not do this and therefore suffer from levels of non-acceptance
of their resulting schedules. In this paper we discuss suitable heuristics
for operating theatre scheduling, the limits to which preferences can be
considered in the scheduling process, and the validation of the approach
in an experimental set of hospital scenarios.

1 Introduction

Operating theatre scheduling deals with assignment of limited hospital resources
(rooms, doctors, nurses, etc.) to jobs (patient treatments, surgery, etc.) over the
time, in order to perform a set of tasks according to their needs and priorities,
and to optimize usage of hospital resources [13]. The whole process is restricted
by a whole series of constraints, limitations and preferences [2]. It is further
characterized by a high level of complexity due to:

1. the uncertainty of the relationship between the capacity offered and the true
demand,

2. the inability to predefine treatments’ workflow,
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3. emergency cases, causing disturbance in existing schedules and the need to
adapt as situation changes.

Typically, scheduling is currently done manually and involves specialized staff.
[9] discuss an example of an optimization that can be achieved using process au-
tomization for nurses rostering1. In the hospital considered, one person takes 3-5
full working days to produce the nurses’ schedule for the period of one month.
That is only to the level of assigning shifts. Similar results have been reported
in other studies [4]. Existing industrial schedulers usually assume a predefined
workflow. Furthermore, they do not take staff and patient preferences into ac-
count and so are not generally applicable to the hospital domain [2]. The current
methods in this domain are therefore: no planning, pen and paper, non-intelligent
tool-based. Fully automated systems are not accepted because of their inability
to give proper consideration to preferences and the need to show clear responsi-
bility for decision making.

Existing solutions consider only sub-problems such as: nurse rostering, coor-
dination, or surgery planning. Most tools provide only GUI for manual schedul-
ing, although some check the validity of completed schedules, and some of the
more advanced generate draft schedules (however, preferences are not taken
into account). Some examples of such systems are Medico//S, ORBIS2, MEDI-
CUS [14], CARE2X3.

This paper presents a problem, based on real-world requirements. In the fol-
lowing section we present our approach for semi-automatic, dialog- and preference-
based scheduling in hospital scenarios. Then, after introducing the scheduling
problem to be considered, the domain of discourse and the made assumptions in
Section 2, we describe the problem decomposition, the discussion of the devel-
oped heuristics for each of the identified subproblems and provide a complexity
analysis for the developed heuristics. In Section 3 the experimental context is
described and an evaluation of the results presented. We finalize the discussion
with conclusions based on the evaluation and look forward to further challenges.

2 Scheduling Heuristic

We divide the operating theatre scheduling problem into the four sub-problems:
preference-based personnel assignment to shifts, preference-based building of
teams in a shift, preference-based task (operation) assignment to teams and
room assignment to tasks. For each of the sub-tasks we have developed a heuris-
tic. Furthermore, we have implemented suitable problem-solving methods and
evaluated the implementation by the means of simulation. The heuristics pro-
duce a proposal for the schedule. It is however up to the human planner whether
to accept it in its entirety, accept parts of it, or to reject it completely. We
propose a semi-automated dialog-based approach for the rostering.

1 rostering and scheduling are used as synonyms here
2 http://www.sieda.com/
3 http://www.care2x.com/
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In this section we discuss the heuristics for operating theatre scheduling ac-
cording to the division of sub-tasks as described above. We assume that the
preferences of the actors involved that need to be taken into account are pro-
vided in a frame-based representation, and that their context will be valid in the
context of the domain: shift, team, task, and room [10].

Based on the nature of the preference, we distinguish between static (coworker,
treatment) and dynamic (shift) ones. Each preference has a value from the closed
domain {willingly, undecided, unwillingly}. We define the preference domain
range as

D = {w, u, w̄},

where w stands for “willingly”, u for “undecided” and w̄ for “unwillingly”.
Each employee is able to specify a preference xi ∈ D for another employee
expressing his/hers willingness to work together with that employee. In the same
way it is possible to specify preferences for shifts. If the preference is not specified
it has the value u (undecided) by default.

There are basically two approaches for the staff rostering problem: cyclic4

and non-cyclic [1]. In the first one, several sets of schedules are generated that
satisfy the demand requirements. Staff are then rotated from one set of sched-
ules to another in consecutive planning horizons. So for example, the schedule
may be repeated every week or with a two week interval. Although it is easy
to implement, cyclic schedules impose inflexibilities, and there is therefore less
acceptance of the resulting outcome. We therefore use a non-cyclic algorithms.

It is also important to note that there are two possible approaches for team
continuity: first one based on the static team assignment, that means a team
remains unchanged until the end of the duty; the second one allows the reassign-
ment of members to other teams (build new ones) when no job is assigned to the
current one, in order to achieve continuity of occupation. Static assignment is
less flexible, but has much less computational complexity since there is no need
to search for the common time gaps across all team members. Furthermore, in
the second, there may be individual time gaps that will not be filled in the future
with any tasks.

2.1 Preference-Based Adaptive Assignment of Personnel to Shift

Preference-based assigning of personnel to shift considers:

– hierarchical position (senior physician, assistant doctor, anaesthetist, nurse);
– contract work hours (treated as soft-constraints);
– shift preferences (that have dynamic character since prefered working time

can vary from day to day);
– hard-constraints:

• minimum/maximum number of personnel in the shift (day, shift and
qualification dependent);

4 sometimes also called rotational
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• maximum duty duration;
• minimum inter-duty pause;

– fulfilled wishes quota.

The heuristic selects personnel so as to avoid hard-constraint violations for
each qualification in the following order of preference value:

willingly ≻ undecided ≻ unwillingly.

The best and simplest case is when the number of actors that work gladly in the
shift is within the bounds of the hard-constraints and maximum working time
is not exceeded. This means that they can all be selected for the duty and it
can be continued with the next lower position in the hierarchy of the depart-
ment. Unfortunately the hard-constraints often prevent this. So, for example,
the number of available personnel that would work “willingly” or “undecided”
in the shift may be smaller than the minimum staffing level required. In this
case all of the actors with these preferences have to be selected and those with
the lower preferences have to fill the gaps. It may also happen that only some
of the actors with the preference “unwillingly” for the current shift have to be
selected. So those that are not selected will be in a better position compared
to the selected ones. Furthermore, in the case of selecting only some with the
“willingly” preference, those that are not selected will find themselves in the
worse condition compared to the others. The selection procedure therefore con-
tributes to placing some actors in a worse condition, compared to the others.
Such a decision has to be memorized in order to achieve a degree of fairness in
the scheduling. That means that an additional measure has to be introduced in
order to keep track about the number of actor’s wishes that have been, respec-
tively have not been taken into account. The measure is mapped to the actor’s
weight. This weight is then used to influence further selection decisions of the
form “some from many” in order to achieve fairness of the scheduling and give
due consideration to the wishes of individual actors. It should also be considered
that medical personnel are usually contracted to work for a certain amount of
hours per week. The selection process therefore also needs to take into account
that physicians that have not yet completed their weekly contract hours should
have higher priority in getting a shift than those that are already on overtime.
The weight (importance) of the choice for an actor can be determined with the
help of the following weight function:

Weighti =RemainingWorkShifts · PositionWeight · α

+ Weighti−1 · stimulus · (1− α)
(1)

where

– 0.5 ≤ α < 1 coefficient that determines influence of the previous weight
value. It is assumed, that the remaining working time has more influence
on the weight function than whether wishes have been complied with, or
rejected;
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– PositionWeight weight, determined by the position of the actor;
– RemainingWorkShifts quota regular working shifts stated in the contract

as represented by the soft-constraints;
– Weighti−1 previous (old) weight value;
– stimulus determines the weight adjustment manner:

> 1 in case of dissatisfying selection;
= 1 if no preference was specified;
< 1 in case of taking into account a wish.

PositionWeight is used in the weight function since it is assumed that du-
ties may require personnel with some qualification, independent of the position.
However, the wishes of the physician with a higher position in the ward hierarchy
are given a higher significance.

Defined as above, the stimulus effect decreases the weight function in the case
of selecting an actor with the preference “willingly” or by not selecting one with
the preference “unwillingly”. The value increases by selecting with “unwillingly”
or by not selecting with “willingly”. The adjustment strategies of the weight
with respect to stimulus can be seen in Table 1.

preference value stimulus for selection stimulus for rejection

“willingly” < 1 > 1

“undecided” = 1 = 1

“unwillingly” > 1 < 1
Table 1. Weight Adjustment Strategies

The preference “undecided” is treated as neutral and does not influence the
stimulus, but the weight function changes in case of selection because of the
adjustment of remaining work shifts. At the beginning of the week the weight is
initialized as:

Weight0 = contractualWorkShifts · PositionWeight (2)

The weight is always adjusted each time the person is selected for the shift (since
the RemainingWorkShifts number changes) and also, for all those actors with a
preference ∈ {willingly, unwillingly} that were able to take the duty (i.e. caused
no hard-constraints violation). For not selected actors only the stimulus will have
an impact on the weight. If the RemainingWorkShifts reaches the value zero, the
weight function update decreases significantly if the actor is selected (since it is
treated as an undesired overtime):

Weighti = Weighti−1 · stimulus · (1− α) (3)

In case of rejection, for those actors with a preference ∈ {willingly, unwill-

ingly} only the stimulus has an influence on the weight:
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Weighti = Weighti−1 · stimulus (4)

All relevant constraints and their characteristics are given in Table 2.
The minimum and maximum number of personnel required in the shift has a

dynamic character since these values depend on the day (e.g. regular week day,
weekend, etc.). Where more than minimum required personnel with a preference
willingly are available, they are all selected up the to maximum allowed number
by the hard-constraint. In the case of preferences ∈ {undecided, unwillingly}
only the minimum number stated in the constraints are selected. The heuristic
therefore satisfies the wishes of as many actors as possible. It is important to
mention, that the personnel requirements have following restrictions:

max required senior physician ≤ min required assistant doctor
max required assistant doctor ≤ min required nurse
max required assistant doctor ≤ min required anaesthetist

Where there is a need to make a selection decision “select some from many”,
those with the higher value of the weight function are chosen. This contributes to-
wards fairness, since higher values mean that there are more contractual working
hours still unused in the current week, a higher position in the ward’s hierarchy
or smaller number of preferences already taken into account.

In view of the linear simplicity of the heuristic we do not discuss the com-
plexity analysis for shift assignment.

2.2 Preference-Based Building of Teams in a Shift

After the staff selection for the duties, the available personnel in the hospital
department is determined for each shift. As tasks arrive, there is a need to group
the shift personnel into teams in order to perform those tasks. Requirements
for personnels’ qualifications, resources, specializations of the involved actors in
each treatment have to be considered. In order to increase the acceptance of
the planning system in the hospital, it is also important to take into account
personal preferences of the involved actors. So, for example, the doctor “Z” may
prefer to work better with nurse “Y” than with the nurse “X”.

Constraint Type Character

shift preference preference dynamic

max shifts per duty hard-constraint static

min inter duty pause hard-constraint static

min required personnel hard-constraint dynamic

max required personnel hard-constraint dynamic

contract work hours soft-constraint static
Table 2. Constraints for Shift Assignment
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The problem can be formalized as follows: given S, D, E, N - sets consisting
of senior physicians, assistant doctors, anaesthetists and nurses having duty in
a shift, so that:

|S| = s, |D| = d, |E| = e, |N | = n with s < d < e < n.

This means that there are always more nurses in the shift than anaesthetists and
more anaesthetists than assistant doctors, and more assistant doctors than senior
physicians. Each employee can specify a preference with respect to another,
expressing his willingness to work with them:

∀ai, aj ∈ S ∪D ∪ E ∪N, i 6= j ∃ Paj
(ai) = xij ,

xij ∈ D, i, j ∈ (1, s + d + e + n).

Every employee is also characterized by the weight, that depends first of all
on the hierarchical position of the person:

∀a ∈ S ∪D ∪E ∪N ∃ g(a) ≥ 0.

The utility of team i, consisting of ñ actors is defined as

Ui =

ñ
∑

k=1

qa1,...,ak−1,ak+1,...,añ
(ak) · g(ak) (5)

where

qaj
(ai)i6=j =











1 if Paj
(ai) = w,

0 if Paj
(ai) = u,

−1 if Paj
(ai) = w̄

(6)

is the value of the coworker preference of actor ai regarding the colleague aj .
Correspondingly, for a set of n coworkers a1, . . . , an it is defined as

qa1,...,ak−1,ak+1,...,añ
(ak) = qa1

(ak)+· · ·+qak−1
(ak)+qak+1

(ak)+. . .+qañ
(ak). (7)

The total utility of h teams in a shift, each with its own size of ñi is defined
as

Utotal =
∑

i

Ui =
h

∑

i=1

ñi
∑

k=1

q{a1,...,ak−1,ak+1,...,añ}i
(aki) · g(aki). (8)

The goal is now to build teams in such a way, that the total utility function
(satisfaction of coworkers to work together) is maximized.
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Optimization Criteria. It is assumed that there exist two configuration pat-
terns for operation teams: those with four actors (senior physician, assistant
doctor, anaesthetist and nurse) and, for less complicated operations, consisting
of three actors (assistant doctor, anaesthetist and nurse). The goal is to find
teams, consisting of staff members from a shift, and maximizing the total utility
function.

So, for example, in case of preference and weight specifications as captured
in Table 3 the utility of the three-member teams is calculated as follows:

U(< A, B, C >) = qBC(A) · g(A) + qAC(B) · g(B) + qAB(C) · g(C)

= (0 + 1) · 80 + (−1 + 1) · 60 + (−1 + 0) · 40 = 40.
(9)

The total utility is then the sum of weighted adjacent satisfaction of all
the team members. So, the advanced teams are built up for all available senior
physicians. For the rest t = 1, . . . , d − s, assistants (where s = |S|, d = |D|)
smaller teams are built in a similar way, in order to facilitate treatment of another
(lower) complexity class. The maximum sum reflects the highest total utility of
all the teams involved and would be the optimal solution for the problem.

Complexity Analysis Discussion. To achieve the maximum utility value, it
is necessary to compare the sums of all the possible team configurations in the
shift. The total number of possibilities for a set of s teams of four members in
the shift is

s−1
∑

i=0

(s− i)(d− i)(e− i)(n− i), (10)

which requires a computational complexity of O(s · d · e · n), or O(n4).
It is important also to consider what happens when the team size is not fixed.

The complexity results are completely different. The problem can be represented
as a graph where each vertex represents a team configuration and an edge be-
tween two vertices exists in cases where they have at least one common actor.
The goal is to find maximum independent set in the graph. An independent set

in a graph G = (V, E) is a subset I ⊆ V , such that ∀x, y ∈ I, {x, y} /∈ E. The
independent set problem consists of finding a maximum (largest) independent
set in a graph. It is well-known to be NP-complete [7]. In natural integer pro-
gramming formulation the finding of the optimal solution with team weights wj

Employee Preference Preference Preference Weight
x to A PA(x) to B PB(x) to C PC(x) g(x)

A - u w 80

B w̄ - w 60

C w̄ u - 40
Table 3. Example for Team Utility Calculation
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for j ∈ V (V is a set of all possible team combinations in a shift), |V | = s ·d ·e ·n,
is

Maximize
∑n

j=1
wjxj

subject to xi + xj ≤ 1 (for every edge (i, j) in the graph)
0 ≤ xj ≤ 1 (j = 1, . . . , s · d · e · n)
xj integer (j = 1, . . . , s · d · e · n)

Hochbaum([7]) gives a summarization of all the approximation algorithms
for the weighted independent set problem known to date. A guaranteed good
approximation is only possible if the graph has some special features such as
being planar (in this case it is possible to give an approximation guarantee of
1

2
). In the general case it is of the 1

⌈∆+1

3
⌉
, where ∆ is the maximum degree of a

vertex in the graph. In the case of a teams graph where teams consist only of
four actors, the degree of each vertex is

s · d · e · n− (s− 1)(d− 1)(e− 1)(n− 1)− 1.

This is nothing other than a total amount of all possible combinations of teams,
having substituted those combinations, not having at least one common actor
with one selected team. If the hospital department consists of 25 members in
each position, the vertex degree ∆ has the value 58848, considering only teams
of four actors. In this case the approximation degree of about 0.00005 or 5 ·10−5

can be guaranteed with the complexity O(m∆), which does not seem to inspire
much (m is the number of edges). Guo et al. ([6]) has experimentally compared
and found that using the simulated annealing heuristic to solve the set packing
problem (which is polynomially equivalent to the independent set problem [7])
outperforms previous approximation methods, and based on that heuristic ILOG
CPLEX obtains results within smaller timescales.

Heuristic. Now that the problem formally defined a feasible solution can be in-
troduced. It is guaranteed to be pareto-optimal (it is not possible to increase the
utility of one team, without decreasing the utility of another one), but not the
optimal in the general case, since long computations are required to handle the
very large numbers of different shift team combinations that need to be consid-
ered (see Formula 10). An obvious solution, in order to achieve pareto-optimality,
is to calculate for each shift the utility for each possible team combination, sort
it, and take those with the highest utility value. However, doing this dynamically
each time for each shift requires many computations and an extended waiting
time before seeing a proposed schedule. It can be improved by calculating the
utility for all possible team combinations in the department only once, since
the coworker preference bears a static character and is not changed often. The
complexity of such a computation is O(s ·d · e ·n) or O(n4) since n is the largest
of these four numbers. When any actor changes their preferences, the recalcula-
tions required are of O(n3). Having constructed the array of utilities it is sorted
into order so that teams with a higher utility are preferred over those with a
lower one. The heap sort is selected to facilitate the process. It is the slowest of
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the O(n lg n) sorting algorithms, but unlike the merge and quick sorts it does
not require massive recursion or multiple arrays to work. This makes it the most
attractive option for very large data sets of millions of items.

Every time teams for a shift are built, it is now sufficient to process the sorted
array in descending order of team utilities until all the senior physicians (in case
of building advanced teams) or assistant doctors (in case of building teams for
less complex treatments) are assigned. The heuristic checks if all of the team
members considered have a duty in the shift and are not yet members of a team.
If this is the case, the actors are assigned to work in one team, since no other
combination of available actors can produce a higher current team utility value
(remembering that the array is sorted). This yields a pareto-optimal solution.
In the worst case there is a need to go through all of the elements in the array.

Furthermore, the solution obtained can be improved with the help of a mod-
ified simulated annealing heuristic. It can often be the case that it is not optimal
in the sense, that another combination of teams may exist, so that the total shift
utility is higher, than that achieved with the pareto-optimal algorithm.

The maximum value of the team utility function will always be less than the
product of the greatest team weight and the number of teams that have to be
build (|D| = d). However, a better approximation can be reached taking the
sum of the first greatest d elements of the sorted teams weight array. Even this
yields a value that is not less than the optimal solution (since these d teams are
often not disjoint). It serves as a probabilistic termination criteria if the obtained
solution is close enough to the calculated bound. The heuristic itself starts on
the i-th iteration with the 2i-th element of the descending sorted array of the
actors present in the shift, and moves at first upwards, then downwards from the
2i-th element, checks whether the current team candidate members are not yet
assigned for a team, and in the case of positive outcome, selects them. At the
same time the utility function is calculated. If the current utility of the sum of d
teams is greater than the known maximum, then the current teams assignment is
chosen as a candidate for the shift assignment and it is continued with the next
iteration. If no improvement is achieved, the temperature value is decreased.

2.3 Preference-Based Task Assignment to Teams

After the preference-based resource allocation (planning phase, building teams)
it is now possible to proceed with scheduling. At first the problem analysis will
be given, afterwards the heuristic will be discussed.

Problem Analysis. The problem of scheduling we are faced with can be for-
mulated as follows: given a set of v teams, that have duty in the shift x as well as
the set of q tasks, that are planned for that shift. Each task has an approximate
duration (since it is often not possible to forecast how long an operation will
take due to non-determenistic workflow), contributing to the uncertainty degree
of the schedules generated. It is also characterized by its priority in order to
distinguish between emergency and regular cases. The main component of each
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task is a patient, that is characterized by insurance (private or governmental),
preferred treatment time as well as a doctor preference. Each team is restricted
within the shift by the maximum working time allowed without a break and a
minimum break duration as stated in hard-constraints. It is also characterized
by the time it finishes its last task as currently scheduled. A graphic representa-
tion of the task scheduling problem is captured in Figure 1. The goal is to assign
those q tasks to v teams in such a way that no hard-constraint is violated and
the objective function gets the highest value.

duration

 HC: max work without pause

HC: min pause duration

treatment preference

competency

 v    (Team (shiftStartSlot ?x))q   (Task (plannedShift ?x))

v << q

patient     

 social

private
insurance

doctor preference

preferred op time

 weight

priority

urgent

normal

last job finish time slot

Fig. 1. Task Assignment Problem

The scheduling problem is defined in the terms of the Graham’s notation
[12]:

Constraint / Preference Type Character

max slots without pause hard-constraint static

min pause duration hard-constraint static

patient doctor preference preference static

patient preferred treatment time preference dynamic

doctor treatment preference preference static

team competency hard-constraint static

task priority hard-constraint dynamic

patient insurance soft-constraint static

shift end time hard-constraint static
Table 4. Constraints for Tasks Scheduling
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Rm | rj , Mj , brkdwn | θ1

∑

wjTj + θ2

∑

ŵjZj

The first element of the triple - machine environment - refers in the case
of the operation theatre scheduling to the team environment. There is no exact
environment notation to express the situation faced with in the team scheduling.
That is why the most suitable environment is taken with the assumption noted
below. Rm stands for unrelated machines in parallel. Usually it is used if the ma-
chines have varying speeds and that speed of depends on the job being executed.
However, the speed of performing an operation is not the selection criterion for
the teams, and that is why it does not play any role here. Job j requires a single
operation and may be processed on any of the machines belonging subset Mj ,
however, different machines (teams) yield different values regarding optimality
criterion due to the needs of taking into account team and patient preferences.
The processing restrictions include release dates (rj), machine eligibility restric-
tions (Mj), and breakdowns (brkdwn). The first means that the job j can not
start before its release date rj . So, for example, patients, planned to be operated
on some specific date, can not be scheduled before that date. Machine eligibility
restrictions mean that not all m machines (teams) are capable of processing job
j (some specific kind of operation). The set Mj denotes the set of machines that
could process the job j. Breakdowns imply that machines (teams) are not con-
tinuously available (due to e.g. pauses, times for operation room preparation).
As the objective to be minimized is the total weighted tardiness (

∑

wjTj) plus
the total weighted team (treatment type) and patient (senior physician) dissat-
isfaction (

∑

ŵjZj) chosen, since it conforms the requirements of the operation
completion times and team’s and patient’s wishes in the hospital. The composite
objective includes also weights θ1 and θ2 for each of the two sub-objectives. So
the goal is to minimize the due date violations, where weight wj may be used to
specify the priority of the job e.g. urgent, normal, etc., as well as ŵj to specify
the importance of taking into account wishes of corresponding actors.

After having formally defined the problem, it is now possible to define its
complexity. It is made with the help of reduction to the 3-partition problem [5].
The 3-partition problem is well known to be strongly NP-hard [12]. Strongness
means that the problem cannot be optimally solved even by an algorithm with
a pseudo polynomial complexity. The proof idea can easily be derived from
Pinedo [12].

Since even a simplified scheduling problem with only one machine (team)
without any preferences and room considerations is NP-hard, the more general
problem with many teams with preferences for treatments, coworkers and time
consideration is therefore not less difficult.

Heuristic for Preference-Based Scheduling of Tasks. This heuristic se-
lects tasks that are planned for the shift considered and schedules first the urgent
ones, and then the regular ones. Scheduling the urgent tasks tasks before the
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regular ones matches the normal prioritization in a hospital department. The
schedule is developed with the help of dispatching rules.

The dispatching rule determines which task should be scheduled as next.
Every time a team becomes free and the time since the last index update exceeds
some ∆, the ranking index is recomputed for each remaining job. Their list is
then sorted and the jobs with the highest ranking index are processed first. This
ranking index is a function of the time t, at which a team with the earliest last
job finish time becomes free, as well a the patient weight wj , task processing
time pj , task urgency uj, and the due date dj of the remaining jobs. The index
is based on [12] and defined as

Ij(t) =
wj · ij

pj

· e−
dj−pj−t

Kp̄ · euj (11)

where
wj is the patient’s weight, that is assigned to the task j;
ij is the insurance type of the patient from the job j;
pj is the task j processing time (duration);
dj is the due date - time, until the job has to be done;
t is the time, machine can begin processing at;
K is a scaling parameter;
p̄ is the average of processing times of the remaining jobs;
uj is the urgency of task j.

The first part of the index (
wj ·ij

pj
) determines the price that a patient is paying

for one slot of time for his task. The second two parts of it have exponential
character and represent the task urgency and the slack influence on the index.
K is the scaling parameter that can be found empirically and determines the
influence of the first exponent on the index function. The smaller K is, the higher
is the influence of the first exponent on the whole index. Sometimes K is also
called lookahead parameter. The slack of the job j is the time left before the
latest time point the job should be started, in order to do not exceed the due
date. It is less than zero if the job can no longer be finished before the due date.
This means that the smaller the value, the greater the due date violation. If the
slack is positive, the first exponent decreases the value of the index function.
Task urgency uj can be e.g. equal zero for regular tasks, have value greater than
zero for urgent ones, having the greater value the more urgent concrete task is.

After the weight calculation for tasks planned for the considered shift is
completed, the task list is sorted in the descending order of the weight. In this
order the tasks are further processed so that those with a higher weight get
scheduled first. The task under consideration is tested in order to determine
whether the patient has specified the preferences for the operation chief (senior
physician in case of teams having four actors, assistant doctor in case of smaller
teams consisting of three actors). If it is the case, we check whether the physicians
as specified by the patient preference are present on the shift. Those present
are then further categorized into sets with preference “willingly”, respectively
“unwillingly” (all other belong to “undecided”). Further, each of the sets is
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sorted in the ascending order of the teams’ last task finish time and stored to
an ordered list. This contributes to the attempt to schedule the currently less
occupied teams within a preference value first. Having finished sorting, the lists
Lw, Lu, and Lw̃ are concatenated to the list L in the following order of preference
value:

L = CON{Lw,Lu,Lw̃}.

If the current task to be scheduled is an urgent one, the earliest possible starting
time is calculated without regard for the specified preference. Preferred teams
are only then considered if their starting time deviated from it by not more than
a small value ε since these tasks have to be executed as soon as possible:

currentTaskts − earliestPossiblets < ε, ε > 0. (12)

For regular tasks the physician preference has more influence than with the
urgent ones, since it is more important to take this preference into account, even
if the task will be scheduled later but still within the shift.

Next we process the ordered team list and select a team for the job. An
attempt is made to schedule the team for the next possible time. If this fails
because the team needs to take a break, the break is scheduled and we retry. If
it fails for the second time, the next team is considered. If the list is processed
to the end and if no team was chosen - the dialog-based scheduling mechanism
has to take over.

In case of success, the selected team is assigned to the appropriate position
in the list of shift teams, to keep it in ascending order of the finishing time of
the last task. Scheduling proceeds with the next job.

We introduce a function of the following arguments to handle the treatment
preferences of the team:

– doctor preference of the patient;
– last task finish time slot of the team;
– treatment preference of the team.

During the task scheduling, the function value is calculated for each team. The
teams are considered in order of the returned function value, rather than being
divided into three groups with patient preference values from D and sorting
regarding the last task finish time within the group.

Discussion. An important feature of the task scheduling mechanism proposed
is that it allows rescheduling on demand. The dynamic character of job arrivals
in a hospital environment causes disturbances to pre-existing schedules, making
reactive scheduling necessary. The plan is being adapted to new situations as the
changes occur. However, the emphasis is to keep as much as possible of the exist-
ing plan untouched. Rescheduling also takes place when an urgent task is added
to the system. In this case all tasks, that have already begun are kept unchanged.
In contrast, all un-started ones have their status changed to unscheduled and are
re-proceeded by the scheduler. Following, further possible improvements can be
considered for the job assignment:
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– if a hard-constraint is violated due to the maximum work time without a
pause, it is possible to search for a shorter task to fill the gap instead of
recommending a pause right away. This helps to minimize unneeded pauses;

– tasks, to which patients did not specified doctor preferences, can be post-
poned initially. Instead, the number of tasks with explicit preferences for
each team should be computed. Scheduling those tasks without preferences
to those teams that have less patients in queue would bring better overall sat-
isfiability of the proposed schedules. However, not specifying the preference
should not cause longer waiting times before processing;

– team rotation is an important feature for long and complicated operations.
In real life some treatments last longer than one team can complete either
due to the ending of the shift or due to exceeding the maximum allowed
hours without a break. In this case a team “handover” must be performed
during the task execution.

The proposed heuristic makes proposals for the task scheduling. However,
it is up to the human scheduler whether to accept or to reject it. The goal is
to minimize the manual rescheduling so that the proposed schedule is changed,
if at all, only slightly. Tasks, that were not able to be scheduled automatically
must be proceeded by the human anyway.

2.4 Room Assignment

The last stage in operating theatre scheduling covers the assignment of operating
rooms. This approach is subject to the condition that there are enough rooms
available in that their number at least equals the number of teams in the shift and
furthermore, the room, assigned to the team, has all the equipment and facilities
that the team may need for executing its tasks. In another case, if the teams
are kept only for operations and no rooms are available, personnel resources
are wasted. However, teams often pause between consecutive operations. Each
of these time gaps can be too small to reserve the room for another task, but
some optimization of these time windows is possible, such as maximizing the
available gaps between operations already scheduled. It is assumed that the
rooms considered for the optimization are all of the same type, so that it does
not matter which room is chosen from the proposed set, and it is not vital for
the personnel. Of course the hospital management goal is the full utilization of
the resources, but at the same time a reserve capacity is required in order to
handle emergencies and to deal with the device/room breakdowns. It is assumed
that all the team and time assignments are already made. The algorithm chosen
to facilitate the process comes from Kandler [8], who proposed it for scheduling
in a virtual enterprise. The important feature for the room assignment is that
the jobs are not shifted in time but retain their scheduled time slots unchanged.

3 Analysis and Comparison

In this section the proposed heuristics are evaluated in practice. The most in-
teresting criteria are the time needed to produce a valid schedule proposal as
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well as the quotient of regarded/disregarded wishes of the personnel, and its
comparison to existing schedules produced by human actors (here the random
assignment is used because this reflects reasonably well the reality in todays
world where preferences are not considered). All evaluations were performed on
an Intel Pentium 4 CPU 2.40 GHz with 512 MB RAM running SUSE Linux
with default kernel version 2.4.21. The experimental setup was built using the
multi-agent system JADE 3.25 and the rule-based expert system JESS 6.16.

3.1 Shift Assignment Evaluation

The measures for shift assignment are made for 20 different values for the per-
sonnel size in the department (from 10 to 200, with the step 10), each with four
different required staff quotients (specified as a hard-constraint) in the shift. The
quotient is 20%, 30%, 40%, 50% of the overall number of personnel.

The number of actors for each position is based on the figures given in Table 5.
For example, in case of 200 actors, 20 are senior physicians, 40 are assistant
doctors, 60 anaesthetists, and 80 nurses.

quote qualification

10% senior physician

20% assistant doctor

30% anaesthetist

40% nurse
Table 5. Personnel Quote of Specified Position

Shift preferences are generated for all actors and shifts as follows: with the
probability 1

3
the preference for the considered shift is generated by an actor. If

it has been generated, it is assigned a random value from the domain D (each
with the equal probability of 1

3
).

The number of required personnel usually varies due to different days and
shifts. Thus, we distinguish between a shift {early, late, night} as well as the day
of the week (regular working day, weekend or holiday). Furthermore, for each of
the days and qualifications, hard-constraints regarding the required staff number
are usually set flexibly, e.g. between 8 and 10. That is, there must be at least 8,
at most 10 actors with some qualification in the shift. Following the heuristic,
the maximum number is only taken if all wish to work in the shift, no other
hard-constraint is violated and the contractual work hours are not yet exceeded
(soft-constraint). Otherwise, the lower number of personnel is selected. For the
simulation, however, the upper and lower bound are kept identical.

5 Java Agent Development Framework, http : //jade.tilabs.it/
6 Java Expert System Shell, http : //herzberg.ca.sandia.gov/jess/
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For each qualification the maximum duty duration as well as the minimum
inter-duty pause hard-constraints were set to be equal to 16 hours. That is, it is
not allowed to work more then 16 hours consecutively, and between 2 shifts must
not be less than 16 hours. The soft-constraint that represents the contractual
work hours is set to 40 hours per week for each employee.

Shift assignment is performed for one month (4 weeks, each with 7 days, each
with 3 shifts that results in 84 shifts). The total number of staff in the hospital is
chosen as a parameter. Another parameter is the number of required personnel
per shift (four different configurations). The time required to produce such a
schedule grows linearly with the number of personnel, and the assignment for
one month takes less than a half of minute of computing time for 200 actors as
captured in Figure 2.

The important criterion for acceptance of the proposed plans by human ac-
tors is the degree to which their individual preferences are taken into account.
The presented simulations are made for the personnel of 200 actors selecting
10%, 30%, 50%, and 70% of total number for each shift for the period of one
month (84 shifts). Figure 3 shows the percentage of preferences met in each
shift. For a shift considered, the total number of preferences is calculated as the
number of actors that have specified a preference with a value from {willingly,

unwillingly} for the shift. It is important, that only those actors are playing a
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role here that are allowed to work in the shift (no hard-constraint violation). A
preference is treated as respected in case of

– selecting an actor with preference value willingly;
– not selecting an actor with preference value unwillingly.

For 30% of total personnel in each shift all wishes are almost always fulfilled.
In case of selecting 10% usually none of the unwillingly actors is scheduled for
work, but not all who would like to work are selected, causing a slightly lower
quotient of the preferences met compared to the previous case. Choosing the se-
lection rate to 50% and 70% respectively of total personnel in each shift causes
all the willing actors to be selected as well as some undecided and, eventually
some unwilling too. Furthermore, selecting these numbers of staff causes viola-
tions of hard-constraints in some shifts due to the days off need. This leads to
understaffing in these cases. Beyond that, often those who would like to work
in the shift can’t be even considered due to the above mentioned need for time
off. Therefore actors with other preference values are selected. This contributes
to the variation of the percentage of the preferences met. The amplitude of
this variation is greater when selecting 70% of the entire staff. Nevertheless, the
overall quote of preferences met is high and the proposed plans are likely to be
accepted by the personnel, as compare to those manual schedules produced by
human actors that usually disregard most wishes.
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3.2 Team Assignment Evaluation

We need to initialize the team utilities before we can begin with team building.
The initialization is done for the teams consisting of four and three actors. Due
to the fact that the number of team combinations grows exponentially with
the number of personnel, this is the most time consuming procedure in the
algorithms. However, in a real life scenario the initialization must be performed
only once. The changes are only needed if one decides to change one of his
coworker preferences. In this case only one dimension of the utility array has
to be recalculated. In Figure 4 the initialization and sorting times for teams
consisting of four actors are captured.
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Fig. 4. Teams of Four Members Utility Initialization Run-Time

As can be seen from the figure, most time is spent on the initialization of
the the team utilities and not on sorting. It is due to the need to query the
knowledge base for each of the possible team combinations for the preference
values of each actor regarding his coworkers. In case of three actors these are
3 · 2 = 6 queries and 4 · 3 = 12 queries for teams of four actors. For teams of
four members, however, a significant deviation of the initialization time from
initialization and sorting time is visible if the personnel size is 200 (the number
of different team combinations is then 20 · 40 · 60 · 80 = 3.840.000). Repeated
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simulations provided the same outcome. Detailed analysis has shown that with
this number of combinations swapping occurred.

Simulation was performed in Java, instructing the Java Virtual Machine to
initially assign 72MB allowing up to 1GB. The total number of staff was chosen
analogously to the case of shift assignment. Coworker preferences are generated
as follows: about 50% of the actors are selected randomly to specify a coworker
preference. Each selected actor specifies preferences to roughly 20% of his random
coworkers. These preferences have values either willingly or unwillingly each with
the probability of 1

2
. For team utilities calculation we used the weight values from

Table 6. For a ward with 200 actors the initialization and sorting time of the

weight qualification

100 senior physician

80 assistant doctor

60 anaesthetist

40 nurse
Table 6. Team Assignment Personnel Weight

team utility array for teams of 4 actors takes less then 40 minutes, for teams of
3 actors less then one and a half minute.

In contrast to the team initialization and sorting that has to be performed
only once, team building (assignment) is executed for each shift. In Figure 5
the time needed to build teams of four actors for one week is captured. The
worst case occurs if there is a need to go down to the last element in the list
of teams, sorted in descending order of team utilities. The other measures are
made for the actual time needed to assign teams, selecting 20%, 30%, 40%,
and 50% of the total personnel in each shift. Interesting questions that arise
analyzing the graphs are why the actual measures are well below the worst
case, and why it takes longer to assign less (selecting 20% of total) than more
teams (50%). The importance of a senior physician (represented by the weight)
is clearly greater than that of the other team members, leading to positioning
team configurations with his favored coworkers in the beginning of the sorted
team array. The more personnel is present in the shift, the higher the chances
that the people he prefers and that prefer him are also in the shift. The search
ends sooner due to the availability of teams that are located in the beginning of
the array. Even increasing the number of teams (the number of senior physicians
increases as well) does not contribute to longer run-times since in the beginning
senior physicians are iterated in the array due to their great influence.

Next, the question arises how much improvement the proposed team assign-
ment heuristic brings. It is not very obvious what kind of data should be taken
as a reference to compare with. On the one hand it is important to satisfy as
many coworker wishes as possible. On the other hand, the hierarchy has to be
taken into account, because the proposed team building heuristic may not be
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accepted in the ward if the wishes of e.g. two nurses have always more influence
on the decision than that of one senior physician. For demonstration purposes,
however, in order to be able to compare the number of preferences taken into ac-
count in the teams, the weight of each preference, independently of the position
and qualification of an actor, is set to be equal one:

∀a ∈ S ∪D ∪ E ∪N, g(a) = 1.

As a reference for comparison, randomly built teams are chosen. Measures
are made for one week (21 shifts) and show the sum of team utilities within the
shift for the heuristic and random team building. The average values as well as
the number of teams in each shift are also captured in the diagram. Figure 6
shows the simulation results selecting 40% of total personnel in each shift for
building teams of four actors, with the size of the ward equal to 200 actors.

3.3 Task Assignment Evaluation

Last, but not least, job assignment is performed and evaluated for different
numbers of staff in the shift, for the period of one week. Tasks are generated in
such a way, that there are more jobs than the teams can perform in each of the
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shifts. In case of dealing with teams consisting of four actors, there are 10% of
senior physicians in the department. Each shift has 32 slots (15 minutes one slot,
eight hours per shift), each operation or treatment lasts at least one time slot
(however, the duration of the operation is randomly generated from one to five
time slots long). The product of the senior physician number and the number
of slots within the shift gives the number of patients in the shift, for each of
whom a random task is generated. With the probability 0.2 the task is urgent.
Measures for the job assignment are captured in Figure 7 and performed for
different numbers of staff and shift selection quotient. Each team is restricted
by hard-constraints to operate a maximum of 4 slots consecutively (one hour)
and has to take at least 4 slots off afterwards. The more teams in the shift,
the longer the task assignment lasts. The higher number of possibilities for the
teams, task can be proceeded at, causes the increase in required calculations.
For 200 personnel in the ward the job assignment for one week (21 shifts) takes
less than 6 minutes with the proposed heuristic.

4 Discussion

All the techniques described are heuristics that do not guarantee to find an op-
timal result. Instead, they aim to find a reasonably good solution in a relatively
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short time. The presented algorithms facilitate shift assignment (choosing per-
sonnel to work in a shift), team assignment, task assignment as well as room
assignment. An important attribute of the heuristics is the consideration of the
preferences of the involved actors as well as fairness due to the introduced weight
functions.

Different heuristics could be developed in order to facilitate the scheduling
process. For example, another possible approach for team building could be to
use the features of an expert system by defining queries in order to find tuples of
team member that match with a given satisfiability value and are on duty in the
shift. The disadvantage of this approach is the impossibility to directly search
(match) for the team with the highest utility, since only preference values have
an influence on such a kind of pattern, not the weight an actor places on the
concrete preference. The number of queries required to fetch all possible team
preference combinations would be nm, where n is the number of team members,
and m is the number of possible preference values.

5 Conclusion

Staff timetables in medical departments are subject to lots of constraints, re-
strictions, and preferences [3]. Scheduling of hospital personnel is particularly
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challenging because of different staffing needs on different days and shifts, un-
certainty between the offered capacity and the true demand. Furthermore, it is
impossible to predefine a treatment’s workflow. As emergency cases occur (caus-
ing disturbance in existing schedules), there is a need of adaptation to situation
changes. Due to the complexity and uncertainty the applicability of traditional
(operations research and AI) methods from industrial scheduling to the opera-
tion theatres scheduling is problematic [11, 2, 10]. Usually a specialized person
is in charge of this task (medical director). Yet, this often does not takes into
account preferences of individual actors.

We have split the original problem into sub-problems and provided a preference-
based adaptive heuristics for each of them. The system makes a schedule proposal
and it is up to the responsible human actor either to accept, accept parts of the
proposition, or to reject the schedule. In this paper we show, that the required
time for shift, team, job and room assignment is within acceptable ranges for
a real-world ward size [10]. The comparison of the heuristic approach to the
random assignment was given. This allows to conclude that the proposed algo-
rithms bring a substantial improvement regarding the number of fulfilled wishes
of the actors, while planning and scheduling, and helps to save expensive human
resources that are currently used in hospitals for the manual scheduling process.
However, the preferences of the involved actors were randomly generated. It can
often be the case that e.g. some actors are preferred by most others. Heuristic
behavior with such a preference distribution is not analyzed yet. Evaluations in
a real-world setting would be of a great interest and will be made in cooperation
with the university hospital.
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Abstract. The university timetabling, examination and course, are known to be 
highly constrained optimization problems. Metaheuristic approaches, and their 
hybrids, have successfully been applied to solve the problems. This paper 
presents three artificial immune algorithms, the algorithms inspired by the 
immune system, for university timetabling; clonal selection, immune network 
and negative selection. The main objective is to show that the algorithms may 
be tailored for educational timetabling. The experimental results have shown 
that all algorithms have effectively produced good quality timetables. The 
clonal selection and negative selection are more effective than immune network 
in producing good quality examination timetables; while for course timetabling, 
the immune network and negative selection are more effective than clonal 
selection. A comparison with other published results has significantly shown 
the effectiveness of these algorithms. The main operators in artificial immune 
algorithms are cloning and mutation. For future work, these algorithms will be 
improved by considering other cloning and mutation operators.  

Keywords: Examination Timetabling; Course Timetabling; Artificial Immune 
Algorithms. 

1 Introduction 

The constructions of examination and course (lecture) timetables are common 
problems for all institutions of higher education. Usually it involves modifying the 
previous semester’s timetable so it will work for the new semester. The examination 
and course timetabling are known to be highly constrained combinatorial optimization 
problems. Metaheuristic approaches such as simulated annealing (SA), tabu search 
(TS), evolutionary algorithms (EA), and their hybrids, have successfully been applied 
to solve the problems.  

Artificial immune system (AIS), a new branch of Artificial Intelligence [4], is a 
new intelligent problem-solving technique that being used in optimization and 
scheduling. The AIS algorithms are more efficient than the classical heuristic 
scheduling algorithms such as SA, TS, and genetic algorithm (GA) [12]. AISs have 
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been more successful than GA and other methods in applications of pattern 
recognition, computer and network security, and dynamic tasks scheduling due to the 
applicability features of natural immune systems. Furthermore, the solutions produced 
by the AIS are observed to be robust than solutions produced by a GA [13]. There are 
three algorithms that have widely been applied in AIS; clonal selection algorithm 
(CSA), immune network algorithm (INA), and negative selection algorithm (NSA). 

This paper presents three artificial immune algorithms for examination and course 
timetabling. The main objective is to show that the algorithms may be tailored for 
educational timetabling, and also to compare the effectiveness of the three algorithms 
on examination and course datasets. Twelve Carter datasets (examination) and three 
Schaerf datasets (course) have been used in the implementation. The experimental 
results have significantly shown the effectiveness of the three algorithms; all 
algorithms have effectively produced good quality (low fitness) examination and 
course timetables in most of the datasets. The CSA and NSA are more effective than 
INA on examination datasets, and on course datasets, the INA and NSA are more 
effective than CSA. However, based on CPU time, INA runs faster than CSA and 
NSA on examination datasets, and CSA runs faster than INA and NSA on course 
datasets. A comparison with other published results have significantly shown that the 
three algorithms are capable of producing good quality examination and course 
timetables as good as other optimization algorithms. 

The main operators in artificial immune algorithms are cloning and mutation. For 
future work, these algorithms will be improved by considering other cloning and 
mutation operators so that the fitness values may be further minimized. And also, 
especially for course datasets, a further study is required to solve timetabling 
problems with 100% occupancy by considering dummy timeslots and/or rooms. 

2 University Timetabling Problems 

University timetabling problems can be divided into two main categories: exam and 
course. The main difference is that in course timetabling there cannot be more than 
one course per room, but in exam timetabling there can be more than one exam.  

Examination timetabling problem (ETP) is a specific case of the more general 
timetabling problem. The examination timetabling regards the scheduling for the 
exams of a set of university courses, avoiding overlap of exams of courses having 
common students, and spreading the exams for the students as much as possible [7]. 
Given is a set of exams, a set of timeslots, a set of students, and a set of student 
enrollments to exams, the problem is to assign exams to timeslots subject to a variety 
of hard and soft constraints. The ETP can be seen as consisting of two subproblems: 
(1) assigning exams to timeslots, and (2) assigning exams to rooms. For real-life 
situations, these two subproblems can be solved separately.  

Course timetabling problem (CTP) is another specific case of the more general 
timetabling problem. At its simplest, course timetabling is the problem of scheduling 
a set of events (lectures, tutorials or labs) to a set of classrooms in a set of timeslots 
within a week, and taught by a set of teachers, such that no student or teacher is 
expected to be in more than one room at the same time and that there is enough space 
in each classroom for the number of students expected to be there. The CTP can be 
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seen as consisting of three subproblems; ‘course-teacher assignment’, ‘event-timeslot 
assignment’, and ‘event-room assignment’. In ‘course-teacher assignment’, the 
teachers are scheduled to a number of events in all courses; in ‘event-timeslot 
assignment’, all events for all courses are scheduled into a fixed number of timeslots; 
and in ‘event-room assignment’, these events are assigned to a fixed number of 
rooms. Hence, an assignment is an ordered 4-tuple (a, b, c, d), and has the 
straightforward general interpretation: ‘event a starts at timeslot b in room c, and is 
taught by teacher d’. For some institutions, the allocation of courses to teachers is 
carried out manually, and the allocation of events in a given timeslot to rooms is a 
secondary problem. These three subproblems can be solved separately. 

Hard constraints must be satisfied in order to produce a feasible timetable. Any 
timetable fails to satisfy these constraints is deemed to be infeasible. Soft constraints 
are generally more numerous and varied, and far more dependent on the needs of the 
individual problem than the more obvious hard constraints. The violation of soft 
constraints should be minimized; it is the soft constraints which effectively define 
how good a given feasible solution is so that different solutions can be compared and 
improved via an objective (fitness) function.  

3 Artificial Immune System and Artificial Immune Algorithms 

The ‘artificial immune system’ is an approach which used the natural immune system 
as a metaphor for solving computational problems, not modeling the immune system 
[21]. The main application domains of AIS are anomaly detection [16], pattern 
recognition [23], computer security [14], fault tolerance [1], dynamic environments 
[18], robotics [19], data mining [20], optimization [22], and scheduling [12]. 

The ‘immune system’ (IS) can be considered to be a remarkably efficient and 
powerful information processing system which operates in a highly parallel and 
distributed manner [11]. It contains a number of features which potentially can be 
adapted in computer systems; recognition, feature extraction, diversity, learning, 
memory, distributed detection, self-regulation, threshold mechanism, co-stimulation, 
dynamic protection, and probabilistic detection. It is unnecessary to replicate all of 
these aspects of the IS in a computer model, rather they should be used as general 
guidelines in designing a system. 

There are a number of different algorithms that can be applied to many domains, 
from data analysis to autonomous navigation [5]. These immune algorithms were 
inspired by works on theoretical immunology and several processes that occur within 
the IS. The AISs lead to the development of different techniques, each one mapping a 
different mechanism of the system. For examples, the Artificial Immune Networks as 
proposed by Farmer et al. [9], the Clonal Selection Algorithm proposed by de Castro 
and Von Zuben [6], and the Negative Selection Algorithm introduced by Forrest et al. 
[10]. Immune network models are suitable to deal with dynamic environments and 
optimization problems, algorithms based upon the clonal selection principle are 
adequate to solve optimization and scheduling problems, and the negative selection 
strategies are successfully applied to anomaly detection.  
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3.1 Clonal Selection Algorithms for University Timetabling 

The clonal selection algorithm (CSA) is inspired by the immunological processes of 
clonal selection and affinity maturation. When an antigen is detected, those antibodies 
that best recognize this antigen will proliferate by cloning. This process is called 
clonal selection principle [6]. The clonal selection principle is used to explain how 
the IS ‘fights’ against an antigen. When a bacterium invades our organism, it starts 
multiplying and damaging our cells. One form the IS found to cope with this 
replicating antigen was by replicating the immune cells successful in recognizing and 
fighting against this disease-causing element. Those cells reproduce themselves 
asexually in a way proportional to their degree of recognition: the better the antigenic 
recognition, the higher the number of clones (offspring) generated. During the process 
of cell division (reproduction), individual cells suffer a mutation that allows them to 
become more adapted to the antigen recognized: the higher the affinity of the parent 
cell, the lower the mutation they suffer. Figure 1 shows the CSA for exam or course.  
 

1. Initialization: initialize a population of antibodies (feasible timetables) 
for each antibody (timetable) 

randomly select event (exam/course) one by one 
assign event to random selected timeslots and rooms (satisfying hard constraints) 

if no identical antibodies (duplicate timetables) 
add antibody (timetable) to the population 

else eliminate antibody 
2. Population loop:  for each generation of antibodies (feasible timetables) 

for each antibody do 
2.1 Affinity evaluation:  determine the affinity of antibody via an affinity function (affinity = 1/fitness) 
2.2 Selection:  calculate the selection probability (rate of cloning) using affinity 

(selection probability = affinity/total affinities) 
randomly select an antibody (timetable) based on selection probability 
(using roulette wheel selection method) 

2.3 Genetic variation: Cloning: clone copies of the selected antibody 
(number of clones = population size × cumulative selection probability) 

Mutation: for each generated clone, do (mutation rate = 1 - selection probability)
if a random probability <= mutation rate, mutation = failure 

while mutation = failure, select an event at random 
reassign event to random timeslot and room (satisfying all hard constraints) 
if all hard constraints are satisfied and no duplicate timetables 

determine the affinity of the new clone 
if the affinity (new clone) >= the affinity (original clone) 

mutation = success 
2.4 Population update: if the affinity (new clone) > minimum affinity (population), say antibody X 

then X = new clone 
3. Cycle:  repeat (Step 2) until stopping criteria are met.     

Fig. 1. Clonal Selection Algorithm for University Timetabling 

The main operators in CSA are selection, cloning, and mutation. A timetable (high 
affinity) is randomly selected for cloning using Roulette Wheel selection method and, 
on average, a number of clones that equal to half of the population size are generated. 
Almost all clones will be mutated to produce new feasible timetables for the next 
generation since ‘1- selection probability’ would give a high mutation rate for each 
clone. But only new timetables with high affinity will be selected to replace the low 
affinity timetables in the current population. The process (selection, cloning and 
mutation) will be repeated until the stopping criteria are met. 
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3.2 Immune Network Algorithms for University Timetabling 

The immune network algorithm (INA) is based on Jerne’s idiotypic network theory 
[15]. According to this theory, immune cells have portions of their receptor molecules 
that can be recognized by other immune cells in a way similar to the recognition of an 
invading antigen. This results in a network of recognition between immune cells. 
When an immune cell recognizes an antigen or another immune cell, it is stimulated. 
On the other hand, when an immune cell is recognized by another immune cell, it is 
suppressed. The sum of the stimulation and suppression received by the network cells, 
plus the stimulation by the recognition of an antigen corresponds to the stimulation 
level S of a cell. Figure 2 shows the INA for examination or course timetabling.  
 

1. Initialization: initialize a network (population) of immune cells (feasible timetables) 
for each immune cell (timetable)  

randomly select event one by one  
assign event to random timeslot and room (satisfying all hard constraints) 

if no identical immune cells (duplicate timetables)   
add immune cell to the population 

else eliminate immune cell 
2. Population loop:  for each network (generation/population) of immune cells (feasible timetables) 
2.1 Network interactions and Stimulation: 

for each immune cell   
determine the fitness of immune cell via a fitness function 
calculate the stimulation level of immune cell (stimulation level = 1/fitness) 

determine the total stimulation of the network (population) 
calculate the stimulation probability for each immune cell  
(stimulation probability = stimulation/total stimulation) 

2.2 Metadynamics (Antigens and Genetic variations): 
for each immune cell  

cloning – generate a number of clones  
(number of clones = population size × stimulation probability) 
for each clone  

determine the mutation rate (mutation rate = 1 – stimulation probability) 
generate a random probability 
if a random probability <= mutation rate 

mutation = failure 
while mutation = failure 

select an event at random  
reassign event to random timeslot and best room 
if all hard constraints are satisfied and no duplicate timetables 

mutation = success 
determine the fitness of the new clone 
if the fitness (new clone) > the fitness (original clone) 

mutation = failure, and reset the reassignment 
else (no mutation) assign a zero stimulation (large fitness) to immune cell  

2.3 Network dynamics (immune cells and antigens interactions, and population update): 
gather all immune cells (current population and cloned timetables) 
sort immune cells according to stimulation level (descending order) 
select the best (high stimulation) immune cells (feasible timetables) 
(number of selected immune cells = network or population size) 
update the network (population) of immune cells with the selected cells 

3. Cycle: repeat Step 2 until a given convergence or stopping criterion is met. 
  
 
Fig. 2. Immune Network Algorithm for University Timetabling 

 
The main operators in INA are cloning and mutation. All timetables are selected 

for cloning and, on average, one clone is generated for each timetable. Almost all 
clones will be mutated to produce new feasible timetables since ‘1- stimulation 
probability’ would give a high mutation rate for each clone. All feasible timetables, 
current population and mutated clones, are gathered, but only the timetables with high 
stimulation will be selected to form a new population for the next generation. The 
process (cloning and mutation) will be repeated until the stopping criteria are met.  

238 M. Rozi Malim et al.



  

3.3 Negative Selection Algorithms for University Timetabling 

The negative selection algorithm (NSA) is the most widely used techniques in AISs. 
The NSA is based on the principles of self-nonself discrimination [10]. The algorithm 
was inspired by the thymic negative selection process that intrinsic to natural immune 
systems, consisting of screening and deleting self-reactive T-cells, i.e. those T-cells 
that recognize self cells. Figure 3 shows the NSA for examination or course 
timetabling. 
 

1.  Initialization:  initialize a population of candidate detectors (initial feasible timetables) 
for each candidate detector (timetable) 

randomly select event one by one 
assign event to random timeslot and room (satisfying all hard constraints) 

if no identical candidate detectors (duplicate timetables) 
add candidate detector to the initial population 

else eliminate candidate detector 
2.  Population loop:  for each generation (population) of detectors (feasible timetables) 
2.1 Censoring:  for each detector (timetable) in the current population 

determine the fitness value via a fitness function (soft constraints) 
determine the average fitness for the current population 
for each detector 

if the fitness >= average, eliminate the detector 
if all fitness values are equal, eliminate only the second half of the detectors 

2.2 Monitoring:  while the number of detectors (timetables) < population size 
randomly select a detector according to fitness using roulette wheel  
clone the detector, mutation = failure 
while mutation = failure, randomly select an event 

reassign event to random timeslot and best room 
if all hard constraints are satisfied and no identical detectors  

mutation = success 
determine the fitness of new clone 
if the fitness of the new clone > average fitness of the population 

mutation = failure 
eliminate the new clone, and reset the reassignment 

else add the new clone to the new population  
3. Cycle:  repeat population loop until a given convergence criterion is met. 

     
Fig. 3. Negative Selection Algorithm for University Timetabling  

 
The main operators in NSA are negative deletion (censoring), cloning and 

mutation. The timetables (current population) with fitness greater than or equal to 
average fitness are eliminated or deleted from the current population. A timetable is 
randomly selected from the remaining timetables for cloning and mutation using 
Roulette Wheel selection method (based on fitness). All clones will be mutated to 
produce new feasible timetables. For each new (mutated) timetable, if the fitness is 
less than or equal to average, the timetable will be added to the new population for the 
next generation; otherwise, it will be deleted. The monitoring process (cloning and 
mutation) will be repeated until the number of feasible timetables in the new 
population is equal to population size. Finally, the optimization process (censoring 
and monitoring) will be repeated until the stopping criteria are met. 

Artificial Immune Algorithms for University Timetabling 239



  

4 Benchmark Datasets 

The benchmark datasets (Carter and Schaerf) used in the implementation of the three 
immune algorithms are available from ftp://ftp.mie.utoronto.ca/pub/carter/testprob/ 
and http://www.diegm.uniud.it/schaerf/projects/coursett/, respectively. These datasets 
provide reasonable benchmark problems for comparison of the three different 
artificial immune algorithms. The datasets are shown in Table 1 and Table 2. 

Table 1. Examination Datasets and Characteristics (Carter Datasets) 

Code University 
No. of 
Exams 

No. of 
Students 

No. of 
Enrollments 

Timeslot 
Capacity 

car-f-92 Carleton University 1992 543 18419 55522 2000 
car-s-91 Carleton University 1991 682 16925 56877 1550 
ear-f-83 Earl Haig Collegiate 1983 190 1125 8109 350 
hec-s-92 Ecole des Hautes Etudes Comm 92 81 2823 10632 650 
kfu-s-93 King Fahd University 1993 461 5349 25113 1955 
lse-f-91 London Sch. of Econ. 1991 381 2726 10918 635 
rye-s-93 Ryerson University 1993 486 11483 45051 2055 
sta-f-83 St. Andrews High 1983 139 611 5751 465 
tre-s-92 Trent University 1992 261 4360 14901 655 
uta-s-92 Uni. of Toronto, Arts & Science 92 622 21266 58979 2800 
ute-s-92 Uni. of Toronto, Engineering 92 184 2750 11793 1240 
yor-f-83 York Mills Collegiate 1983 181 941 6034 300 
 
Each of the datasets come in two files, one file (course data file) contains the list of 

courses and the other (student data file) contains a list of student-course selections. 
The courses and student-course selections are sorted in ascending order. 

Table 2. Course Datasets and Characteristics (Schaerf Datasets) 

Instance 
No. of 

Courses 

No. of 
Rooms  

(R) 

No. of 
Timeslots  

(T) 

Timeslots 
per day 

Total 
lectures 

(L) 

No. of 
Teachers 

Occupancy 
(L/(R×T)) 

1 46 12 20 4 207 39 86.25% 
2 52 12 20 4 223 49 92.92% 
3 56 13 20 4 252 51 96.92% 
4 55 10 25 5 250 51 100% 

 
Each of the datasets comes in five files; course.dat contains the information about 

the courses, periods.dat contains the list of timeslots of the timetabling horizon, 
curricula.dat contains the information about groups of courses that share common 
students, constraint.dat contains additional constraints about timeslot unavailabilities, 
and room.dat contains information about rooms. The ‘occupancy’ indicates the 
percentage of timeslot-room required to schedule all the lectures.  

However, the dataset ‘Instance 4’ was not considered; 100% occupancy would 
make the mutation process impossible, and perhaps dummy timeslots and rooms 
would solve the problem. This requires more time and further study, and will be 
included in the future work.   
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5 Comparing Artificial Immune Algorithms on Exam Datasets  

The three artificial immune algorithms (CSA, INA, NSA) have been implemented on 
the twelve examination datasets (Carter datasets). The main objective is to compare 
the effectiveness of the three algorithms on examination datasets.  

Three hard constraints were considered for each of the datasets: (1) no students 
must be assigned to two different exams at the same timeslot, (2) timeslot capacity 
must not be exceeded, and (3) each exam must be assigned to exactly one timeslot. 
The fitness value (soft constraint violations) is the minimum number of students 
having two exams in adjacent (consecutive) timeslots. 

The following (Table 3) are the experimental results for examination datasets using 
the three artificial immune algorithms. Each algorithm was run on each dataset for 
five trials, and the maximum number of generations ‘500’ was used as the stopping 
criterion. The best fitness, the average fitness and the average CPU time (in seconds) 
for each algorithm on each of the datasets, based on five trials, have been recorded. 

Table 3. Comparing Three Artificial Immune Algorithms on Examination Datasets 

Fitness Values 
CSA INA NSA 

Average Average Average 
Fitness Fitness Fitness 

Institution 
No. of              
Exams 

No. of 
Timeslots 

Best 
(CPU time) 

Best 
(CPU time) 

Best 
(CPU time) 

466.6 455.2 432.8 car-f-92 543 31 285 
(310.6s) 

406 
(249.8s) 

386 
(359.4s) 

569.6 582.8 486.2 car-s-91 682 40 535 
(512.6s) 

554 
(399.6s) 

439 
(484s) 

48 112.8 118.8 
ear-f-83 190 24 17 

(75.4s) 
65 

(34.8s) 
74 

(88s) 
11 9.8 14.4 

hec-s-92 81 19 3 
(17.2s) 

0 
(271) (7.8s) 

5 
(11.4s) 

69.4 32.6 13.6 kfu-s-93 461 20 35 
(172.4s) 

16 
(202.2s) 

2 
(240.2s) 

68.8 82.6 167.2 
lse-f-91 381 18 45 

(132.4s) 
34 

(120.8s) 
115 

(147s) 
240.2 309 327.6 

rye-s-93 486 24 143 
(233.8s) 

217 
(247s) 

180 
(336.4s) 

0 0.4 0 sta-f-83 139 14 0 
(196) (12.2s) 

0 
(185) (11.4s) 

0 
(160) (9.6s) 

36.8 70.2 79.2 
tre-s-92 261 25 27 

(110s) 
58 

(57.4s) 
56 

(134s) 
487.6 436 244.6 uta-s-92 622 32 436 

(343.2s) 
374 

(307.4s) 
165 

(387s) 
0.4 2.6 9.8 

ute-s-92 184 10 0 
(352) (34.8s) 

0 
(454) (26.8s) 

1 
(34.4s) 

8 33.2 6.6 yor-f-83 181 22 3 
(62.6s) 

24 
(30.4s) 

1 
(63.2s) 
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The number of timeslots used for all datasets were imposed according to those 
given in Carter’s results. However, the number of timeslots for all datasets may be 
further reduced if necessary. Based on five trials, for the best fitness, both CSA and 
NSA have achieved the first position in five datasets, while INA has achieved the first 
position in only two datasets. The best fitness values for CSA have converged to ‘0’ 
in two datasets, INA in three datasets, and NSA in one dataset. For the average 
fitness, both CSA and NSA has achieved the first position in six datasets, and INA in 
only one dataset. Finally, for the average CPU time, INA has achieved the first 
position in nine datasets, only two for CSA and one for NSA.  

Hence, it may be concluded that CSA and NSA are equally effective in producing 
good quality (low fitness) examination timetables, and both are more effective than 
NSA. Based on CPU time, INA runs faster than CSA and NSA. The results from 12 
different examination datasets have significantly shown the effectiveness of the three 
algorithms. All algorithms have effectively produced good quality examination 
timetables in most of the datasets.   

A comparison with other published results was also conducted. This is to access 
the effectiveness of the three algorithms against other optimization algorithms. Only 
five datasets were considered; car-f-92, car-s-91, kfu-s-93, tre-s-92, and uta-s-92. The 
following are the authors and metaheuristic approaches used in the published results: 
(A) Burke et al. [2] – Memetic Algorithm. 
(B) Di Gaspero and Schaerf [7] – Tabu Search. 
(C) Caramia et al. [3] – A set of heuristics: Greedy Assignment, Spreading Heuristic. 
(D) Merlot et al. [17] – Hybrid Algorithm: Constraint Programming, Simulated 

Annealing, Hill-climbing. 
All authors had considered the same hard and soft constraints, hence a comparison 

based on the fitness values (number of students having two exams in adjacent 
timeslots) may be carried out. The main goal is to show that the immune algorithms 
can produce good quality examination timetables as good as other methods. The 
number of timeslots used for all datasets were imposed according to the papers of the 
published results. The maximum number of none-improvement generations ‘25’ was 
considered as the stopping criterion. Table 4 summarizes the results. 

Table 4. Comparison with Other Solution Methods 

Fitness Values 
Average Fitness Code 

Timeslots 
(Sessions) 

Timeslot 
Capacity A B C D 

CSA INA NSA 
car-f-92 31 2000 331 424 268 158 75.7 97.3 154.3 
car-s-91 51 1550 81 88 74 31 33.0 73.7 21.7 
kfu-s-93 20 1995 974 512 912 247 5.3 12.0 5.0 
tre-s-92 35 655 3 4 2 0 7.7 13.0 8.0 
uta-s-92 38 2800 772 554 680 334 24.7 81.7 12.7 
 
The results of other solution methods are available on Internet from 

http://www.or.ms.unimelb.edu.au/timetabling/ttframe.html?ttexp3.html. Hence, based 
on five trials, and five datasets, the three artificial immune algorithms have effectively 
produced good quality examination timetables, as good as other solution methods.  
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6 Comparing Artificial Immune Algorithms on Course Datasets 

The three artificial immune algorithms (CSA, INA, NSA) have been implemented on 
the three course datasets (Schaerf datasets). The main objective is to compare the 
effectiveness of the algorithms on course datasets.  

Five hard constraints were considered for all datasets: (1) all lectures of all courses 
must be scheduled, (2) two distinct lectures cannot take place in the same room in the 
same timeslot, (3) lectures of courses of the same group must be all scheduled at 
different timeslots, (4) lectures of courses taught by the same teacher must be 
scheduled at different timeslots, and (5) lectures of some courses must not be assigned 
to certain timeslots. The fitness value (soft constraint violations) is the number of 
students without a seat, plus the number of courses that assigned to less than the 
minimum number of days multiply by 5, and plus the number of gaps between 
lectures of the same group on the same day multiply by 2. 

The following (Table 5) are the experimental results for course datasets using the 
three artificial immune algorithms. Each algorithm was run on each dataset for five 
trials, and the maximum number of generations 1000 was used as the stopping 
criterion. The best fitness, the average fitness, and the average CPU time (in seconds) 
for each algorithm on each of the datasets, based on five trials, have been recorded. 

Table 5. Comparing Three Artificial Immune Algorithms on Course Datasets 

Fitness Values 
CSA INA NSA 

Instance 
No. of  
Courses 

Best Ave 
Ave 
CPU 

Best Ave 
Ave 
CPU 

Best Ave 
Ave 
CPU 

Di Gaspero 
& Schaerf 

(2003) 

1 46 284 297 1560s 265 296 3976s 263 298 1583s 200 

2 52 21 46 347s 11 21 1190s 21 36 525s 13 

3 56 69 98 1617s 50 72 5873s 48 74 2254s 55 

 
The results have significantly shown the effectiveness of the three algorithms. All 

algorithms have effectively produced good quality course timetables with low fitness 
values in all datasets. For the best fitness, NSA has achieved the first position in two 
datasets, while INA in one dataset. For the average fitness, INA has achieved the first 
position in all datasets. Finally, for the average CPU time, CSA has achieved the first 
position in all datasets. It may be concluded that, based on three datasets and five 
trials, NSA and INA are more effective than CSA in producing good quality course 
timetables; however, CSA runs faster than INA and NSA.  

There is only one published result available on these datasets, by Di Gaspero and 
Schaerf [8], as shown on the right-hand side of Table 5; available from 
http://www.diegm.uniud/satt/projects/EduTT/. The artificial immune algorithms have 
achieved the first position in two datasets (Instances 2 and 3). However, no results 
have been produced by artificial immune algorithms for Instance 4; 100% occupancy 
in Instance 4 requires dummy timeslots and/or rooms for the mutation process. This 
requires more effort and time and will be considered in the future work.  
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7 Conclusion and Future Work 

This paper has presented and compared three artificial immune algorithms for the 
university timetabling problems; CSA, INA and NSA. The experimental results using 
twelve Carter datasets (examination) and three Schaerf datasets (course) have 
significantly shown the effectiveness of these algorithms on university timetabling 
datasets. All algorithms have efficiently produced good quality examination and 
course timetables with low fitness values in most of the datasets. For examination 
datasets, CSA and NSA are both more effective than INA in producing good quality 
timetables; while for course datasets, NSA and INA are more effective than CSA. 
Based on CPU time, INA runs faster than CSA and NSA on examination datasets, and 
CSA runs faster than INA and NSA on course datasets. 

All artificial immune algorithms show great promise in the area of educational 
timetabling, particularly in its ability to consider, solve, and optimize the wide variety 
of different examination and course timetabling problems. The algorithms can handle 
the hard constraints and soft constraints very well. The experimental results have 
shown that the algorithms can successfully be applied to solve various kinds of 
examination and course timetabling problems. These algorithms may be accepted as 
new members of evolutionary algorithms for solving timetabling problems.  

The most important operators in artificial immune algorithms are cloning and 
mutation. For future work, these algorithms will be improved by considering other 
operators, especially mutation, so that the fitness values may be further minimized. 
However, different timetabling problems may require different operators. A good 
cloning or mutation operator for one problem is not necessarily a good operator for 
other problems. For the course timetabling, the three algorithms were not designed to 
handle timetabling problems with 100% occupancy as in Instance 4 of Schaerf 
datasets. Perhaps the use of dummy timeslots and/or rooms will solve the problems. 
This will be the first priority in our future research. 
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Abstract. In this paper, an empirical study on self-generating multimeme me-
metic algorithms is presented. A set of well known benchmark functions is used
during the experiments. Moreover, a heuristic template is introduced for solv-
ing timetabling problems. The heuristics designed based on this template can
utilize a set of constraint-based hill climbers in a cooperative manner. Two such
adaptive heuristics are described. Memetic algorithms utilizing each one as if a
single hill climber are experimented on a set of random nurse rostering problem
instances. Additionally, simple genetic algorithm and two self-generating mul-
timeme memetic algorithms are compared to the proposed memetic algorithms
and a previous study.

1   Introduction

Genetic Algorithms (GAs), introduced by J. Holland [27], are very promising for
tackling complex problems [24]. Effectiveness of hill climbing methods in population
based algorithms is underlined by many researchers [15, 38, 45, 46]. Memetic Algo-
rithms (MAs) embody a class of algorithms that combine genetic algorithms and hill
climbing methods. A meme represents a hill climbing method and its related parame-
ters used within an MA. Ning et al. [39] concluded from their experiments that the
meme choice in an MA influence the performance significantly. Krasnogor [31] ex-
tended the previous studies and suggested a self-generating (co-evolving) multimeme
MA for solving problems in the existence of a set of hill climbers. Memes are evolved
with the candidate solutions, providing a learning mechanism to fully utilize the pro-
vided hill climbers [32, 34].

In the first part of this study, the MA proposed by Krasnogor [33] is tested on a set
of benchmark functions. The study aims to answer the following questions:

• Can the suggested learning mechanism discover useful hill climbers?
• Does a set of hill climbers generate a synergy to obtain the optimal solution?
In the second part of this study, MAs for solving a nurse rostering problem, intro-

duced by Ozcan [41], are considered. Ozcan extended the study by Alkan et al. [5]
and suggested templates designing a set of operators, including a self-adjusting viola-
tion-directed and constraint-based heuristics, named as VDHC, within MAs for solv-
ing timetabling problems. A new heuristic template for managing a set of constraint-
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based hill climbers is introduced in this paper. Two new instances based on this tem-
plate are implemented and used as a single hill climber within MAs. Furthermore, two
multimeme memetic algorithms (MMAs) are described. The performances of all the
proposed algorithms, including the traditional genetic algorithm and the MA provided
in [41] are compared.

2   Background

2.1   Benchmark Functions and Hill Climbing Methods

Benchmark functions with different features, well known among the evolutionary
algorithm researchers, are utilized during the experiments (Table 1). F1-F11 are con-
tinuous, whereas F12-F14 are discrete benchmark functions. Detailed properties of
each function can be found in the source references presented in Table 1. Benchmark
functions include De Jong’s test suite [17]. Only difference is that the noise compo-
nent of the Quartic function is modified as described in [53].

Table 1. Benchmark functions used during the experiments: lb and ub indicate the lower and
upper bound for each dimension, respectively, opt indicates the optimum

label function name       lb     ub opt source

F1 Sphere -5,12 5,12 0 [17]

F2 Rosenbrock -2,048 2,048 0 [17]

F3 Step -5,12 5,12 0 [17]

F4 Quartic with noise -1,28 1,28 1 [53, 17]

F5 Foxhole -65,536 65,536 0 [17]

F6 Rastrigin -5,12 5,12 0 [47]

F7 Schwefel -500 500 0 [50]

F8 Griewangk -600 600 0 [27]

F9 Ackley -32,768 32,768 0 [1]

F10 Easom -100 100 -1 [20]

F11 Schwefel’s Double Sum -65,536 65,536 0 [51]

F12 Royal Road - - 0 [37]

F13 Goldberg - - 0 [25, 26]

F14 Whitley -  - 0 [54]

Eight memes are used in the experiments:
• Steepest Descent (MA0), [37]
• Next Descent (MA1), [37]
• Random Mutation Hill Climbing (MA2), [37]
• Davis’s Bit Hill Climbing (MA3), [16]
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The remaining four memes are derived from the first two memes. The bit flip opera-
tion in MA0 and MA1 is replaced by an AND operation with 0, yielding MA4 and
MA6, respectively. Similarly, an OR operation with 1 is employed, yielding MA5 and
MA7, respectively. Gray and binary encodings are used to represent candidate solu-
tions during benchmark experiments for continuous and discrete functions, respec-
tively. Due to the gray encoding, the memes MA4-MA7 represent poor hill climbers
for almost all continuous benchmark functions.

2.2   Nurse Rostering Problem

Timetabling problems are real-world constraint optimization problems. Due to their
NP complete nature [20], traditional approaches might fail to generate a solution for
an instance. Timetabling problems can be represented in terms of a three-tuple <V, D,
C>,  where V is a finite set of variables, D is a finite set of domains of variables and
C is a set of constraints to be satisfied:
V={v1, v2, …, vM}, D={d1, …, di, …, dM}, C={c1, c2, …, cK}

Solving a timetabling problem instance requires a search for finding the best as-
signment for all variables that satisfy all the constraints. Thus, a candidate solution is
defined by an assignment of values from the domain to the variables:

' ' ' '

1 1
{ , ..., , ..., }

i i M M
V v v v v v v= = = = , where '

i i
v d∈  and di ⊆D1 x … x DP, where P≥1

In all timetabling problems, there is at least one domain for each variable that is for
time. A problem instance might require other resources to be scheduled as well. For
example, a university course timetabling problem instance might require arrangement
of classrooms for each course meeting, as well. Then the search will be performed
within a domain that will be a Cartesian product of time and classroom sets.

A nurse roster is a timetable consisting of employee shift assignments and the rest
days of nurses in a health-care institution. Some health-care institutions might be
composed of several departments. A departmental roster is defined as a collection of
the nurse rosters of all nurses working within the same department. Nurse Rostering
Problems (NRPs) are timetabling problems that seek for satisfactory schedules to be
generated for employees, employers, even customers. In a common NRP, a nurse can
be assigned to a day or a night shift, or can stay off-duty. A variable represents the
shift assignment of a nurse. In this paper, event and daily shift will be used to refer
variable, interchangeably. A group of events indicates a subset of events in V and
their assignments in a candidate solution.

In all timetabling problems, constraints are classified as hard or soft. Hard con-
straints must be satisfied, while soft constraints represent preferences that are highly
preferred. Furthermore, there are six different constraint categories for practical
timetabling: edge constraints, exclusions, presets, ordering constraints, event-spread
constraint and attribute constraints (includes capacity constraints) [42]. Edge con-
straints are the most common constraints that represent pairs of variables to be sched-
uled without a clash. A timetabling problem reduces to graph coloring problem, if the
instance requires only edge constraints to be satisfied [35].  Exclusions determine the
members to be excluded from the domain of variables for each variable. Presets are
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used to fix the assignment of a variable. Ordering constraints, as the name suggests,
are used to define an ordering between a pair of variables based on the timeline.
Event-spread constraints define how the events will be spread out in time. Attribute
constraints deal with the restrictions that apply between the attributes of a variable
and/or the attributes of its assignment. Numerous researchers deal with NRPs based
on different types of constraints utilizing variety of approaches. A recent survey on
nurse rostering can be found in [10].

Burke et al. [8] applied variable neighborhood search using a set of different per-
turbation methods and local search algorithms on randomly generated schedules.
Chun et al. [13] modeled nurse rostering as constraint satisfaction problem and em-
bedded it as a Rostering Engine into the Staff Rostering System for the Hong Kong
Hospital Authority. Similarly, Li et al. [36] modeled nurse rostering as a weighted
constraint satisfaction problem. Their algorithm consists of two phases.  In the first
phase, forward checking, variable ordering and compulsory backjumping are used,
whereas in the second phase descend local search and tabu search are used. Ahmad et
al. [1] proposed a population-less cooperative genetic algorithm and experimented on
a 3-shift problem. Kawanaka et al. [30] attempted to meet absolute and desirable
constraints fro obtaining optimal nurse schedules. Aickelin et al. proposed a co-
evolutionary pyramidal GA and experimented an indirect representation and three
different decoders within GA for solving NRP in [3], [4], respectively. Gendreau et
al. [23] used TS to generate shifts of nurses at the Jewish General Hospital of Mont-
real. Berrada et al. [6] combined TS with multiobjective approach, prioritizing the
objectives. Heuristic swaps working and rest days. Duenas et al. [19] applied interac-
tive Sequential Multiobjective Problem Solving method in conjunction with a genetic
algorithm to produce a weekly schedule of eight nurses.  Burke et al. [7] compared
steepest descent, traditional TS and its hybrid with two local search heuristics for
solving nurse rostering problem in Belgian Hospitals.

Recently, research on timetabling started to move towards finding a good hyper-
heuristic [11]; a heuristic for selecting a heuristic among a set of them to solve an
optimization problem. Cowling et al. [14] introduced hyper-heuristics as an iterative
search method which maintains a single candidate solution and a set of heuristics. A
hyper-heuristic is a heuristic utilized to choose a lower level heuristics. Han et al. [29]
compared different versions of hyper-heuristics based on GA that they were devel-
oped for solving trainer scheduling problem utilizing fourteen different lower level
heuristics. Burke et al. [12] proposed a tabu-search based hyper-heuristic, demon-
strating its success for solving a set of nurse rostering problems at a UK hospital.

2.3   Multimeme Algorithms

Memetic Algorithms (MAs) are population based hybrid algorithms that combine
Genetic Algorithms and hill climbing [15, 38, 45, 46]. In MAs, a chromosome (indi-
vidual) represents a candidate solution to a problem at hand. A gene is a subsection of
a chromosome that encodes the value of a single parameter (allele). Generally, the
search for an optimal solution starts with a randomly generated set of individuals,
called initial population. Then at each evolutionary step (generation) a set of opera-
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tors are applied to each individual in the population. First, mates are selected for
performing crossover, an operator that exchanges genetic material between mates.
While selecting the mates, better ones are preferred. After the crossover, a set of new
individuals, called offspring, is generated. Offspring are then mutated. In MAs, hill
climbing operator is applied to the individuals, right after the crossover, or the muta-
tion or in both places. Even the initial generation can be hill climbed. Whenever the
termination criteria are satisfied, evolution stops. The best individual in the last gen-
eration is the best candidate solution achieved. In this paper, all MAs utilize a hill
climber after the initialization and mutation.

Using a set of hill climbers, different MAs can be generated and compared for
solving a problem. As another possibility, all hill climbers can be combined under a
heuristic that selects one hill climber at a time and applies it. Such a hyper-heuristic
schedules a hill climber in a deterministic or a non-deterministic way. For example, a
deterministic round-robin strategy schedules the next hill climber in a queue.  A non-
deterministic strategy schedules the next hill climber randomly. These approaches
employ blind choices. More complex and smart hyper-heuristics can be designed by
making use of a learning mechanism that gets a feedback from the previous choices to
select the right hill climber at each step. Different types of hyper-heuristics are dis-
cussed in [11].

Multimeme Algorithms (MMAs) represent a subset of self generating (co-
evolving) MAs [31-34]. An individual in a population carries a memetic material
along with a genetic material. The materials are co-evolved. In an evolutionary cycle,
the memes are inherited to the offspring from the parents using the Simple Inheri-
tance Mechanism (SIM) [33] during the crossover. SIM favors the meme of a mate
with a better fitness to be transmitted to the offspring. In the case of an equal quality,
a meme is randomly selected from the mates. Furthermore, a meme is altered to a
random value based on a probability, called Innovation Rate (IR) during the mutation.
MMAs, based on the SIM strategy and the mutation, allow modification of the candi-
date solutions by learning in order to obtain improved ones. This mechanism is re-
ferred as Lamarckian learning mechanism [31, 40].

Using a similar notation as provided in [33], a meme, denoted by MhFBbInWt,
represents the hill climbing method (M), its acceptance strategy (FB), the maximum
number of iterations (I), and which part of the configuration to apply the selected
method (W). An individual uses its meme to decide the hill climbing method and the
related components to use, after the mutation takes place. Previously, Ong et al. [40]
conducted tests on three benchmark functions using two new methods that they pro-
posed for selecting the appropriate meme within MAs. In this study, MMAs are ex-
tensively tested on a set of well known benchmark functions. Furthermore, MMAs
are used to determine where to apply a hill climber and which hill climber to apply,
self adaptively for solving a real-world nurse rostering problem.

Success rate, s.r., indicates the ratio of successful runs, achieving the expected fit-
ness to the total number of runs repeated. Comparisons of MAs are based on the av-
erage number of evaluations and the success rate. Additionally, average evolutionary
activity is considered during the assessment of MMA experiments. Evolutionary
activity of a meme at a given generation is the total number of appearance of itself
within each population starting from the initial generation until the given generation.
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Average evolutionary activity is obtained by taking an average of the evolutionary
activity of a meme at each generation over the runs. The slope of the average evolu-
tionary activity versus generation curve shows how much a meme is favored. The
steeper the slope gets for a meme, the more it is favored.

3   Memetic Algorithms for Benchmarking

3.1   Experimental Setup

All runs are repeated 50 times. Pentium IV 2 GHz. machines with 256 MB RAM
are used during the experiments. Chromosome length, l, is the product of dimensions
and the number of bits used. All the related parameters are arbitrarily chosen with
respect to l. The mutation rate is chosen as a factor of 1/l. The rest of the common
parameter settings, used during the experiments are presented in Table 2. Runs are
terminated whenever the overall CPU time exceeds 600 sec., or an expected fitness is
achieved. All MAs use a tournament mate selection strategy with a tour size two, one
point crossover, bit-flip mutation and a trans-generational MA with a replacement
strategy that keeps only two best individuals from the previous generation. The IR
rate is fixed as 0.20 during all multimeme experiments. A single acceptance strategy
that approves only improving moves and a single value for the maximum number of
hill climbing steps are used; b={1} and n={ l}. A hill climber is applied to the whole
individual; t={whole}.

Table 2. Common parameter settings used during the benchmark function experiments

label dim.
no. of

bits
chrom.
length

pop.
size

max. hc
steps

F1 10 30 300 60 600

F2 10 30 300 60 600

F3 10 30 300 60 600

F4 10 30 300 60 600

F5 2 30 60 20 120

F6 10 30 300 60 600

F7 10 30 300 60 600

F8 10 30 300 60 600

F9 10 30 300 60 600

F10 6 30 180 36 360

F11 10 30 300 60 600

F12 8 8 64 20 128

F13 30 3 90 20 180

F14 6 4 24 20 48
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During the initial set of experiments, the benchmark functions are tested using
each meme described in Section 2.1. Experiments are also performed using a tradi-
tional Genetic Algorithm for comparison. The second set of experiments is designed
according to the results obtained from the initial one. The best meme and two poor
memes are fed into a multimeme algorithm. In the last set of MMA experiments, eight
memes are used. Four hill climbing methods; h={MA0, MA1, MA2, MA3} are em-
bedded. Hill climbing is applied depending on the acceptance strategy; b={0, 1}. 0
indicates a rejection, so hill climbing is not applied. If the meme points to the accep-
tance strategy 1, then the related hill climbing operator is applied. Hence, effectively
there are five different memes. For short notation, each meme is referred as GA,
MA0-MA3.

3.2   Empirical Results for the Benchmark Functions

Performance comparison of genetic algorithm and memetic algorithms using different
memes are presented in Fig. 1 for selected benchmark functions based on the average
number of evaluations. For each experiment, related bar appears in the figure, only if
all the runs yield the expected result. MA0 is the best meme choice for F4, F13 and
F14. MA1 is the best meme choice for F6-F8.  MA3 is the best meme choice for F2,
F3, F5, F10, and F12. For functions F1, F9 and F11 genetic algorithm performs
slightly better than the memetic algorithm with the meme MA1. MA2 and MA3 turn
out to be the worst and the best meme, respectively, among MA0-MA3.

The average evolutionary activity versus generation plots generated during the
second set of experiments show that the multimeme approach successfully identifies
useful memes. The MMA chooses the best meme and applies it more than the rest of
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Fig. 1. Mean and the standard deviation of the number of evaluations per run, generated by each
MA for a selected subset of benchmark functions
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the memes for all benchmark function, as illustrated in Fig. 2 for selected benchmark
functions. The success rate for each benchmark function is 1.00. Any hill climber
seems to attain the optimum fast for F1, F3 and F11.

Fig. 2. Average evolutionary activity vs. generation plots of each meme utilized during the
second set of experiments for a selected subset of benchmark functions

In the third and the last set of experiments, results similar to the previous one are
obtained. The MMA can still identify the best meme or a meme that does not perform
significantly better than the best meme for almost each benchmark function, as illus-
trated in Fig. 3 for selected benchmark functions. Furthermore, in all runs full success
is achieved for all cases. Unfortunately, a synergy between hill climbers is not ob-
served. Comparing the experimental results obtained using the MMA and the MA
with the best meme for each benchmark indicate that the MA with the best meme is
superior based on the average number of evaluations, except for F1, F3 and F11
(Table 3).
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Fig. 3. Average evolutionary activity vs. generation plots of each meme utilized during the
third set of experiments for a selected subset of benchmark functions

Table 3.  Average number of evaluations and standard deviations generated by a Memetic
Algorithm for each benchmark function: MA0-MA3 denotes the Memetic Algorithm using
only the corresponding meme and MMA denotes the Multimeme Algorithm using all of them

label type
  avr. no. of

evals.      st.dev. label type
avr. no. of

evals.     st.dev.

MMA 17,580 2,226 MMA 5,215,787 9,658,230
F1

MA1 92,256 0
F8

MA1 1,906,134 6,646,991

MMA 23,605,004 24,364,979 MMA 43,871 12,193
F2

MA3 8,455,507 3,803,504
F9

MA1 180,783 12,647

MMA 72,252 11,772 MMA 3,100,515 4,565,736
F3

MA3 82,769 16,512
F10

MA3 1,340,811 988,971

MMA 12,926,879 11,435,876 MMA 17,580 2,226
F4

MA0 9,494,844 10,332,574
F11

MA1 36,060 0

MMA 46,975 79,394 MMA 31,297 14,961
F5

MA3 11,619 2,293
F12

MA3 29,246 4,936

MMA 553,306 231,124 MMA 7,667,352 2,832,376
F6

MA1 525,398 262,055
F13

MA0 4,348,896 1,617,951

MMA 349,250 324,544 MMA 3,674,932 2,623,300
F7

MA1 167,799 60,577
F14

MA0 1,072,117 1,111,825

4   Memetic Algorithms for Nurse Rostering

4.1   Nurse Rostering Problem at the Memorial Hospital (NRPmh)

An analysis is performed on the Nurse Rostering Problem at the Memorial Hospital
(NRPmh), located in İstanbul, Turkey. There are three types of daily shifts: day, night
and off-duty. The timetable size is known in advance. Although a biweekly schedule
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is preferred, the hospital authorities produce a weekly schedule manually, in order to
simplify the timetabling process. Since the preferences of nurses are essential and
might change in time, schedules are acyclic.

The hospital consists of three departments. Cross duty between the departments
does not occur frequently. Hence, each nurse can be considered to be independent
belonging to a specific department. Nurses are categorized into three ranks according
to their experiences. Ranks {0, 1, 2} indicate the level of experience from lowest to
highest. There are not many experienced nurses with rank 2, but there is at least one
such nurse at each department. The constraints of this problem include;
Excludes:
– Exclude Night Shifts Constraint (ENC): Night shifts can not be assigned to an

experienced nurse with rank 2.
Event-spread constraints:
– Off-duty Constraint (RDC): Nurses can define at most 4 rest day preferences.
– Shift Constraint (SHC): At a department, during each shift there must be at least

one nurse.
– Successive Night Shifts Constraint (SNC):  A nurse can not be assigned to more

than two successive night shifts.
– Successive Day Shifts Constraint (SDC):  A nurse can not be assigned to more

than three successive day shifts.
– Successive Shifts Constraint (SSC): A nurse can not be assigned to two successive

shifts. A day shift in one day and a night shift in the following day are considered
as successive shifts.

– On-duty Constraint (ODC): Each nurse can not be assigned less than eight shifts
per two weeks.

RDC is considered as a soft constraint, while the rest are hard constraints.

4.2   Constraint-based Violation-directed Heuristics

Ozcan [41] proposed a violation directed hierarchical hill climbing (VDHC) heuristic
template to be used within MAs for solving timetabling problems and implemented
an instance for solving a real-world nurse rostering problem. Experimental results
show that it is a promising operator. In this study, a violation type directed hill
climbing (VTDHC) heuristic template is presented as illustrated in Fig. 4.  The
VTDHC supports adaptation and cooperation of operators. It is a more general tem-
plate than the VDHC.

The VTDHC template is designed to organize a set of hill climbers where each one
improves a corresponding constraint type in a given timetabling problem. A set of
events among several ones is selected based on the violations. The mechanism for
selecting those events is up to the user. The number of violations caused by each
constraint type within the selected set is used as a guide to select a hill climber. Fi-
nally, the selected hill climber is applied onto the selected events to resolve the viola-
tions due to the related constraint type.
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Fig. 4. Pseudo-code of the VTDHC

An event arrangement indicates a structured organization of events in a timetabling
problem. An event arrangement will be referred as arrangement in short from this
point forward. For example, in Fig. 5, an arrangement for the NRPmh is provided.  It
is possible to identify more than one arrangement of events for a timetabling problem.
Arrangements can be categorized as static, dynamic and mixed. An arrangement is
labeled as static, if the members in a group do not change during the search process.
In static arrangements, events can be hierarchically organized. Variables are logically
grouped either as partitions or overlapping subsets at each hierarchy level of an ar-
rangement. Static arrangement(s) can be obtained by analyzing the timetabling prob-
lem instance at hand. For example, according to the Nurse Rostering Problem de-
scribed in the previous section, a static arrangement of variables can be derived as
illustrated in Fig. 5. There are four hierarchical levels within the arrangement: Hos-
pital, Department, Nurse and Variable. Hospital is a group including all variables,
while a group in the Nurse level is a partition, where each indicates the roster of a
nurse for two weeks.  In this study, the static arrangement of daily nurse shifts
(events) is used as shown in Fig. 5. Dynamic arrangements are based on the structure
of the timetable and the assignment of events. Hence, members of a group might
change during the search for an optimal solution, as the assignments of events might
also change. For example, all the events (nurse shifts) scheduled at each day in a
timetable constitute a dynamic arrangement of events. Mixed arrangements are a
combination of both static and dynamic arrangements. For example, events scheduled
at each day in a specific department represent a mixed arrangement.

Fig. 5. Static arrangement of events (shifts) for NRPmh

Combining the arrangements and VTDHC yields the design of useful hyper-

1. while (termination criteria are not satisfied) do
a. Select a group (or groups) of events based on vio-

lations
b. Select a constraint type based on contribution of

each constraint type within the selected group (or
groups)

c. Apply hill climbing  for the selected  constraint
type (without considering the other constraints)
within the selected group of events

2. end while

   v2   vR

  Dept. P

(R=14)

  v1

(D)ept.
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(H)ospital

Hierarchy
Levels

  vM
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heuristics. For example, VDHC represents a subset of VTDHC heuristics, using a
static arrangement of events. It is an iterative heuristic that applies a selected hill
climber to a selected group of daily shifts. The hill climber selection is constraint
violation-driven and based on a predetermined arrangement. First, hierarchy levels of
an arrangement to be used in the VDHC are decided. The top level is the starting
level to operate on. As the candidate solution improves, it stays at a level. A selected
hill climbing method is applied to a selected group of nurse shifts at a level, evaluat-
ing violations due to the each constraint type. The VDHC restricts the area of concern
to the nurse shifts at one level down in the hierarchy in the case of a relapse and the
same steps are repeated. It terminates whenever no improvement is provided in none
of the levels or a maximum number of steps is exceeded.

A hill climber is selected using an implicit feedback from the evolutionary process,
hence the VDHC is adaptive and in a way self-adjusting. During the traversal of an
arrangement downwards in the hierarchy levels, the VDHC switches from individual
level adaptation to component level adaptation [52]. In this study, two other hyper-
heuristics are proposed based on the VTDHC template and used within MAs.

The VTDHC template can be extended and used for solving other multiobjective
problems. Moreover, heuristics based on the VTDHC can be hybridized with other
hyper-heuristics. In the current implementation, a single hill climber is designed for
each objective. In the case of multiple hill climbers for each objective, the VTDHC
instance can act as a decision mechanism for determining which objective to improve.
Then, for the improvement of a selected objective, a traditional hyper-heuristic can be
utilized to choose the hill climber to employ. This is a research direction beyond the
scope of this paper.

4.3   MAs for Solving NRPmh

For solving the NRPmh described in Section 4.1, MAs are proposed. If there are T
nurses in a hospital, then the total number of biweekly shifts to be arranged is l=T*14,
where l is chromosome length. The search space size for finding the optimal schedule
becomes immense; 3l. The traditional approaches fail to obtain a solution, making
MAs an appropriate choice. In all MAs, an allele in a chromosome represents a daily
shift assignment of a nurse. Furthermore, each chromosome in the population is
structured as illustrated in Fig. 5.

Seven hill climbing (HC) operators are designed to be used in the MAs: ENC_HC,
RDC_HC, SHC_HC, SNC_HC, SDC_HC, SSC_HC, and ODC_HC. Each constraint
based HC operator attempts to resolve the conflicts due to the related constraint for a
given variable in an individual by random rescheduling. Details of the hill climbing
operators can be found in [41]. In this study, five sets of experiments are performed.
In each set, a different MA is used.

In the first set of experiments, a multimeme strategy for selecting which region to
apply a selected hill climber is tested. The strategy also decides how many hill
climbing steps should be used. Twelve different meme values are utilized. For all
problem instances used during the experiments a single acceptance strategy is used;
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b={1} and n changes from one problem instance to another. The values in n are fixed
during the start of a run as {2l/4, 3l/4, l, 2l}. The values of t are {whole, department,
nurse}. A meme acting as a scheduler determines whether a hill climber will be
applied to the whole individual, or to a departmental roster or to a nurse roster. Then,
a constrained type is determined to be improved for the group of shifts pointed by the
meme. Using a tournament selection method with tour size of two, the constraint
causing more violations within the group of shifts is favored among two randomly
selected constraint types. Afterwards, the appropriate hill climber based on the
selected constraint is applied to the group of shifts for a number of steps determined
by the same meme. The MMA experiments using this operator are performed for
three different IR values.

During the second set of experiments, hierarchical traversal of groups is reversed
in the VDHC. The new hill climbing scheduler will be referred as rVDHC. Hill
climbing starts from the bottom level; nurse level.  As the candidate solution im-
proves, the rVDHC stays at the nurse level. A selected hill climbing method is ap-
plied in the same way as the VDHC as described in Section 4.2. The rVDHC broad-
ens the area of concern to nurse shifts in a whole department, which is one level up in
the hierarchy, in the case of deterioration. Then the same steps are repeated. The
termination criteria are the same as the VDHC.

In the third set of experiments a new scheduler is used. The worst nurse roster
among a randomly selected two nurse rosters goes under a hill climbing process. This
new scheduler is labeled as NHC. Notice that rVDHC and NHC are hyper-heuristics
that are instances of VTDHC.

In the fourth set of experiments, a multimeme algorithm is implemented. MMA
uses 7 memes; h={ ENC_HC, RDC_HC, SHC_HC, SNC_HC, SDC_HC, SSC_HC,
ODC_HC }. All the rest of the parameters are fixed; b={1}, t={whole}, and n={2l}.
Co-evolution determines which hill climber to apply. This version of the MMA is
labeled as MMA7. The traditional GA is used during the last set of experiments in
order to evaluate the role of hill climbers.

5   Nurse Rostering Experiments

5.1   Experimental Data and Common Settings

Runs are terminated whenever the overall CPU time exceeds 600 sec., or all the con-
straints are satisfied. The maximum number of hill climbing steps is fixed as 2l. All
MAs for nurse rostering use ranking as a mate selection method, giving four times
higher chance to the best individual to be selected than the worst one, one point
crossover and a trans-generational memetic algorithm with a replacement strategy
that keeps only two best individuals from the previous generation. The mutation op-
erator is based on the traditional approach. A shift of a nurse is randomly perturbed
with a mutation probability of 1/l. Based on the analysis of the NRPmh, six random
problem instances are generated; rnd1-rnd6 and they are used during the experiments
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[41]. The characteristics of the problem instances are summarized in Table 4. The
data set is publicly available at http://cse.yeditepe.edu.tr/~eozcan/research/TTML.

Table 4. Experimental data set, where the number of departments and nurses are denoted as
ndep and nnur, respectively. Percentage of nurses from each rank and average number of off-
duty preferences of each nurse are denoted as pnr and avrpr, respectively.

Label ndep nnur pnr0 pnr1 pnr2 avrpr
rnd1 3 21 0.42 0.32 0.28 1.95

rnd2 3 21 0.18 0.51 0.32 0.67

rnd3 3 21 0.28 0.42 0.32 2.19

rnd4 4 21 0.14 0.47 0.42 1.67

rnd5 4 21 0.19 0.46 0.37 2.33

rnd6 4 21 0.13 0.47 0.42 0.95

5.2   Empirical Results for the NRP Experiments

Detailed experimental results of the MA with the VDHC are presented in [41]. The
results obtained from the first set of experiments indicate the viability of the MMA if
used as a self adaptive method for selecting the region where to apply a hill climber.
Yet, the MA with the VDHC performs better. Experiments are repeated for different
values of IR around 0.20. The results are summarized in Table 5 for the experimental
data. No IR value is significant. Considering the average success rates, all IR values
yield almost the same performance. An interesting result of the first set of experi-
ments is that MMA selects mostly a nurse roster and then applies a hill climber to it,
as illustrated in Fig. 6 for IR=0.20. The rest of the experiments are performed on
Pentium IV 3 GHz. machines with 2 GB RAM.

Table 5. MMA experiments using IR={0.15, 0.20, 0.25} with the random data set, where the
first row denotes the success rate, the second row denotes the average number of generations
per run for each IR value

IR rnd1 rnd2 rnd3 rnd4 rnd5 rnd6

0.90 0.98 1.00 0.96 0.92 1.00
0.15

1,145.96 217.74 77.54 697.28 667.58 234.08

0.94 0.98 1.00 0.94 0.94 1.000.20
889.70 316.10 83.78 651.76 722.48 271.52

0.96 0.98 1.00 0.96 0.98 0.96
0.25

921.12 317.62 92.20 750.18 371.34 422.90
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Fig. 6. Average number of hill climbing steps that are executed to improve the whole set of
daily shifts, a departmental roster and a nurse roster for each problem instance during the first
set of experiments, where IR=0.20

During the preceding sets of experiments, the MAs with rVDHC, NHC, the simple
genetic algorithm and the MMA7 are tested on the problem instances. The success
rate of each algorithm for each problem instance is presented in Table 6. Obviously,
hill climbing boosts the performance GAs. Simple genetic algorithm turns out to be
the worst algorithm for solving the problem instances. Almost; in none of the runs a
violation free schedule is obtained. Empirical results yield the success of MAs with
the following hill climbers from the best towards the worst: VDHC, rVDHC and
NHC, respectively. The average performance of MMA7 is comparable to the per-
formance of NHC. Results show that letting the multimeme algorithm to choose the
region where to apply a constraint based hill climber based on a static hierarchical
arrangement of events performs better than to let it to choose which meme to use for
solving nurse rostering problem instances.

Table 6. The success rates of different algorithms for solving random problem instances

Label VDHC rVDHC NHC MMA7 Simple GA

rnd1 0.96 0.94 0.68 0.86 0.00

rnd2 1.00 0.98 0.88 0.96 0.04

rnd3 1.00 1.00 0.98 1.00 0.00

rnd4 0.98 0.94 0.28 0.18 0.00

rnd5 1.00 0.86 0.26 0.30 0.00

rnd6 1.00 1.00 0.68 0.50 0.00

6   Conclusions

Memetic algorithms, including the self-generating multimeme memetic algorithm
proposed by Krasnogor [33] are investigated. Different MAs are experimented using
a set of benchmark functions and nurse rostering problem instances, generated ran-
domly by Ozcan [41] based on NRPmh.  Some common empirical results are ob-
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tained from both investigations. As expected, the performance of a genetic algorithm
improves if a hill climbing operator is also utilized. Lamarckian learning mechanism
employed by the MMAs yields appealing results for selecting a meme among a set of
memes during the evolutionary process. Yet, the MAs with a good meme choice
perform better. Different memes yield different performances. In the benchmark ex-
periments, the MMAs identify the useful memes for all functions, but unfortunately, a
synergy between hill climbers is not observed during the search. The average per-
formance of the Davis’s Bit Hill Climbing is the best on the benchmark functions.

The MAs are very promising approaches for tackling nurse rostering problems.
Proposed heuristic template combined with a prior knowledge about a timetabling
problem, such as a static arrangement, provides a promising guide for designing
adaptive heuristics. The MAs, each containing such an instance as a single hill
climber are compared to the MMAs, with different memetic materials. The empirical
results indicate the success of the MA with VDHC [41] over the rest of the MAs
presented in this paper. The VDHC using tournament selection provides a better
cooperation among constraint-based memes.  The hierarchical traversal over the
groups based on a static arrangement during the hill climbing seems to work as well.
Applying a constraint-based meme to a larger group of events first and then narrow-
ing the area of concern generates better results than the reverse traversal. Still, the
rVDHC shows potential.
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Abstract. The timetabling problem is well known to be NP complete combina-
torial problem. The problem becomes even more complex when addressed to 
individual timetables of students. The core of dealing with the problem in this 
application is a timetable builder based on mixed direct-indirect encoding 
evolved by a genetic algorithm with a self-adaptation paradigm, where the pa-
rameters of the genetic algorithm are optimized during the same evolution cy-
cle as the problem itself. The aim of this paper is to present an encoding for 
self-adaptation of genetic algorithms that is suitable for timetabling problem. 
Comparing to previous approaches we designed the encoding for self-
adaptation not only one parameter or several ones but for all possible parame-
ters of genetic algorithms at the same time. Genetic algorithms are naturally 
parallel so also the parallel representation of the self-adaptive genetic algorithm 
is presented. The proposed parallel self-adaptive genetic algorithm is then ap-
plied for solving the real university timetabling problem and compared with a 
standard genetic algorithm. The main advantage of this approach is, that it 
makes possible to solve wide range of timetabling and scheduling problems 
without setting parameters for each kind of problem in advance. Unlike com-
mon timetabling problems the algorithm was applied to the problem in which 
each student has an individual timetable, so also we present and discuss the al-
gorithm for optimized enrolment of students that minimize the number of clash-
ing constraints for students. 

1    Introduction 

Genetic algorithms are search algorithms based on the idea of natural selection and 
natural genetics. It is well known, that efficiency of genetic algorithms strongly de-
pends on their parameters. These parameters are usually set up according to vaguely 
formulated recommendations of experts or by the so-called two-level genetic algo-
rithm, where at the first-level genetic algorithm optimizes parameters of the second-
level. A self-adaptation seems to be a promising way of genetic algorithms, where the 
parameters of the genetic algorithm are optimized during the same evolution cycle as 
the problem itself. The aim of this paper is to present an encoding and genetic opera-
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tors for self-adaptation of genetic algorithms that is suitable for solving the university 
timetabling problem. Comparing to previous approaches (e.g. [2], [12], [20]) we 
designed the encoding for self-adaptation not only one parameter but for all or nearly 
all possible parameters of genetic algorithms at the same time. Moreover, the parame-
ters are encoded separately for each element of a chromosome. Genetic algorithms are 
naturally parallel so also the parallel representation of the self-adaptive genetic algo-
rithm is presented. 

The proposed parallel self-adaptive genetic algorithm is then applied for solving 
the real university timetabling problem at Silesian University. The problem is known 
to be NP-complete and hence it is known no algorithm for solving it in polynomial 
time [8]. The requirements for timetabling differs from university to university, but in 
general the timetabling problem consists of assigning each lecture from a set of lec-
tures to a suitable room and a time slot subject to a number of hard and soft con-
straints, such as no teacher can teach more lectures at the same time, at no room can 
be taught more than one lecture at the same time, teachers time and room preferences, 
etc. 

At some universities including Silesian University each student has an individual 
timetable, i.e. there are no groups of students, which have the same timetable, even it 
is difficult to find only two students with the same timetable, thus solving the prob-
lem becomes very complex. In order to be able to deal with individual timetables of 
students we designed an algorithm for optimization of enrollment of students that 
effectively decrease the number of constraints for student clashes. 

A large number of diverse methods have been already proposed in the literature for 
solving timetabling problems. These methods come from a number of scientific disci-
plines like Operations Research, Artificial Intelligence, and Computational Intelli-
gence and can be divided into four categories: 1) Sequential Methods that treat time-
tabling problems as graph problems. Generally, they order the events using domain-
specific heuristics and then assign the events sequentially into valid time-room slots 
[19]. 2) Cluster Methods, in which the problem is divided into a number of event sets. 
Each set is defined so that it satisfies all hard constraints. Then, the sets are assigned 
to real time-room slots to satisfy the soft constraints, too [23]. 3) Constraint Based 
Methods, according to which a timetabling problem is modeled as a set of variables 
(events) to which values (resources such as teachers and rooms) have to be assigned 
in order to satisfy a number of constraints [5, 11]. 4) Meta-heuristic methods, such as 
genetic algorithms, simulated annealing, tabu search, and other heuristic approaches, 
that are mostly inspired from nature, and apply nature-like processes to solutions or 
populations of solutions, in order to evolve them towards optimality [1, 7, 14, 18, 21, 
22]. 

When applying genetic algorithms to some optimization or scheduling problem, 
the crucial element is encoding. For timetabling problem there are two main types of 
encoding: direct [18] and indirect [14]. The advantage of direct encoding is that the 
whole search space can be encoded, but it usually leads to violation of many hard 
constraints. The indirect encoding is based on some rules or instructions for building 
the resulting timetable and so there is less probability of hard constraint violation, but 
it can reach only limited portion of the search space and thus it can be trapped in a 
local optimum. In our application some combination of both encoding was used, 
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because we want to let the algorithm decide itself whether to use the direct or indirect 
representation, respectively the ratio of using both of them. The timetable builder is 
based on the order of lectures and time-room slots encoded in the chromosome. By 
this approach all the feasible timetables can be addressed and the probability of gen-
erating an infeasible timetable is strongly reduced. Finally the proposed parallel self-
adaptive genetic algorithm is compared to standard genetic algorithms on this time-
tabling problem. Also the role of enrollment optimization algorithm is discussed. 

2    Encoding 

Encoding is a crucial element of every genetic algorithm. The structure of our self-
adaptive genetic algorithm’s encoding is depicted in Figure 1. The idea behind the 
proposed encoding consists in redundancy of information through hierarchical 
evaluation of individuals. 

 

Fig. 1. The structure of a population 

As we can see, in the population each individual is composed of Ng genes, where each 
gene corresponds to exactly one optimized variable. Each gene is composed of Ne 
gene elements. The number of gene element is different for each gene and it varies 
through evolution. Each gene element contains low-level parameters, which encode 
optimized variables and parameters of evolution. All parameters are listed in Table 1. 

The upper index “E” denotes, that it is a gene element value of the parameter. As 
the encoding is hierarchical, there are several levels of the parameters, so gene values 
of parameters are marked by the upper index “G”, individual values by “I” and popu-
lation values by “P”. 

Since genetic operators are applied only to the low level values of parameters 
(gene element), the upper level values of parameters cannot be altered directly 
through evolution process, but only indirectly by evaluation mechanism from low 
level values. 

… 

… 

… 

Population 

Individual 1 Individual 2 Individual Np 

Gene 1 Gene 2 Gene Ng 

Gene elem 2 Gene elem 1 Gene elem Ne 
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Table 1. The structure of a gene element 

Name Description Range 
Ex  Optimized variable <0;1> 
E
mq  Parameter of mutation <-1;1> 

E
pq  Parameter of protected mutation <-1;1> 

E
mr  Radius of mutation <0;0.5> 

E
cp  Probability of crossover <0;1> 

E
cr  Ratio of crossover <0;1> 

E
dq  Parameter of deletion <-0.1;0.1> 

E
uq  Parameter of duplication <-0.1;0.1> 

E
tq  Parameter of translocation <-0.1;0.1> 

E
ms  Identifier of myself for mating <0;1> 

E
ws  Wanted partner for mating <0;1> 

E
rr  Ratio of replacement <0;1> 

E
tr  Ratio of population for selection <0;1> 

E
pr  Ratio of population for 2nd partner selection <0;1> 

E
dc  Coefficient of death <0;1> 

E
pN  Wanted size of population <0;1> 

E
ti  Identifier of translocation <0;1> 

 

Mechanism of Gene Evaluation 

The proposed encoding is polyploiditial, so each gene is composed of Ne gene ele-
ments. The number of gene elements is variable and undergoes evolution. For evalua-
tion of gene values of gene elements we use simple arithmetical average, i.e. 

∑
=

=
eN

i

E
i

e

G X
N

X
1

1
 , 

(1) 

  where X stands for parameters that must be evaluated, i.e. x, sm, sw, rr, r t, rp, cd, Np, it. 

Mechanism of Individual Evaluation 

Parameters concerning the whole individual, such as I
ms , I

ws , I
rr , I

tr , I
pr , I

dc , I
pN  

are evaluated as simple arithmetical average, i.e. 
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The number of genes Ng is not variable, because one gene contains exactly one opti-
mized variable. 

Mechanism of Population Evaluation 

Parameters concerning the whole population, such as P
rr , P

tr , P
dc , P

pN  are evaluated 
as weighted average with weights according to their relative fitness fw , defined as 

( )
2

1

1
P
p

P
p

P
p

f
NN

iN
w

+
+−

=  
(3) 

where i is index of i th individual in population sorted by fitness in descending order, 
i.e. the individual with the highest value of the fitness function has the value of i 
equal to 1, the individual with the second highest value of the fitness function has the 
value of i equal to 2 etc. 

3    Genetic Operators 

As the proposed encoding is specific, the genetic operators must be adjusted to fit the 
encoding. There are used not only common genetic operators as selection, crossover 
or mutation, but also some specific ones, as described in following paragraphs. 

Selection 

In genetic algorithms the selection of both parents for mating is usually based on their 
fitness, but this is not true in nature. In nature a winner of a tournament selects his 
partner according to his individual preferences. Important is that he cannot take into 
account his genotype, i.e. directly the values of his genes nor his fitness, but only his 
phenotype, i.e. only expression of the genes to the outside. In a similar way we try to 
imitate nature by using parameters I

ms  and I
ws . The parameter Iws  represents individ-

ual’s preferences for mating and the parameter I
ms  represents individual’s phenotype 

for mating. So the first parent is selected by a tournament selection method with vari-
able ratio of population P

tr  from which the fittest individual is selected. The second 
parent is selected according to individual’s preferences represented by the parameter 

I
ws , i.e. the first parent selects an individual with the minimal value of expression 

I
m

I
w ss − , but this selection is made from only limited ratio of population I

pr . 
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Crossover 

The crossover operator is applied to every gene element of the first parent with the 
probability E

cp . The crossover itself proceeds only between gene elements of mating 
parents according to formula 

( ) E
c

EEEE rXXXX ⋅−+= 1213  (4) 

where X stands for all parameters of a gene element (see Table 1), E
cr  is a ratio of 

crossover of the first parent defined in this gene element, the lower index “1” denotes 
the gene element of the first parent, the index “2” the second parent and the index “3” 
denotes the child of both parents. The gene element of the second parent is selected 
randomly, but it is of the same gene as the gene element of the first parent. 

Mutation 

The mutation operator is applied to every gene element with probability E
m

E
m qp = . 

Notice that probability of mutation is calculated as the absolute value of the parame-
ter of mutation 1;1−∈E

mq , because the mean value of Emp  should be zero. More-
over, every gene element has its own probability of mutation. The mutation formula 
is defined as 

( ) ( )E
m

E
m

EEE
old

E
new rrUXXXX ,minmax −⋅−+=  (5) 

where X stands for all parameters of the gene element, ( )baU ,  is a random variable 
with uniform probability distribution in the interval ba; , E

newX  is the value of the 
parameter after mutation, E

oldX  is the original value of the parameter, EXmax  ( EXmin ) is 
the maximal (minimal) allowed bit element value of the parameter as defined in Ta-
ble 1. 

Duplication 

The duplication operator is applied to every gene element with probability E
u

E
u qp = . 

The gene element is duplicated (copied) with the same value of all parameters with 
the only exception, that the values of parameterE

uq  of both gene elements are divided 
by 2, in order to inhibit exponential growth of the number of bit elements.  

Deletion 

The deletion operator is applied to every gene element with probability E
d

E
d qp = . It 

means that the gene element is simply removed from the particular gene. By deletion 
and duplication operators the degree of polyploidity is controlled. 
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Translocation 

The translocation means that a gene element is moved from its original gene to one of 
neighboring genes with probability E

t
E
t qp = . However, the neighboring gene may 

decide, whether to accept the gene element, that is the real probability of translocation 
is defined as 

( ) ( )( )oldG
t

newG
t

E
t iipp −−⋅= 1  (6) 

where ( )newG
ti  is the identifier of translocation of the gene, to which the gene element 

is going to move, and index “(old)” denotes the original gene. The values of gene ele-
ment’s parameters are left unchanged with the only exception that E

tq  is multiplied 
by coefficient 5.0− , in order to decrease further translocations. The gene element 
decides whether to translocate to the left or right neighboring gene according to the 
sign of E

tq .  

Protected Mutation 

Protected mutation is an analogy of local optimization and it is applied only to the 
fittest individual in the population after application of all previous operators and after 
values of fitness function of all individuals in the population have been calculated. 
The protected mutation operator is applied to every gene element with probability 

E
p

E
p qp =  and after that the new value of fitness function is calculated and compared 

to the value of fitness function before applying the protected mutation operator. If the 
new value of fitness function is greater than previous than the mutated chromosome is 
used otherwise the old chromosome is used for following evolution cycle. 

Replacement of Individuals 

For every individual the parameter of a life strength – L is defined. When the individ-
ual is created its life strength L is set to one and in every generation it is multiplied by 
the coefficient cL defined as 

( )f
P
dL wcc −−= 11  (7) 

Evidently, through evolution, a less fitter individual causes the greater decrease in L. 
In every generation all PX  parameters are evaluated and by using the above listed 
genetic operators P

r
P
p rN ⋅  new individuals are created. Then a randomly selected 

individual is killed with probability ( )L−1 . This process of killing individuals is 
repeated until only P

pN  individuals survive in the population. 
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4    The Parallel Self-adaptive Genetic Algorithm 

Genetic algorithms are naturally parallel so it invokes an idea to implement the pro-
posed self-adaptive genetic algorithm parallely. We used simple parallel structure, in 
which there is one master genetic algorithm and Na slave genetic algorithms. The 
master genetic algorithm is responsible for performing genetic operators and creating 
new generation, while the slave genetic algorithm just calculate the value of fitness 
function of the individual presented by the master genetic algorithm. In each genera-
tion the master genetic algorithm distributes Np/Na tasks to each slave genetic algo-
rithm. The master genetic algorithm communicates with slave genetic algorithms by 
TCP/IP protocol. The structure of the parallel self-adaptive genetic algorithm is de-
picted in Figure 2. 
 

 

 
Fig. 2. The structure of the parallel self-adaptive genetic algorithm 

5    The Timetabling Problem 

In this chapter we describe the input data for the university timetabling problem and 
formalize the optimization model. In the model we use the following notation 
 
nR – number of available rooms R1, R2, …, 

RnR  

nU – number of subjects U1, U2, …, 
UnU  

nL – number of lectures (events) L1, L2, …, 
LnL  

nS – number of students S1, S2, … 
SnS  

nT – number of teachers T1, T2, …, 
TnT  

nM – number of time slots M1, M2, …, 
MnM  

nG – number of time-room slots G1, G2, …, 
GnG  

C – clash matrix with elements cij; i = 1, 2, …, nL; j = 1, 2, …, nL 
P – preference matrix with elements pij; i = 1, 2, …, nL;  j = 1, 2, …, nG 

 
The purpose of the clash matrix C is to determine which lectures should not be 

scheduled at the same time. Each element of the clash matrix cij is equal to the num-
ber of students, which are enrolled to both lectures Li and Lj. The number of students 
that attend more lectures at the same time is only soft constraint, because each student 

…

Master GA 

Slave GA 2 Slave GA 1 Slave GA Na 
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has an individual timetable and so it is nearly impossible to build a timetable with no 
clashes for students. The clash matrix C is also used for handling teachers clashes, i.e. 
the high penalty coefficient is set to the matrix element cij = 106 for all lectures Li and 
Lj which are taught by the same teacher.  

The purpose of the preference matrix P is to set preference pij to particular time-
room slot Gj for each lecture Li. Note that the preferences are taken as negative pref-
erences, i.e. the higher is the element of the preference matrix pij, the less suitable is 
the time-room slot Gj for the lecture Li. The matrix P is also used for handling the 
suitable rooms for each lecture. By the matrix P we can handle both, the teacher time 
preferences and the suitable rooms for each lecture. The teacher time preferences are 
usually taken as soft constraints, i.e. only small penalty coefficient is set to pij for all 
time-room slots Gj that correspond to less preferred timeslots for the lectures Li that 
are taught by the teacher. The requirements for suitable room is handled as the hard 
constraint, so the high penalty coefficient pij = 106 is set for all time-room slots Gj that 
correspond to unsuitable rooms for particular lecture Li. 

The core of the timetabling problem is to assign suitable timeslot Gj to each lecture 
Li such that all hard constraints were satisfied and the number of soft constraint viola-
tions was minimal. This problem can be mathematically formulated as optimization 
model minimizing error of the timetable defined as  

( ) ( ) minpenalty,sametime
1 1 1

→⋅+
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(8) 

where xij is a binary optimized variable determining whether the lecture Li is taught in 
the time-room slot Gj. The expression sametime(i,k) is the function that is equal to 1 
if the lecture Li is taught at the same time as the lecture Lk, otherwise it is equal to 
zero. The expression penalty(xij) is the function determining penalty of the timetable 
that is not possible to express by clash matrix C or preference matrix P. And the coef-
ficient wp is the weight of penalty(xij) by which it contributes to the error of the time-
table. 

6    Teacher Preferences 

To express teacher preferences we define following criteria. For each criterion the 
teacher sets its preference *t  by “mark” from 1 to 5, the mark 1 means that it is the 
best and mark 5 means that it is the worst. Because the preferences *t  are used for 
calculation of total error of the timetable and if 1* =t  it means the best possibility for 
the teacher and actually no error of timetable, we transform *t  to *'t  by decreasing 1, 
i.e. 1**' −= tt . If the preference 5* =t  it is hard constraint, so 6*' 10=t . 
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Time Preferences 

For each timeslot Mk the teacher must set its preference M
kt , for which we calculate 

1' −= M
k

M
k tt . After that we assign 'M

kMij twp ⋅=  for all lectures Li that are taught by 
this teacher and for all time-room slots Gj that corresponds to timeslot Mk. The pa-
rameter wM is a weight by which it contributes to the error of the timetable. For ex-
ample if the teacher cannot teach on Wednesdays, on Mondays and Tuesdays he 
prefers to teach in the afternoon and on Thursdays and Fridays he prefers to teach in 
the morning, then the preferences M

kt  could look like that: 
 

  
08:00-
08:45 

08:50-
09:35 

09:40-
10:25 

10:30-
11:15 

11:20-
12:05 

12:10-
12:55 

13:00-
13:45 

13:50-
14:35 

14:40-
15:25 

15:30-
16:15 

Mon 4 3 3 3 2 2 1 1 1 1 

Tue 4 3 3 3 2 2 1 1 1 1 

Wed 5 5 5 5 5 5 5 5 5 5 

Thu 1 1 1 1 1 2 2 3 3 3 

Fri 1 1 1 1 1 2 2 3 3 3 

Number of Teaching Days per Week 

For each number of days the teacher must set N
kt , for which we calculate 1' −= N

k
N
k tt . 

We calculate the number of days d in which the teacher teaches at least one lecture 
and then increase the value of penalty(xij) by the value of 'N

dN tw ⋅ , where Nw  is the 
weight by which it contributes to the penalty of timetable. For example if the teacher 
would like to teach in 2 or 3 days per week, in 4 days it is not convenient for him, in 
5 days it is not acceptable for him and in 1 day it is not possible to teach all lectures 
then the preferences N

kt  could look like that: 
 

Number of Teaching Days 1 2 3 4 5 

Preferences Nkt  5 1 1 3 5 

Length of Teaching Block without Break 

By this criterion the teacher sets if he prefers to concentrate lectures to one long 
teaching block or to disperse it to several short teaching blocks. For each length of the 
teaching block (in hours) the teacher must set its preference B

kt , for which we calcu-
late 1' −= B

k
B
k tt . We calculate for each continuous teaching block its length l and then 

increase the value of penalty(xij) by the value of 'B
lB tw ⋅ , where Bw  is the weight by 

which it contributes to the penalty of timetable. For example if the teacher would not 
like to have too dispersed lectures, i.e. he wants to teach at least 2 hours without 
break, the most preferably he would like to teach 3-4 continuous hours, 5 continuous 
hours is very exhausting and more than 5 continuous hours is not possible to teach 
then the preferences B

kt  could look like that: 
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The Length of Block 1 2 3 4 5 6 7 8 9 10 

Preferences Bkt  5 3 1 1 3 5 5 5 5 5 

Number of Teaching Hours per Day 

For each number of the teaching hours the teacher must set its preference Hkt , for 
which we calculate 1' −= H

k
H
k tt . We calculate for each day the number of teaching 

hours h and then increase the value of penalty(xij) by the value of 'H
hH tw ⋅ , where Hw  

is the weight by which it contributes to the penalty of timetable. For example for the 
teacher it is very inconvenient to go to school to teach only 1 or 2 hours, optimal 
number is 3-5 hours per day, 6-7 hours is exhausting and above 6 hours per day is 
impossible then the preferences H

kt  could look like that: 
 

The Number of Hours 1 2 3 4 5 6 7 8 9 10 

Preferences Hkt  5 4 2 1 1 2 3 5 5 5 

Span of Teaching Day 

This criterion means the difference between beginning of the first lecture and the end 
of last lecture in a day, i.e. the sum of teaching hours and breaks between them. For 
each length of span the teacher must set its preference S

kt , for which we calculate 
1' −= S

k
S
k tt . We calculate for each teaching day the length of span s and then increase 

the value of penalty(xij) by the value of 'S
sS tw ⋅ , where Sw  is the weight by which it 

contributes to the penalty of timetable. 

Length of Continuous Break 

By this criterion the teacher sets how many hours he needs to relax. For each number 
of relax hours the teacher must set its preference R

kt , for which we calculate 
1' −= R

k
R
k tt . We calculate for each break between two teaching blocks its length r and 

then increase the value of penalty(xij) by the value of 'R
rR tw ⋅ , where Rw  is the weight 

by which it contributes to the penalty of timetable. Of course if necessary it is possi-
ble to incorporate other teacher preferences in similar way as previous ones. 

7    Enrollment of Students 

At most universities there are some group of students which share the same timetable. 
But at some universities including Silesian University each student has an individual 
timetable, i.e. there are no groups of students, which have the same timetable, even it 
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is hardly to find only two students that have the same timetable, thus solving the 
problem becomes very complex. 

At Silesian University each student can choose subjects that he wants to study. If 
the subject consists of only one lecture there is usually no problem as the student is 
automatically enrolled to that lecture. But most of subjects consist of two kinds of 
lectures: classical lectures and seminaries. There are usually more seminaries of the 
same subject, but the student can be enrolled only to one of them. The question is 
how to set appropriate seminary for each student. One possibility is to do it randomly, 
but by this way it will be very difficult or nearly impossible to build the timetable, in 
which each student has unclashing timetable or the number of clashing lectures for 
students is acceptably small. So we propose the algorithm for optimized enrolment of 
students that minimize the number of clashing constraints for students. 

In the model we use the following notation 
U
ijS  – binary variable defining whether the student Si is enrolled to the subject Uj 

L
ijS  – binary variable defining whether the student Si is enrolled to the lecture Lj 

L
ijU  – binary variable defining whether the subject Ui contains the lecture Lj 

L
ijS  – binary variable defining whether the student Si is enrolled to the lecture Lj 

S
iL  – maximal number of students that can be enrolled to the lecture Li 

Without loss of generality suppose that each kind of lecture of the same subject 

will be labeled as different subject. First we set the elements Tijc  of clash matrix C for 

teacher clashes as was described in the chapter 5. After that student are enrolled to the 
lectures corresponding to the subjects which have only one lecture of the same type, 
i.e. there is no possibility of choice of the lecture to which the student should be en-
rolled. The core of the enrollment problem is then to enroll all students to all lectures 
such that all constraints were satisfied and the number of nonzero elements cij of the 
clash matrix C was minimal. The problem can be mathematically formulated as opti-
mization model minimizing the number of nonzero elements cij defined as 

( ) minnonzero
1 1
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where ∑
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 for i, j = 1, 2, …, nL and nonzero(cij) is the function which 

is equal to 0 when cij is zero and 1 otherwise. 
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8    Mapping the Timetabling Problem to the Chromosome 

The timetabling problem actually consists of two tasks. In the first one students must 
be enrolled to lectures and in the second one there must be lectures assigned to time-
room slots. In this section the process of decoding from the chromosome will be de-
scribed.  

The Enrolment Builder 

First we enroll students to lectures according their preferences for subjects they want 
to attend by the process described in the chapter 7. For optimization of enrollment of 
students the proposed parallel self-adaptive genetic algorithm was used. As was men-
tioned in the chapter 2, each gene of a chromosome represents one real variable 
within the interval <0;1>. In order to apply this chromosome encoding for the enroll-
ment problem, the chromosome is divided into two parts. The first part A consisting 
of ( )US nn ⋅  genes represents the parameters for all subjects selected by students and 
the second part B consisting of nL genes represents parameters for lectures. The main 
idea behind the encoding of the lecture enrollment is that the subjects selected by 
students are sorted in ascending order according to values of parameters in the part A 
of the chromosome and then in this order the lecture enrollment builder assigns the 
first free suitable lecture with the least difference of ji BA − , where Ai is the i-th 
parameter of the part A of the chromosome and Bj is the j-th parameter of the part B 
of the chromosome. The fitness function f for the genetic algorithm is the negative 
value of c in (9), i.e. zc −= . 

The Timetable Builder 

For solving the university timetabling problem the parallel self-adaptive genetic algo-
rithm was used, too. The process of encoding is similar to encoding of the enrollment 
problem above. The chromosome is divided into three parts. The first part A consist-
ing of nL genes represents the parameters for lectures, the second part B consisting of 
nG genes represents parameters for time-room slots and the last part contains control 
parameters for the timetable builder. Lectures are sorted in ascending order according 
to values of parameters in the part A of the chromosome and then in this order the 
timetable builder assigns the first suitable unused time-room slot with the least differ-
ence of ji BA − , where Ai is the i-th parameter of the part A of the chromosome and 
Bj is the j-th parameter of the part B of the chromosome. Whether the time-room slot 
Gj is suitable for the lecture Li is determined by the control parameter D in the last 
part of the chromosome. The parameter D contains the maximal accepted penalty of 
assigning lecture Li to time-room slot Gj, which is calculated by the formula (8). If 
there is no suitable time-room slot for the lecture Li, the best suited still unused time-
room slot is selected for the lecture. The fitness function f for the genetic algorithm is 
the negative value of z in (8), i.e. zf −= . 
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To make the idea behind decoding the chromosome more clear, a simple example 
will be provided. Let’s suppose we have three lectures: L1, L2, L3 and four time-room 
slots: G1, G2, G3, G4. So the chromosome for such simple timetable will have 8 genes. 
Let’s suppose that after evaluation, the gene values of parameters Ex  are: 

 
Part A B D 
Description L1 L2 L3 G1 G2 G3 G4  
Value  0,45 0,91 0,39 0,82 0,36 0,49 0,56 0,8 

 
First lectures must be sorted according values of Ex , so the order will be L3, L1, 

L2. For all lectures we now must calculate difference between the lecture and particu-
lar time-room slot ji BA − : 

 
 G1 G2 G3 G4 
L3 0,43 0,03 0,10 0,17 
L1 0,37 0,09 0,04 0,11 
L2 0,09 0,55 0,42 0,35 

 
The selected time-room slot with least difference of ji BA −  for each lecture is 

marked by bold font and time-room slots used for previous lectures are in italic. So 
the resulting timetable according chromosome provided in the example will look like 
that: L1→G3, L2→G1, L3→G2. 

9    Numerical Experiments 

This model was then applied for solving the real timetabling problem in the School of 
Business Administration at Silesian University. The problem size and its structure can 
be characterized by the values of parameters: number of rooms nR = 43, number of 
subjects nU = 340, number of lectures nL = 705, number of students nS = 1807, num-
ber of teachers nT = 112, number of time slots nM = 60, number of time-room slots 
nG = 2400. When evaluating the error of timetable z defined in (8), we must set up 
weights of the criteria: wM = 3, wN = 5, wB = 3,  wH = 3, wS = 2, wR = 2, wP = 0.5. The 
number of computers that were used was Na = 30. 

The best solution found by the parallel self-adaptive genetic algorithm was the 
timetable with the minimal value of error function z = 7184. The resulting timetable 
satisfied all hard constraints and there were 83 students that had any clashing lecture. 
Previously used approach for constructing the timetable produced the timetable, in 
which there were in average 2.8 clashing lectures for each student, moreover it was 
very boring and  time consuming process, because the timetable was completely made 
manually, computer was used only as graphical user interface. 

In order to test also the performance of the proposed self-adaptive genetic algo-
rithm (SAGA) we have compared it with the simple genetic algorithm (SGA) on this 
timetabling problem. The simple genetic algorithm used a binary encoding, the size of 
population was 30 individuals, probability of mutation 0.003 and elitism was used. 
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Maximal number of generations for both algorithms was 104. We ran both algorithms 
10 times and measured the average penalty function z of the best timetable found in 
each ran of both genetic algorithms. The average best value of error function for 
SAGA was 7331 and for SGA the average value of z was 7687. As we can see SAGA 
was slightly better, but the main advantage of SAGA is that there is no need for find-
ing values of the parameters, as there are no parameters set in advance. 

We also tested the role of enrollment optimization algorithm. The enrolment opti-
mization algorithm as described in the chapter 7 was substituted by random enroll-
ment students to lectures and the best solution found by the parallel SAGA was the 
timetable with the minimal value of error function z = 12553. As we can see it is 
much worse than with applying the enrollment optimization algorithm. 

10    Conclusions 

In this paper we have designed the optimization model for solving the university 
timetabling problem that is capable of dealing with individual timetables of every 
student. For solving the timetabling problem we have proposed a parallel self-
adaptive genetic algorithm with self-adaptation of all its parameters. This algorithm 
was applied for solving the real university timetabling problem at Silesian University. 
It was shown that the parallel self-adaptive genetic algorithm is able to effectively 
solve the timetabling problem. It was also shown how to significantly decrease the 
number of student clash constraints by the proposed enrollment optimization algo-
rithm when dealing with individual timetables of students. 

Great problem has appeared when it was applied to the real timetabling problem 
with changed preferences and requirements for timetable, because the new timetable 
completely different comparing to the original one. So the further study will be con-
cerned to deal with the problem of minimization of number of changes between new 
and original timetable. 
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Abstract. A number of modelling languages for timetabling have been 
proposed to standardise the specification of problems,  solutions and their data 
formats. These languages have not been adopted as standard due to not 
simplifying the modelling process, lack of features and offering little advantage 
over traditional programming languages. In contrast to this approach we 
propose a new language-independent modelling framework for general 
timetabling problems based on our experience of modelling the examination 
timetabling problem (ETP) using STTL. This framework is a work in progress 
but demonstrates the possibilities and convenience such a model would afford. 

1 Introduction 

In this paper, the rationale for proposing a new modelling framework for the ETP is 
discussed in relation to existing languages designed for timetabling. The timetabling 
problem itself is described followed by a brief survey of the existing languages. A 
model for the ETP in STTL is presented as a case study, examining some of the 
underlying problems with the existing approaches.  A standard model for timetabling 
is then presented which addresses some of these issues.  

Timetabling can be described as the general problem of “sequencing events subject 
to various constraints” [1]. This is typically, as the name suggests, assigning timeslots 
to events in order to create a feasible solution for a given problem. This is a complex 
task and the general timetabling problem is known to be NP-Hard.  

Examination timetabling problem (ETP) is a significant special case of the general 
timetabling problem. Production of exam timetables is a practical challenge faced by 
almost all academic institutions on at least one occasion every year. The most 
important characteristics of the exam timetabling problem are the constraints that 
describe the problem. 

The most important constraint violation for the ETP is the “clash” (or first degree 
student conflict) constraint which states that a student cannot be timetabled to sit more 
than one exam at the same time. This is an example of a hard constraint as it may not 
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be violated in finding a feasible solution. Other examples of hard constraints are 
duration and room capacity constraints; e.g. exams cannot be scheduled into time 
periods with durations shorter than that of the exam. 

The “consecutive exams” constraint is an example of a soft constraint. A violation 
of this constraint exists when a student is timetabled to sit more than one exam in 
immediate succession. This constraint exists in most instances of the exam 
timetabling problem, but may not be universal. Institutions may also add their own 
unique constraints such as not mixing language exams on the same day[2]. As 
different institutions use very different constraints it is hard to generalize the problem 
in such a way that it is applicable to all cases. Any universal model for the ETP must 
therefore have some flexibility in the constraints which are specified. 

The goal in exam timetabling is to minimize the number of violations of these 
constraints over a solution. Normally a cost is assigned to each type of constraint, 
with the hard constraints having much higher associated costs than the soft 
constraints.  The total cost for a solution is then given as the sum of the costs for all 
the violations found.  

There are many different and varying approaches to solving the exam timetabling 
problem being used at institutions and by researchers. A recent survey shows that 
these approaches include Sequential methods, Clustering approaches, Case-based 
reasoning and a number of Heuristic approaches[3].  This wide variety of the 
algorithms and software applications use different models and data formats adding to 
the cost of implementation due to handling of the model and the data. 

The data published by Carter [4] (and other publicly available data) has been used 
for some benchmarking but can relate to instances of the problem over a decade old 
since when many Universities have seen expansion in their numbers of students and 
courses, especially modular courses where students take exams from many different 
departments.  

The need for a modelling standard and a standard data format has been recognised 
for some time and the requirements of such a standard have been  discussed in detail 
[5]. These properties include generality, completeness, and easy translation with 
existing formats.  

It is the authors’ belief that other research areas where standard formats have 
become the norm have benefited from increased corporation between researchers and 
better benchmarking resources have lead to advances in research. Examples of this in 
practice are the Travelling Salesman Problem (TSPLIB) [6, 7] and  the MPL 
(Mathematical programming language), MPS (Mathematical programming standard. 

2 Progress Towards a Standard Format 

There have been at least three attempts at creating modelling languages and standard 
data formats for timetabling problems since the proposal by Burke, Kingston and 
Pepper in 1998 [5]. These are the: Standard TimeTabling Language (STTL) [8, 9], 
TimeTabling Mark-up Language (TTML)[10] and UniLang [11]. 
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STTL is a complete object oriented functional language designed to be suitable for 
modelling timetabling problems using set theory. STTL specifies the problem being 
modelled as well as the evaluation function for the model, instance data and solutions.  

TTML is based on MathML which is an XML application for modelling maths 
formulae.  The goal was to create a language with the functionality of STTL but using 
the fashionable XML. The TTML learning curve is steeper than that of STTL and 
again seems overly complicated, especially for specifying the complex logic involved 
in these problems. 

UniLang is another language with similar aims to STTL. It attempts to be a simple 
language easily understandable by humans as well as machines, modelling the 
problem by identifying subclasses of the problem and using this to guide their design. 
In the first aim it has largely been superseded by languages such as XML. Whilst 
demonstrated to be capable for its purpose, UniLang does not seem as expressive as 
STTL or TTML.  

We are unaware of any of these data formats, or any other format, being used to 
share timetabling data. The known exception to this is the publicly available datasets 
on the University of Melbourne Timetabling Problem Database website[4]. 

Perhaps, the main reason these languages have not been adopted as standard is that 
they offer no advantages to the user over any traditional programming language. 
These idealistic languages do not simplify the modelling process, and can even be 
restrictive in that they do not have all the features of a modern programming 
language, are overly complicated or appear cumbersome.  

3 A Case Study: Modelling the Exam Timetabling Problem in 
STTL 

An STTL model for the exam timetabling problem has been  created and used as the 
data format  for a working application[12, 13]. This model was based on the model 
Kingston [8] has created for the High School timetabling problem.   

 

Fig. 1. The components of an STTL Model. A complete model is made up of the Problem, 
Instances of that problem and finally Solutions for the Instances 

Each STTL problem is made up of three components, normally split into three 
different files. As its name suggests the Problem file contains the STTL code for 
modelling the problem, the constraints, and the evaluation function. The Instance file 
contains concrete data for instantiating a particular instance of the Problem and finally 
the Solution file contains values for the solution variables found in the Problem. 
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To model this problem we need to specify a problem file. The following two class 
diagrams show how we will model the entities and constraints found in our Exam 
Timetabling model: 

 

Fig. 2.  The classes that make up our ETP model 

 

Fig. 3. The Constraints that are added to our ETP problem as Classes extending the Constraint 
class 

This problem has been fully coded in STTL and is available for inspection and use online at: 
http://www.informatics.sussex.ac.uk/users/djr23/STTL/ 

The evaluation function can be used to evaluate existing solutions (in STTL 
format) demonstrating the functionality of STTL using the publicly available 
interpreter. 

4 Limitations of this Model 

This model was successfully used within a timetabling application[13], with existing 
data being converted to the STTL Instance file format. However this experience made 
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apparent some limitations of the model due to both our design approach and issues 
with STTL itself. 

The STTL language involves a learning curve and, probably because of its nature 
as an Object Oriented Functional language, is quite complicated to use. Although set 
theory is one good way of specifying these kinds of problems it might not be the best 
way from a purely modelling point of view. The code fragment below, part of the 
STTL ETP evaluation function, illustrates the complexity of this language. 
violations:SEQ[Violation] = (createViolation 
(roomViolationExist, name + " should not be scheduled 
in this room") + createVioion(timeViolationExist, name 
+ " should not be scheduled in this time") + 
createViolation(clashExist(all Exam), "Room Clash in "+ 
room.name + " at "+ time.name)) 

The design also introduces other complexities, distinct from those created due to 
the syntax; in the model presented above time is represented as a “Time” class which 
inherits directly from the “Entity” class however it seems that time and room are very 
similar classes. For consistency in design we suggest that in our Extensible Model 
these should inherit the properties of a container class (itself a resource) which is used 
to contain sets of other resources. 

There are also inconsistencies in the way that constraints are modelled. In some 
cases constraints are modelled as classes, containing all the functions for finding 
violations, however in other cases constraints are modelled as functions inside 
arbitrary classes. For example, Fig. 3 shows all the constraints we modelled apart 
from the clash constraint which is implemented as a function in the Exam class. It 
would be nice if all the constraints were modelled in the same way as this would 
allow all existing constraints to be extended and for all constraints to be handled in 
the same way by a single evaluation function. 

Due to its design the STTL interpreter can be quite slow compared to other 
languages; the application we were creating was highly interactive it needed to be 
very responsive. The STTL interpreter proved to be too slow for our purposes and so 
the evaluation function was re-implemented in Java using the STTL simply as the 
data format for input and output. 

From this experience we found that STTL was of most use as a data format for 
specifying instances and solutions precisely, whilst the evaluation functions and 
problem specifications were largely extraneous. It was found to be a relatively simple 
task to translate data from different formats into STTL.  

5 Designing a Flexible Model 

The experience of using STTL and modelling timetabling problems suggested that a 
new, maybe simpler, approach to modelling these problems should be examined. 
Rather than proposing a new timetabling language we propose the idea of a standard 
model for timetabling problems building on the ideas found in STTL but also making 
use of the functionality, standardization and ease of use provided by modern Object 
Oriented languages. 
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Our goal is to create a small and simple subset of Classes which are required to 
model the examination timetabling problem, but that can be extended or added to 
model other timetabling problems. The model will be based on the structure of the 
problem domain and its solution rather than considering any particular approach to 
solving the problem or any particular implementation language. We intend to exploit 
the features of Object Oriented programming and the UML modelling language to 
achieve this. Such a model would still need to conform to the requirements set out in  
[6] summarised as: 

 
• Generality 
• Completeness of problem  
• Ease of translation 
 

This can be augmented with the additional requirement, Ease of modelling. These 
two properties provide an actual incentive for adopting this flexible model over other 
formats which exist. Ease of modelling suggests that this framework will actually 
make it easier to model timetabling problems than using a general language and is 
achieved in two ways: 

 
1. Defined hierarchical framework 
2. Reusable components 
 

This framework will define model for the exam timetabling problem but can be 
extended to model other timetabling problems. It may well be that it won't be the most 
suitable framework for every timetabling problem but our aim is to make it suitable 
for the vast majority of applications.  

We choose an object oriented approach as this allows us to use a subset of the well 
defined UML language to specify our framework and use the standard inheritance 
mechanism to create the flexibility we require. In the examples and terminology 
below the Java language is assumed but there is no reason that the design cannot be 
implemented in another language.  

An ontology for constructing scheduling systems is proposed in [14]. The ontology 
proposed is structured around a constraint satisfaction model where activities are 
assigned resources subject to constraints. This is a good basis for modelling the 
timetabling problems and this approach is also taken in our model described below.  

Based on all these ideas we propose an extensible model based on the constraint 
satisfaction problem built up in three layers: 

 
1. Constraint Satisfaction Problem  
2. General Timetabling Problem  
3. University Examination Timetabling Problem  
 

Each layer builds upon the previous layer adding problem specific resources and 
constraints. Once the lower layers have been implemented they can be re-used for 
different timetabling problems with a minimal amount of work. The functionality 
available at each of the lower layers is always available at the highest abstraction 
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level, for example a constraint specified in the General Timetabling Problem, can also 
be applied to the ET problem. 

5.1 The Constraint Satisfaction Problem layer: 

The lowest level we consider is the constraint satisfaction problem, of which 
timetabling is an example. This problem simply consists of constraints that need to be 
satisfied, a ‘Resource’ class is added representing anything that is not a constraint. 

 

 
Fig. 4. The classes present in the Constraint Satisfaction Model 

Constraints are modelled as functional classes. Each Constraint implements the 
methods shown in Table 1. The getViolationCount() method contains the logic for 
specifying the Constraint. 

Table 1. Description of the Constraint class 

Constraint Class 
getViolationCount() Returns the number of violations of this 

Constraint found in the problem. 
getWeight() Returns the weight to be applied to violations 

of this constraint to calculate the cost of this 
solution. 

isHard() Returns true only if this is a hard constraint. 
 

By storing attributes for the weight assigned to violations of this constraint and 
whether or not the constraint is hard or soft each Constraint class becomes responsible 
for evaluating itself. An overall evaluation function in an “Evaluator” class can then 
aggregate all these evaluations into the global evaluation function for the entire 
problem. 

The final class introduced here is the Evaluator which is responsible for evaluating 
instances of this abstract Constraint Satisfaction problem. 

ConstraintSatisfactionProblem 

Resource Constraint 

Evaluator 
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Table 2. Description of the Evaluator Class 

Evaluator Class  
Evaluate() Calculates the cost of the current problem. 
isFeasible() Returns true only if no hard constraints have 

been violated. 
 
In our instance, the actual evaluate ‘function’ is very simple, and can be implemented 
in few lines in Java: 
public int evaluate(){ 

 int cost = 0;  

 for (Constraint constraint:  
 problem.getConstraints()) { 

  cost += constraint.getViolationCount() *  
   constraint.getWeight(); 

 } 

 return cost; 

} 

5.2 The General Timetabling Problem 

This model can then be extended for the abstract General Timetabling Problem, as 
illustrated below in figure 5: 

 
Fig. 5.  The Classes in the General Timetabling Model 

The representation of time is one of the most difficult design decisions to make in a 
model such as this. As Time is not a Constraint we choose to model Time as a 
sequence of Timeslots, implemented using our Container interface to which Activities 
can be assigned. Each TimeslotContainer is specified with a duration and an order, 

ConstraintSatisfactionProbleResource Constraint 

Evaluator 

TimetablingProblem Solution TimetablingConstraint 

Activity Container 

TimeslotContainer CapacityContainer 
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this simple representation could easily be extended with more information such as 
day/week information or whether a break exists beforehand.  
 

The solution is represented by a completely new Solution class which stores the 
assignment of Activities to Containers. 

Table 3. Description of the Classes found in the General Timetabling Problem 

Class Description 
Activity Any activity that is to be timetabled. 
Solution Stores the container each activity has been 

timetabled to 
TimetablingConstraint Constraints that can access the Timetabling 

resources 
Container A container where an activity can be 

timetabled 
CapacityContainer A container with a limit to the number of 

resources that can be added 
TimeslotContainer An ordered container with a specified 

duration 
 

5.3 The University Exam Timetabling Problem layer 

With the lower layers taken care of the ETP layer can be modelled relatively easily.  
Note that no work is needed to change the default Evaluator or Solution classes. In 
fact the only classes introduced here are those that directly map the abstract 
Timetabling problem to the real world Exam Timetabling application. It is envisioned 
that further timetabling problems can be modelled using this framework with similar 
ease. 
The following classes and constraints are introduced to the model to implement the 
ETP: 

 
Table 4. Resources in the Exam Timetabling Problem 

Resource  Description 
Exam Models exam activities and their enrolments. 

Enrolments are lists of students taking this exam. As 
the activity resource is extended the name and duration 
attributes are already implemented. 

Student Models a student as a resource. 
Room A Container Class in which exam activities can be 

scheduled. 
 
A working prototype of this model was built using Java and shown to work with our 
existing STTL data using a simple parser. As our design only specifies the interface of 
the model we were able to build in a number of optimizations to make our model 
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efficient at handling large data sets. The complete API specification for our model can 
be found online at: 
http://www.informatics.sussex.ac.uk/users/djr23/emdocs 

 
Fig. 6. Classes in the complete Exam Timetabling Problem model 

Some of the Constraint classes register event listeners with the Solution class so they 
are notified of any changes to the Solution. This allows an incremental approach to 
counting the violations of each constraint and much improved performance.  

6 Future Work 

In this paper an attempt to design an “extensible” modelling framework, with the aim 
of simplifying the modelling process for many timetabling problems, is reported and 
applicability of this approach is demonstrated to model the Examination Timetabling 
problem. However, to demonstrate the extensibility of the modelling framework, it 
will be necessary to show that the model works for other timetabling applications and 
that the same design consistency can be applied across different problems in this 
domain. One possibility is to set up an online repository where these different 
applications of the model (documentation, implementations and problem data) can be 
accessed. We welcome any use of this model, especially in real world systems or 
applications to other timetabling problems. 

ConstraintSatisfactionProblem Resource Constraint 

Evaluator 

TimetablingProblem Solution 
 

TimetablingConstraint 

Activity Container 

TimeslotContainer CapacityContainer 

Exam 

Student 

RoomTimeslot 

ExamTimetablingProblem 
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An alternative to the use of STTL for data format for the Timetabling models is to 
store data as a simple XML document containing the information needed to 
instantiate each Class in the model. The logic and specification of the actual problem 
would remain in the implementation language but the instance data could be 
exchanged in this format, regardless of what language the model was implemented in. 
It would also be useful to create parsers for reading and saving to other data formats 
such as the Carter data format. 

7 Concluding Remarks 

The aim of this paper has partly been to reignite discussion on the issue of “Standard 
Timetabling Languages” but mainly to promote our ideas on a different approach to 
this topic and how these problems could be modelled inline with modern 
programming paradigms.   

Unlike other approaches we have deliberately shied away from advocating a 
particular programming language (apart from for the purposes of demonstrating our 
exam timetabling model) as we believe this is best decided by the capabilities of the 
user. All mainstream languages are capable of modelling problems in this domain. 
Trying to form consensus around a standardized language is always difficult but 
focusing on this when such a language is not required can cause discussion to stagnate 
and limit progress.  

References 

1. Fisher, J.G. and R.R. Shier, A Heuristic Procedure for Large-Scale examination 
scheduling problems. Congressus Numerantium, 1983. 39: p. 399-409. 

2. Burke, E.K., D. Elliman, P. Ford, and R. Weare. Examination Timetabling in British 
Universities - A Survey. in PATAT. 1995. 

3. Gaspero, L.D. and A. Schaerf, Tabu Search Techniques for Examination Timetabling 
in Selected papers from the Third International Conference on Practice and Theory 
of Automated Timetabling III 2001 Springer-Verlag. p. 104-117  

4. The Timetabling Problem Database, 2003, retrieved on 30/01/2006 from 
http://www.or.ms.unimelb.edu.au/timetabling.html 

5. Burke, E.K., J.H. Kingston, and P.A. Pepper, A Standard Data Format for 
Timetabling Instances in Selected papers from the Second International Conference 
on Practice and Theory of Automated Timetabling II 1998 Springer-Verlag. p. 213-
222  

6. Burke, E.K. and J.H. Kingston, A Standard Format for Timetabling Instances. 
Lecture Notes In Computer Science, 1997. 1408. 

7. TSPLIB-A library of travelling salesman and related problem instances, 1995, 
retrieved on January 2006 from http://softlib.rice.edu/tsplib.html 

8. Kingston, J.H., Modelling Timetabling Problems with STTL in Selected papers from 
the Third International Conference on Practice and Theory of Automated 
Timetabling III 2001 Springer-Verlag. p. 309-321  

9. A user's guide to the STTL Timetabling Language, retrieved on January 2006 from 
http://www.it.usyd.edu.au/~jeff/ttsttl1.ps 

Modelling Framework for Examination Timetabling [...] 291



10. Ozcan, E., Towards an XML based standard for Timetabling Problems: TTML, in 
Multidisciplinary Scheduling: Theory and Applications: 1st International 
Conference, Mista '03 Nottingham, UK, 13-15 August 2003. Selected Papers, G. 
Kendall, et al., Editors. 2005, Springer-Verlag. 

11. Reis, L.s.P. and E. Oliveira, A Language for Specifying Complete Timetabling 
Problems, in Selected papers from the Third International Conference on Practice 
and Theory of Automated Timetabling III. 2001, Springer-Verlag. p. 322-341. 

12. Ranson, D., Interactive Visualisations for the Generation, Evaluation and Analysis of 
heuristics in scheduling: Thesis Progress Report 2004. 2004, Progress Report, 
University of Sussex. 

13. Ranson, D. and P.C.-H. Cheng. Graphical Tools for Heursitic Visualization. in 
Multidisciplinary International Conference on Scheduling: Theory and Applications. 
2005. New York, USA. 

14. Smith, S. and M. Becker, An Ontology for Constructing Scheduling Systems, in 
Working Notes of 1997 AAAI Symposium on Ontological Engineering. 1997, AAAI 
Press. 

 

292 D. Ranson and S. Ahmadi



Generating Personnel Schedules in an Industrial
Setting Using a Tabu Search Algorithm

Pascal Tellier1 and George White2

1 PrairieFyre Software Inc.,
555 Legget Dr., Kanata K2K 2X3, Canada

pascal@prairiefyre.com
2 School of Information Technology and Engineering,

University of Ottawa, Ottawa K1N 6N5, Canada
white@site.uottawa.ca

Abstract. We describe a system designed to be used in an industrial
setting for the scheduling of employees in a Contact Centre. The de-
mand for the employees’ services is driven by an estimated forecast for
each period of operation, currently set with a duration of 15 minutes.
The employees are drawn preferentially from a homogeneous pool. The
constraints are set by the conditions of employment and must satisfy
the requirements both of the company and the desires of individual em-
ployees who may have vary diverse interests. The system uses an initial
scheduling module that constructs a feasible schedule followed by an op-
timizing tabu search based heuristic optimizer to cast the final schedule.
This system is evaluated both with artificially constructed data and real
industrial data.

1 Introduction

One of the most important problems that arises in organizations composed of
more than a few workers is the management of personnel. Issues that arise in this
arena can be very complex and failure to observe the rules of play can result in
a wide range of outcomes ranging from isolated grumbling, reduction in general
staff morale, work stoppages, strikes, mass resignations and expensive lawsuits.
The financial impact of these factors can be enormous.

The issues involved in this area are such things as:

– who does what jobs
– when do they do it
– where do they do it
– who do they do it with
– how much are they paid

These issues are formalized by the constraints whose origins lay in the cus-
toms of the local workplace culture, collective agreements, government legisla-
tion, and informal arrangements between the persons responsible for the schedul-
ing of personnel and resources and those directly involved by the schedule. Er-
rors, misunderstanding and misinterpretation of the schedules can raise a host
of problems.
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A complicating factor is the emergence of a class of so-called “temporary
workers” who work only as required. The constraints involved in the scheduling
of these people can be more complicated to formulate and more difficult to
respect because of the various start and stop times that can be different for each
person and may depend on the day of the week, the month of the year, forecasted
demand and/or a spectrum of other considerations specific to the industry. All
this must be done within the framework of corporate objectives. The overall
goal is to balance meeting the service level while optimizing the budget and
respecting employees’ rights and preferences to keep them happy.

2 Tour Scheduling in Contact Centres

The scheduling of personnel can often be accomplished in two phases, the phase
that deals with time-of-day or shift scheduling, and the phase that deals with
day-of-week scheduling. Baker [1] has named this type of labour scheduling tour
scheduling. If the work force can be classified into different types (usually corre-
sponding to different skill levels) it is described as heterogeneous. If we are dealing
with one skill level, as is the case with this paper, it is called homogeneous.

Recent reviews of the tour scheduling literature have been published by Al-
fares [2] and by Ernst et al[3]. It is one thing to find feasible schedules i.e.
schedules that satisfy all the staffing rules but quite another to find an optimal
feasible schedule i.e. one that not only satisfies the rules but also minimizes (or
maximizes) some objective function. Alfares [2] has found 14 different criteria
used by various authors to formulate these objective functions. Of these criteria,
the ones germane to the present problem are the total daily and weekly hours
worked, under and over staffing and employee satisfaction.

Alfares has also partitioned the methods used for optimizing functions that
incorporate these criteria into 10 categories. The work reported here uses the
tabu search (TS) created by Glover [4].
As stated by Ernst et al.: [3]

.... heuristics are generally the method of choice for rostering software
designed to deal with messy real world objectives and constraints that
do not solve easily with a mathematical programming formulation.

Contact centres are an integral part of many businesses. They are composed
of their staff whose job it is to answer or initiate telephone calls, to answer ques-
tions or to solicit business. The literature on contact centres has been reviewed
by Gans et al. [5]. Scheduling the staff in these centres is almost never solved
to optimality due to the complexity of the requirements. Suboptimal solutions
that can be used in practice are formulated using heuristic methods.

This paper describes a typical problem that arises in the scheduling of per-
sonnel in contact centres and describes a solution based on tabu search. The
system, part of which is described here, was undertaken by PrairieFyre Software
Inc.
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Fig. 1. Typical schedule

3 Problem Specifics

The problem at hand is to generate a schedule si,j where: i is an integer index
specifying a person and j is an integer index specifying a period, a fixed interval
of time. si,j represents the state of personi during periodj . This state can have
values corresponding to: on-the-job, not working, on paid break, on unpaid break,
on vacation, and a few other things. For our purposes we can simplify the value
of si,j such that it equals 1 when personi is on-the-job during periodj and 0
otherwise. Then the number of persons working during periodi is given by:

wj =
∑

i

si,j

The total number of person-periods working over the entire schedule is given
by:

W =
∑

j

wj

For each periodj a forecast fj is obtained by some method such as reference
to historical data or by a modified Erlang calculation. This forecast is an estimate
of the number of persons “on duty” during the period concerned. This is just
equal to the number of persons at work at the time minus the number having a
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break. If wj − fj is negative, there are too few persons working and the schedule
is said to be underscheduled during that period. If the difference is positive, there
are too many persons working during that period and the schedule is said to be
overscheduled during that period. The penalty assessed for the entire schedule S
is calculated as

P (S) =
∑

j

(wj − fj)2

In the field it may be desirable to change the form of the penalty to reflect the
overall number of people being scheduled. A shortfall of 2 persons is not too
important when 50 people are supposed to be scheduled, however a shortfall of
2 when 3 are to be scheduled can be very bad. A “typical” schedule looks like
the one shown in figure 1.

Each person in the workforce and each shift have several important at-
tributes. These are:

– Persons
• name
• scheduling priority
• minimum hours between shifts
• minimum daily hours
• maximum daily hours
• minimum weekly hours
• maximum weekly hours
• earliest start time (for each day of the week)
• latest end time (for each day of the week)

– Shifts
• name
• type
• typical hours
• maximum hours
• minimum hours
• earliest start time
• latest start time

– Breaks
• name
• duration
• paid or not
• shift length required to qualify
• earliest start time after beginning of shift
• latest start time after beginning of shift
• minimum minutes before end of shift

The persons are the staff members to be scheduled. Each line on figure 1 is
a graphic representation of the working day of a different person. The shifts are
the periods during which a person is on the job. Each shift has zero or more
breaks during which that person is off duty. A break may be paid or unpaid.
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4 Constraints

A feasible schedule is one that satisfies a set of constraints. The constraint set
used here can be divided into four parts.

4.1 Weekly Constraints

For all workers

– sum of working paid hours each week ≤ maximum weekly hours for that
worker

– sum of working paid hours each week ≥ minimum weekly hours for that
worker

– for all days, each person-shift must be separated by at least the minimum
hours between shifts

4.2 Daily constraints

Each person-shift

– must start ≥ earliest start time for that day for that person
– must end ≤ latest end time for that day for that person
– must start ≥ earliest start time for that shift
– must end ≤ latest end time for that shift
– shift length ≤ maximum daily hours for that person
– shift length ≥ minimum daily hours for that person (if working that day)
– shift length ≤ maximum shift length
– shift length ≥ minimum shift length

4.3 Breaks

Each shift-break

– length of shift into which break is embedded≥ shift length required to qualify
– start time ≥ earliest start time after beginning of shift
– start time ≤ latest start time after beginning of shift
– start time ≤ shift end time - minimum hours before end of shift

4.4 Global constraints

Since this work is designed for use in a real contact centre a number of prac-
tical features have been built in. These features generally remove some of the
constraints, thereby reducing the penalty of an eventual solution. Some of these
are

– override the available times specified by the employees
– override the days specified as unavailable by the employees
– calculate penalty only during “office hours”

There are six classes of overrides that can be used by the scheduling officers.
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4.5 Other

Another feature completely inhibits optimization of one or more days of the
schedule. Use of this feature will worsen the quality of the optimization but
allows the unoptimized days to be scheduled “as is” i.e. exactly as cast by an
existing initial schedule generator or cast manually or partially manually by
the scheduling officer. Not all of the constraints have been implemented in the
current version.

5 Goal

Each day of interest is divided into a number of periods of the same duration.
The results described here refer to the case where the day consists of 96 periods,
each one lasting 15 minutes. Each period is assigned a forecast of the number
of workers required during that period. The number who are actually on duty
should ideally be equal to the number forecast for that period. Each period is
assigned a penalty equal to the square of the difference between the forecasted
value and the number actually on duty. The penalty corresponding to a complete
day is defined to be the sum of the penalties of all its periods. The goal of the
scheduler is to cast a schedule such that all constraints are satisfied and the
penalty of each day is as low as possible.

The forecasted number of employees required for each period is calculated
by using a modified Erlang calculation. These numbers may be modified by a
supervisor to account for local or unusual circumstances.

In practice, it may be preferable to attempt to minimize a penalty function
that takes into account the total number of employees being scheduled and
minimize the percentage deviation from the desired number of employees rather
than the square of the absolute deviation. At present, however, we are concerned
exclusively with absolute deviations.

With this explanation we can write formally that the problem consists in
casting S such that:

1. P (S) is minimized
2. the constraint set ci � ai is satisfied

– ci is the left hand side of the constraint
– � is a relational operator
– ai is the constant on the right hand side

The implementation has been constructed in such a way that other possible goals
can be easily incorporated. There are two alternate goals under consideration:

1. The number of understaffed periods is zero and the overall penalty as previ-
ously described is minimized.

2. The total dollar cost (salary) of the workers (including various rates of pay
and overtime) is minimized while supplying a minimum level of service.
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6 Tabu Search

The well known tabu search methodology [4] has proven to be a robust method
of finding heuristic minimums of complex scheduling problems in reasonable
times [6] [7] [8] [9] . Tabu search (TS) is a heuristic procedure designed to guide
the search for an optimal schedule through the trap of local minima. Starting
from an initial solution s0 the TS algorithm iteratively explores a subset V ∗

of the neighbourhood N(s) of a current solution s. The member of V ∗ that
gives the minimum value of the objective function becomes the new current
solution independently of whether its value is better or worse than the value
corresponding to s. If N(s) is not too large, it is possible and convenient to take
V ∗ = N(s). This strategy may induce cycling.

In order to prevent cycling, the algorithm calculates a so-called tabu list, a list
of moves which the search portion of the procedure is forbidden to make. This is
a list of the last k accepted moves (in reverse order) and it is often implemented
as a queue of fixed size. At equilibrium, when a new move is added, the oldest
one is discarded.

There is also a mechanism that may override the tabu status of a move. If
a move could give a large improvement (reduction) of the objective function,
then its tabu status is dropped and the resulting solution is accepted as the new
current one. This is implemented by defining an aspiration function A that, for
each value v of the objective function, returns another value v′ that represents
the value that the algorithm aspires to reach from v. Given a current solution s,
the objective function f(s), and a neighbour solution s′, then if f(s′) ≤ A(f(s))
then s′ can be accepted as the new current solution, even if s′ is in the tabu list.

The procedure stops either after a given number of iterations without im-
provements or when the value of the objective function in the current solution
reaches a given lower bound.

The main control parameters of the procedure are the length of the tabu list,
the aspiration function A, the cardinality of the set V ∗ of neighbour solutions
tested at each iteration, and Tsmax, the maximum number of iterations allowed
that do not improve the objective function.

The tabu search strategy is implemented in the following way:

1. An initial schedule s0 ∈ X is chosen by an approximate but rapid method.
X is a set of feasible solutions.

2. Certain variables controlling the stopping conditions are initialized here.
These variables consist of the maximum number of iterations permitted, the
maximum time the program is permitted to run and other similar quantities.
These variables are used to determine whether the program should terminate
or continue at step 4. The tabu list T is implemented as a linked list. The
tenure was given a fixed value of 10. The value of the objective function
corresponding to the initial solution is calculated.

3. The aspiration function is set to return the minimum value found so far.
4. At this point the program enters its main loop which exits when one of the

following conditions become true:
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– the best solution found yet has a penalty = 0.
– the number of iterations without improvement ≥ some maximum value,

currently set to 1,000.
5. Each schedule s ∈ X can be modified by applying a simple perturbation

called a move to s. The neighbourhood, N(s), consists of all feasible solu-
tions that can be obtained by applying the perturbation to s. There are two
separate move classes considered:

– swapping two periods of one person
– extending or shortening the schedule of one person by one period at

the beginning or the end of their shift. This has the effect of either
lengthening or shortening the shift or sliding it forwards or backwards
by a small amount.

For each person, these are applied sequentially. First all swapping possi-
bilities are considered. Next, depending on whether the schedule is over or
under scheduled, shortening or lengthening the shift is tried. Finally sliding
the shift forward and backward is considered.

6. A subset of feasible solutions V ∗ ⊆ N(s) is constructed from the elements
of N(s) in the following way. An element s′ ∈ N(s) is placed in V ∗ unless s′

is in the tabu list T . However, even if s′ ∈ T , it will be still be placed in V ∗

if f(s′) < A(f(s)). f(s′) is the penalty or objective function associated with
schedule s′ and A(f(s)) is the value of the aspiration function associated
with each value of the objective function f . Thus A(f(s)) is the value of the
aspiration function associated with schedule s. In our work, A(f(s)) = f(s0)
where s0 is the best schedule found so far i.e. f(s0) is the lowest value of
the objective function calculated as of yet. Note that s is not a member of
its own neighbourhood. Therefore s 6∈ V ∗.

7. The penalties f(s∗) associated with each s∗ ∈ V ∗ are calculated and the
value s∗ having the lowest value f(s∗) is chosen. This is done even if s∗ is
worse than the current schedule. There are cases where the shift and break
requirements are so strict that no legal moves are possible. In this case, the
step is exited immediately.

8. The tabu list is updated with the new solution found s∗. Rather than storing
the entire solution in the list, the move itself is stored, making list manage-
ment easier. Any list entries whose tenure ≥ 10 are discarded.

9. The new solution is compared to the best solution found so far s0.
10. If the new solution is better, it replaces the now former best solution.
11. The current solution becomes the new solution.

7 The initial solution

The initial solution s0 is constructed by an existing algorithm. The quality of
this solution varies widely from instance to instance, sometimes producing good
solutions and sometimes producing bad ones. The present program starts by
calling a module we call the initial solution evaluator that analyzes the quality
of this solution and may alter it severely, removing some shift instances com-
pletely if the solution is overscheduled and adding new shift instances if it is
underscheduled.
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8 Evaluation of the algorithm

The algorithm has been tested both with contrived data (test data) i.e. data
that has been constructed to test specific features of the specification and the
algorithm, and customer data i.e. real data furnished by existing customers.
In both cases measurements have been made of the algorithm’s ability to cast
heuristically optimal schedules. These tests have been made using the module
that starts by generating initial schedules and without using this module. In
the latter case, the tabu search starts from an empty schedule and uses its own
initial schedule evaluator to build a crude initial schedule and then uses the tabu
portion to optimize it. The results are shown in the table below.

Table 1. Some test results

Name length conditional before after reduction % reduction time (sec)

Test1 1 day with initial 128 13 115 0.900 35.9
Test2 1 day with 983 61 922 0.938 36.8

without 5095 71 5024 0.986 33.0
Test3 7 days with 1742 145 1597 0.917 218.0
Cust1 1 day with 6241 32 6209 0.995 90.2

without 1381 24 1357 0.983 13.6

The relative reduction in these examples is never less than 0.90, showing that
the tabu algorithm is capable of reducing the penalty of a schedule to less than
10% of its initial value. The best case shown was obtained for customer data
(from a real customer!) and reduced the penalty from 6241 to 32, or about one
half of one percent of its original value.

Obviously the initial schedule has a heavy influence on the penalty of the final
schedule. The relative reduction values that look so impressive are partially due
to the bad results sometimes produced when the penalty of the initial schedule
is calculated.

In all cases the TS algorithm was able to reduce the penalties of schedules
significantly (better than 90%).

9 Implementation Details

The algorithm was coded in C# using the Microsoft Visual Studio .NET 2003
IDE. The results quoted in the table above were measured using a single pro-
cessor Pentium 4 System with 1 GByte of RAM clocked at 2.40 GHz.

10 Conclusions

After testing with both artificial and real data the heuristic optimizer based on
the classic tabu search paradigm was proven to generate employee schedules that
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satisfy the constraints and have penalties much lower than schedules generated
by the initial construction algorithm. Typically the penalty associated with an
initial schedule is reduced by 90% or more.

A visual inspection of the final schedule often gives the impression that it is
optimal, although one can never be sure. There does not appear to be a test suite
for personnel problems such as the one available for examination schedules, so
there is no way of comparing our results with those found using other systems.
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Abstract. Linear Linkage Encoding (LLE) is a recently proposed representation
scheme for evolutionary algorithms. This representation has been used only in
data clustering. However, it is also suitable for grouping problems. In this pa-
per, we investigate LLE on two grouping problems; graph coloring and exam
timetabling. Two crossover operators suitable for LLE are proposed and com-
pared to the existing ones. Initial results show that Linear Linkage Encoding is a
viable candidate for grouping problems whenever appropriate genetic operators
are used.

1 Introduction

In spite of the satisfactory performance of Evolutionary Algorithms (EA) on many
NP Optimization problems, the same achievement is not usually observed on group-
ing problems where the task is to partition a set of objects into disjoint sets. This is
because the commonly used representations usually suffer from redundancies due to
the ordering of groups. Moreover the genetic material might easily be disrupted by the
genetic operators and/or by the rectification process after the operators are applied.

Timetabling problems are real world NP Hard [7] problems. Discarding the rest
of the constraints, attempting to minimize the timetabling slots while satisfying the
clashing constraints turns out to be graph coloring problem [19]. For this reason, new
representation schemes and operators used in graph coloring are also of interest to the
researchers in the timetabling community.

In the paper, we are investigating a recently proposed encoding scheme for group-
ing problems, Linear Linkage Encoding (LLE) [6]. LLE has only been tested on small
clustering problem instances, and authors claim that the LLE performance is superior
to Number Encoding (NE), the most common encoding scheme used in grouping prob-
lems. Unlike NE, LLE does not require an explicit bound on the number of groups that
can be represented in a fixed-length chromosome. The greatest strength of LLE is that
the search space is reduced considerably. There is a one to one correspondence between
the chromosomes and the solutions when LLE is used. Consequently the aim of this
paper is to present the potential of the LLE representation on grouping problems. Previ-
ous studies denote that traditional crossover operators do not perform well. Therefore,
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a set of new crossover operators suitable for LLE are also tested on a set of problem
instances including Carter’s Benchmark [5] and DIMACS Challenge Suite [18].

This paper is organized as follows: We first define the grouping problems and com-
mon representations for them. The fundamentals of Linear Linkage Encoding is fol-
lowed by the definition of the graph coloring problem. Then the operators of the al-
gorithm with special crossovers are presented. Computational experiments and conclu-
sions are given at the end of the paper.

2 Grouping Problems

Grouping problems [8] are generally concerned with partitioning a set V of items into
a collection of mutually disjoint subsets Vi of V such that

V = V1 ∪ V2 ∪ V3..... ∪ VN and Vi ∩ Vj = Ø where i 6= j.

Obviously, the aim of these problems is to partition the members of set V into N
different groups where (1 ≤ N ≤ |V |) each item is in exactly one group. In most of the
grouping problems, not all possible groupings are permitted; a valid solution usually has
to comply a set of constraints. For example in graph coloring, the vertices in the same
group must not be adjacent in the graph. In bin packing problem, sum of the sizes of
items of any group should not exceed the capacity of the bin, etc. Hence, the objective
of grouping is to optimize a cost function defined over a set of valid groupings. In
both graph coloring and bin packing the objective is to minimize the number of groups
(independent sets and bins respectively) subjected to the mentioned constraints.

Grouping problems are characterized by the cost function based on the composition
of the groups. An item in isolation has little or no meaning during the search process.
Therefore, the building blocks that should be preserved in an evolutionary search should
be the groups or the group segments.

2.1 Representations in Grouping Problems

The most predominant representation in grouping problems in both evolutionary and
local search methods is Number Encoding (NE). In NE, each object is encoded with
a group id indicating which group it belongs to. For example the individual 2342123
encodes the solution where first object is in group 2, second in 3, third in 4, and so
on. However, it is easy to see that the encoding 1231412 represents exactly the same
solution, since the naming or the ordering of the partition sets is irrelevant. The draw-
backs of this representation are presented in [8] and it is pointed out that this encoding
is against the minimal redundancy principles for encoding scheme [24].

Another representation for grouping problems is Group Encoding (GE). The objects
which are in the same group are placed into the same partition set. For instance, the
above sequence can be represented as (1, 4, 6)(2, 7)(3)(5). The ordering within each
partition set is unimportant, since search operators work on groups rather than objects
unlike in NE. However the ordering redundancy among groups still holds. For instance,
(2, 7)(3)(5)(1, 4, 6) would again represent the same solution.
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2.2 Linear Linkage Encoding

LLE can be implemented using an array. Let the entries in the chromosome be indexed
with values from 1 to n. Each entry in the array then holds one integer value which is
a link from one object to another object of the same partition set. With n objects, any
partition set on them can be represented as an array of length n. Two objects are in the
same partition set if either one can be reached from another through the links. If an entry
is equal to its own index, then it is considered as an ending node. The links in LLE are
unidirectional, thus; backward links are not allowed. In short, in order to be considered
as a valid LLE array, the chromosome should follow the following two rules:

– The integer value in each entry is greater than or equal to its index but less than or
equal to n.

– No two entries in the array can have the same value; the index of an ending node is
the only exception to this rule.

In LLE, the items in a group construct a linear path ending with a self referencing
last item. It can be represented by the labeled oriented pseudo (LOP) graph. A LOP
Graph is a labeled directed graph G(V,E), where V is the vertex set and E is the edge
set. A composition of G is a grouping of V (G) into disjointed oriented pseudo path
graphs G1, G2, ....Gm with the following properties:

Fig. 1. LLE Array and LOP Graphs

– Disjoint paths:
⋃m
i=1 V (Gi) = V (G) and for i 6= j, V (Gi)

⋂
V (Gj) = Ø

– Non-backward oriented edges: If there is an edge e directed from vertex vi to vk
then i ≤ k.

– Balanced Connectivity
– a. |E(G)| = |V (G)|
– b. each Gi has only one ending node with an in-degree of 2 and out-degree of 1.
– c. each Gi has only one starting node whose in-degree = 0 and out degree = 1

– All other |V (Gi)| − 2 vertices in Gi have in-degree = out-degree = 1.

There are three clear observations regarding LOP Graphs:

1. Given a set of items S, there is one and only one composition of LOP Graphs
G(V,E) for each grouping of S, where |V | = |S|.

2. The number of LOP Graphs is given by the nth Bell Number [6].
3. LLE in array form is a unique implementation of the LOP graph.
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2.3 Exam Timetabling as a Grouping Problem

Exam timetabling requires satisfactory assignment of timetable slots (periods) to a set
of exams. Each exam is taken by a number of students, based on a set of constraints.
In most of the studies, NE like representations are used. In [3], a randomly selected
light or a heavy mutation followed by a hill climbing method was applied. Various
combinations of constraint satisfaction techniques with genetic algorithms can be found
in [20]. Paquete et. al. [23] applied a multi-objective evolutionary algorithm based on
pareto ranking with two objectives: minimize the number of conflicts within the same
group and between groups. Wong et. al [26] applied a GA with a non-elitist replacement
strategy. After genetic operators are applied, violations are repaired with a hill climbing
fixing process. In their experiments a single problem instance was used. Ozcan et. al.
[22] proposed a memetic algorithm (MA) for solving exam timetabling at Yeditepe
University. MA utilizes a violation directed adaptive hill climber.

Considering the task of minimizing the number of exam periods and removing the
clashes, exam timetabling reduces to the graph coloring problem [19].

2.4 Graph Coloring Problem as a Grouping Problem

Graph Coloring (GCP) is a well known combinatorial optimization problem which is
proved to be NP Complete [11]. Informally stated, graph coloring is assigning colors
to each vertex of an undirected graph such that no adjacent vertices should receive the
same color. The minimal number of colors that can be used for a valid coloring is called
the chromatic number. A more formal definition is as follows:

Given a graph G = (V,E) with vertex set V and edge set E, and given an integer
k, a k-coloring of G is a function c : V → 1, ..., k. The value c(x) of a vertex x is called
the color of x. The vertices with color r (1 ≤ r ≤ k) define a color class, denoted Vr.
If two adjacent vertices x and y have the same color r, x and y are conflicting vertices,
and the edge (x, y) is called a conflicting edge. If there is no conflicting edge, then the
color classes are all independent sets and the k-coloring is valid. The Graph Coloring
Problem is to determine the minimum integer k (the chromatic number of G - χ(G) )
such that there exists a legal k-coloring of G [1].

In the literature there are many heuristics devised for finding chromatic number and
solving k-coloring problems. Early applications of GCP solvers are simple constructive
methods [2], [19] which color each vertex of the graph one after another based on dy-
namic ordering of the vertices according to its saturation degree as in DSATUR. Local
search methods such as tabu search [14] and simulated annealing [16] have been fol-
lowed with hybridizations of these techniques with genetic algorithms [9], [10] which
resulted the state of the art graph coloring algorithms.

Graph coloring is generally considered as a difficult problem for pure Genetic Algo-
rithms [13]. Currently, the most successful algorithms are memetic algorithms [9], [10]
which hybridize the evolutionary techniques with a local search method. In this ap-
proach, the role of genetic operators is limited to finding promising points in the search
landscape from which the local search can initiate. Hence, the exploration of the search
space is carried out by the local search operator. For instance in Galinier and Hao’s
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hybrid algorithm [10], a crossover operation is proceeded by a tabu search procedure
which may last thousands of tabu iterations.

There are mainly two reasons for the unsuccessful attempts of using pure genetic
implementations on graph coloring: The redundancies inherent in the representations
used for the encoding of the chromosome, and lack of a suitable crossover operator
which would transmit the building blocks efficiently, preferably with some domain
knowledge. In this paper, we are mainly interested in the representational issues, but
we also present suitable crossover operators for the proposed multi-objective genetic
algorithm.

3 A Multi-Objective Genetic Algorithm for Graph Coloring and
Timetabling

Note that our main intention in this study is to propose a multi objective solution founda-
tion to multi-constraint timetabling problems. To our knowledge, none of the efficient
graph coloring algorithms in the literature empowers genetic operators as their main
search mechanism. These methods usually rely on local search operators. We are more
interested in the applicability of linear linkage encoding on grouping problems by using
suitable crossover and mutation operators. We present a multi-objective genetic algo-
rithm employing weak elitism and the main search operator of this approach is mutation
aided by crossover.

3.1 Initialization

Since we are dealing with a minimal coloring problem (where the objectives are to min-
imize the number of colors and number of conflicting edges), it is desirable to initialize
the population with individuals having different number of colors. Setting the range of
number of colors too wide will unnecessarily increase the search space and thus the
execution time. It is also undesirable to set the range too narrow either. Such a scheme
will prevent promising individuals with different number of colors from cooperating
through crossover and mutation. Tight lower and upper bounds can be found based on
the maximal clique and maximal degree of the graph. Since exact or approximate chro-
matic numbers in the test instances are already known, these bounds are set manually
in this study.

In our experiments, we have used a population with individuals having different
number of colors and an external population which holds the best individuals with the
minimal conflicts for a specific number of colors within a search range (lowerBound ≤
k ≤ upperBound). In order to create an individual, first k is determined, then a k-
colored individual is randomly created. An external smart initialization method was not
used to reduce the edge conflicts in order not to give any bias to our crossover operators
and let the multi-objective evolutionary method do the search.

3.2 Selection

A k-coloring problem is solved when the number of conflicting edges is zero. If a k col-
oring solution is obtained, k+1 colorings can also be generated by dividing independent
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sets into two. It might be possible to unite two sets in a k+1 coloring to obtain a k color-
ing. The pareto front will almost be a straight line along the color axis with zero conflict
if the lower bound is set close to the chromatic number. A restricted multi-objective
method might work efficiently on a search range within specified bounds around the
chromatic number.

As a multi-objective genetic algorithm a modified version of Niched Pareto Genetic
Algorithm (NPGA) described in [15] was used. In NPGA, two candidate individuals
are selected at random from the population to be one of the mates. A comparison set
is formed from randomly selected individuals within the population. Each candidate
is then compared against each individual in the comparison set. If one candidate is
dominated by the comparison set (which means it is worse for every part of the objective
function than any individual in the comparison set) and the other is not, then the latter
is selected for reproduction. If neither or both are dominated by the comparison set,
then niching is used to select a winner mate. The size of comparison set (tdom) allows
a control over the selection pressure. The comparison set size was preset to around ten
percent of the population size as suggested by [15].

When neither or both candidates are dominated by the comparison set, the candidate
with a smaller niche count is selected for reproduction. We calculate the niche valuemi

of the ith individual by:
mi =

∑

j∈pop
sh(d[i, j]) (1)

where d[i,j] is the distance between two individuals according to objective function
values and sh(d) is the sharing function which is:

sh(d) =





1 if d = 0
1− d/µshare if d < µshare

0 if d ≥ µshare.
(2)

and the distance measure is Manhattan distance in terms of color and conflict values in
the individuals. The objective functions cix and cjx represents the number of colors and
edge conflicts respectively for parents i, j where x = {1, 2}.

d[i, j] = |ci1 − cj1|+ |ci2 − cj2| (3)

3.3 Redundancy and Genetic Operators

Although LLE in theory is a non-redundant representation for grouping problems, prac-
tically this advantage disappears if the search operators do not adhere to this principle.
Therefore a more desirable option is to make the search non-redundant additional to
the representation. For example consider a basic hill climbing mutation which sends
one vertex from one set to another. This is analogous of changing a gene value in the
number encoding. If majority of the group ids of the items can be maintained for a long
period of time, then it is quite possible to make a low-redundant search even on a highly
redundant encoding such as NE. This is one of the reasons local search based methods
are quite successful on grouping problems. Because of the small perturbations on the
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search space, these methods not only preserve the building blocks on the candidate so-
lution but also are able to operate on a low-redundant small region of the large search
landscape.

The same advantage, unfortunately does not hold for crossover which makes huge
jumps on the search space. It is possible to keep the majority of the group ids of the
items fixed by using traditional crossovers like one-point or uniform crossover. Such
methods, however do not preserve the groups which are the building blocks themselves.
Therefore, a crossover operator should preserve the order of the colors as long as possi-
ble. Two ordering mechanism which assigns group ids to the groups after crossover and
mutation are investigated within the context of LLE. These two redundancy elimination
mechanisms are based on the cardinality of the groups and the lowest index number at
each group. In [25], the authors investigated the effect of these two methods on Graph
Coloring by using 0/1 ILP SAT solvers.

Cardinality Based Ordering In Cardinality Based Ordering, each group receives a
group id according to its cardinality (set size). Groups are sorted according to their car-
dinality and the group with the highest cardinality will be assigned group id 1, the sec-
ond highest will be identified as group 2, and so on. For example groups (1, 3)(5)(2, 4, 6)
are indexed as V1 = (2, 4, 6), V2 = (1, 3), and V3 = (5). Since more than one group
can have the same cardinality, the ordering might not be unique.

Lowest Index Ordering In Lowest Index Ordering, the smallest index in each group
is found first, then the group with the smallest index number is assigned group id 1,
the group with the second smallest index number is assigned group id 2, and so on.
For example, groups (1, 3)(5)(2, 4, 6) are indexed as V1 = (1, 3), V2 = (2, 4, 6), and
V3 = (5). Since each group has one unique lowest index, the ordering is always unique.

3.4 Crossover

Linear linkage encoding can be implemented using one dimensional arrays, allow-
ing applicability of the traditional crossover methods such as, one point or uniform
crossover. However, it is observed that these crossovers can be too destructive espe-
cially for graph coloring due to the danger of introducing new links in the LOP graph
absent in both parents. Also since the building blocks [12] in graph coloring are strictly
large independent sets (not even independent set segments), there is a risk of destruct-
ing these building blocks. However, for small problem instances, one-point crossover in
LLE is reported to generate satisfactory results for clustering problem [6]. (This might
be due to the fact that building blocks may be a segment of clusters rather than the
whole cluster.)

Unfortunately we have observed a very poor performance from one point crossover
in our experiments. It was not even able to generate solutions in the color search range
we specified.

Three types of crossover operators are compared using LLE representation.
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Greedy Partition Crossover Graph Coloring Problem can be considered as partition-
ing the graph into independent sets. Therefore by preserving the large independent sets,
the vertices in non-independent sets can be forced to form independent sets as well.

Greedy Partition Crossover (GPX) was proposed by Galinier and Hao [10] in their
Hybrid Graph Coloring Algorithm. The idea is to transmit the largest set (group) from
one parent, then to delete the vertices in this largest set from the other parent. This
transmission and deletion process is repeated on both parents successively until all of
the vertices are assigned to the child.

Two forms of Greedy Partition Crossover by following the rules of Cardinality and
Lowest Index Ordering are implemented. The difference is just assigning the color ids
to the groups after the crossover. In GPX Lowest Index Crossover (GPX-LI), the groups
with lower index numbers are given lower color ids, whereas in GPX Cardinality Based
Crossover (GPX-CB), the lower color ids are assigned to the groups with higher cardi-
nality. A general pseudocode of GPX is presented in Algorithm 1.

Consider two parents in Figure 2. We can obtain the child as follows: Largest
Set in parent 1 is (3, 4, 5, 6). This set is transmitted to the child and 3, 4, 5 and 6
are deleted from parent 2. After this deletion largest set in parent 2 (1) is transmit-
ted to the child. Finally (2) is assigned as the last group. After sorting according to
lowest index ordering (GPX-LI), the coloring then becomes C1 = (1), C2 = (2),
C3 = (3, 4, 5, 6). If the groups are sorted according to their cardinality (GPX-CB), the
coloring is C1 = (3, 4, 5, 6), C2 = (1), C3 = (2).

Both GPX-LI and GPX-CB are applicable to other representations such as num-
ber or group encodings. Our intention of using these crossovers is to create crossover
operators applicable only to LLE. The following two crossovers are inspired from GPX.

Algorithm 1 Greedy Partition Crossover
Require: Two Parents - parent1 and parent2 in LLE form.
Ensure: One offspring in LLE form.
1: currentParent = Random(parent1, parent2).
2: repeat
3: largestSet = Find largest set in currentParent.
4: transmit unassigned the vertices (links) in the largestSet to offspring.
5: mark transmitted vertices as assigned.
6: if currentParent = parent1 then
7: currentParent = parent2.
8: else
9: currentParent = parent1.

10: end if
11: until all vertices are assigned
12: if Lowest Index Ordering is Used then
13: sort group ids according to lowest index number (GPX-LI).
14: else
15: sort group ids according to cardinality (GPX-CB).
16: end if

310 Ülker et al.



Fig. 2. a) Two Parents in LLE Array and LOP Graph form. b) Resulting offspring from
Greedy Partition Crossover - Lowest Index Ordering c) Resulting offspring from Greedy Par-
tition Crossover - Cardinality Based Ordering. d) Resulting offspring from Lowest Index First
Crossover. e) Resulting offspring from Lowest Index Max Crossover.
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Lowest Index First Crossover In Lowest Index First Crossover (LIFX), the goal is to
transmit the groups beginning with lowest index numbers. LIFX works as follows:

A parent is randomly selected. Beginning with the lowest index (vertex) which has
not been assigned yet, the vertices are transmitted to the child by following the links.
If the vertices along the path are assigned before, they are skipped. The process is
repeated by successively changing the parents for transmission until all of the vertices
are assigned to the child. A general pseudocode of LIFX is presented in Algorithm 2.

The application of LIFX on the parents in Figure 2 would be as follows: Assum-
ing we begin with first parent, current lowest index number is 1. Therefore, (1, 2) is
transmitted to the child. The current lowest index number is now 3. Switching to parent
2, we copy (3, 6) as the next group. Switching back to parent 1, current lowest index
is 4, therefore (4, 5) is copied to the child. Final coloring then becomes: C1 = (1, 2),
C2 = (3, 6), C3 = (4, 5).

Note that this crossover prioritizes groups beginning with the lowest index number,
therefore it reduces the sizes of the groups beginning with higher index numbers. This
is in concordance with the nature of LLE, because the number of possible values for the
higher index locations is lower.

Algorithm 2 Lowest Index First Crossover
Require: Two Parents - parent1 and parent2 in LLE form.
Ensure: One offspring in LLE form.
1: i = 1
2: currentParent = Random(parent1, parent2).
3: repeat
4: lengthOfParent = Calculate the path length of currentParent starting from i.
5: transmit unassigned vertices (links) in the parentToSelect to offspring.
6: mark transmitted vertices as assigned.
7: i = next unassigned vertex.
8: if currentParent = parent1 then
9: currentParent = parent2.

10: else
11: currentParent = parent1.
12: end if
13: until all vertices are assigned

Lowest Index Max Crossover In Lowest Index Max Crossover (LIMX), the child is
generated with two objectives: Transmit large groups to preserve Cardinality Based Or-
dering, and to transmit groups beginning with lowest index number (to preserve Lowest
Index Ordering). Therefore this method can be considered as an amalgamate of LIFX
and GPX. LIMX works as follows:

Beginning with the lowest index number (vertex) which has not been assigned first
we calculate the length of the links (path length) in both parents. Already assigned
vertices are not counted in this link length calculation. This allows finding the largest
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set in parents beginning with the lowest index number. Then the links (and thus vertices)
are transmitted to the child from the parent with the greater link-length. After that next
unassigned lowest index number is found and the process is repeated until all vertices
are assigned. A general pseudocode of LIMX is presented in Algorithm 3.

Application of LIMX to parents in Figure 2 is as follows: Current lowest index is 1.
(1, 3, 6) is longer than (1, 2) so (1, 3, 6) is copied to the child. Current lowest index is
now 2. (2, 4) is larger than (2) so it is transmitted to the child. Finally (5) is copied to the
child as the last group. At the end of LIMX the coloring then becomes: C1 = (1, 3, 6),
C2 = (2, 4), C3 = (5)

Algorithm 3 Lowest Index Max Crossover
Require: Two Parents - parent1 and parent2 in LLE form.
Ensure: One offspring in LLE form.
1: i = 1
2: repeat
3: lengthOfParent1 = Calculate the path length of parent1 starting from i.
4: lengthOfParent2 = Calculate the path length of Parent1 starting from i.
5: if LengthOfParent1 < LengthOfParent2 then
6: parentToSelect = parent1.
7: else
8: parentToSelect = parent2.
9: end if

10: transmit unassigned vertices (links) in the parentToSelect to offspring.
11: mark transmitted vertices as assigned.
12: i = next unassigned vertex.
13: until all vertices are assigned

3.5 Mutation

We have used a mutation scheme that sends a selected conflicting vertex x from its color
set to the best possible other one. A tournament method is used to select a vertex for
transfer. A percentage of conflicting vertices are taken into a tournament and the vertex
with the highest conflict in this set is transferred to a best color available.

As aforementioned, assigning group ids after crossover is essential for low redun-
dancy and the success of the mutation. In GPX-LI, LIMX and LIFX, the ids are assigned
according to Lowest Index Ordering whereas in GPX-CB the ids are assigned according
to Cardinality Based Ordering.

3.6 Replacement

In our simulations we have employed a trans-generational replacement with weak elitism.
At each generation, λ (non elitist) + µ (elitist individuals, one for each number of colors
within the searching range) individuals produce λ children. If new best individuals for
each color are found in the new children, they are moved to the population with elitist
individuals. The remaining children forms the next generation.
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4 Experiments

In our tests, we use several graphs from the DIMACS Challenge Suite [18]. The general
test setup is summarized in Table 1.

Table 1. Test Setup

Test Machine: Pentium 4 2Ghz with 256MB Ram
Compiler: GCC C++ 3.2 with -O2 flags
No of Generations: 10000
Population Size: %25 percent of the number of vertices in graph
Comparison Set Size: %10 percent of the population size
Niche Size: 5.0
Crossover Rate: 0.25
Mutation Rate: a single mutation is enforced
Number of Runs: 50 for each instance

Table 2. Data Characteristics about the problem instances from the DIMACS Suite

Instance |V | |E| % χ(G)

DSJC125.5 125 3891 0,50 ?
DSJC125.9 125 6961 0,90 ?
zeroin.1.col 211 4100 0,19 49
zeroin.2.col 211 3541 0,16 30
zeroin.3.col 206 3540 0,17 30
DSJC250.1 250 3218 0,10 ?
DSJC250.5 250 15668 0,50 ?
DSJC250.9 250 27897 0,90 ?
flat300 20 300 21375 0,48 20
flat300 26 300 21633 0,48 26
flat300 28 300 21695 0,48 28
school1 nsh 352 14612 0,24 14
le450 15a 450 8168 0,08 15
le450 15b 450 8169 0,08 15
le450 15c 450 16680 0,17 15
le450 15d 450 16750 0,17 15
le450 25a 450 8260 0,08 25
le450 25b 450 8263 0,08 25
le450 25c 450 16680 0,17 25
le450 25d 450 16750 0,17 25
DSJC500.1 500 12458 0,10 ?
DSJC500.5 500 62624 0,50 ?
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In Table 2, we present the characteristics of the test instances sampled from the
DIMACS test suite. Table shows the name, number of vertices( |V |), number of edges
(|E|), edge density (%) and chromatic number (χ(G)) of the instances.

In all our tests, the mutation count is set to 1, and crossover rate is fixed at 0.25. In
this setup, the algorithm is more like a genetic hill climbing method. Since the chromatic
number of these graphs are already known, we have set the range by hand according to
the chromatic number χ(G).

Note that our primary intention is to compare the crossover operators in the context
of LLE. As a result, we did not run our experiments for a long time. (The longest time
required for one run is around 5 minutes for cars91 graph instance). This might have
resulted in performance hit for large problem instances which may need an exponential
increase rather than a linear increase in the maximum number of generation.

Table 3. Best colorings obtained for the instances in the DIMACS Benchmark Suite

Instance χ(G) LIMX LIFX GPX-LI GPX-CB Kirovski-B Kirovski-C
DSJC125.5 ? 18 18 18 18 19 18
DSJC125.9 ? 44 44 44 44 45 45
zeroin.1.col 49 49 50 49 49 49 49
zeroin.2.col 30 31 35 31 31 30 30
zeroin.3.col 30 31 35 30 31 30 30
DSJC250.1 ? 9 9 9 9 9 9
DSJC250.5 ? 31 31 31 31 30 30
DSJC250.9 ? 75 75 75 74 77 77
flat300 20 20 20 31 27 32 20 20
flat300 26 26 34 34 34 34 32 28
flat300 28 28 34 34 34 34 33 32

school1 nsh 14 14 14 14 14 16 14
le450 15a 15 16 16 16 16 17 17
le450 15b 15 16 16 16 16 17 17
le450 15c 15 23 23 23 23 22 21
le450 15d 15 23 23 23 23 22 21
le450 25a 25 25 25 25 25 25 25
le450 25b 25 25 25 25 25 25 25
le450 25c 25 28 29 28 28 28 28
le450 25d 25 28 28 28 28 ? ?

DSJC500.1 ? 14 14 14 14 14 14
DSJC500.5 ? 55 55 55 55 51 50

In Table 3, we present the best solutions obtained after 50 runs by using the four
crossover operators mentioned. Figure 3 represents the average color number of 50 runs
for some of the instances in DIMACS suite. The results show no significant statistical
differences between crossover operators except for a few instances. For example for
flat300 20 graph, LIMX was able to find a best 20 coloring while the other crossovers
were very far from the optimal. However, for this graph, average colorings found with
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all crossovers and standard deviation are quite high. This is possibly due to the natural
difficulty of flat graphs. Another slight difference appeared in register allocation graphs
(zeroin.X.col graphs) where LIFX performed worst while GPX crossovers performed
best.

Fig. 3. Average number of colors (groups) for some instances in DIMACS and Carter’s Bench-
mark.

We have also presented graph coloring algorithm results of Kirovski et. al. [17] for
two set of parameters (Kirovski B and Kirovski C). Kirovski’s algorithm is based on
divide and conquer paradigms, global search for constrained independent sets, assign-
ment of most-constrained vertices to least constraining colors,reuse and locality explo-
ration of intermediate solutions, post processing lottery-scheduling iterative improve-
ment. With respect to Kirovski’s solutions, our crossovers gave similar and for some
instances better results however when the instance becomes larger and more difficult,
Kirovski’s algorithm performs better. However, our primary intention was not to com-
pare LLE representation with state of the art algorithms but to compare the crossover
operators as stated before.
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Table 4. Data Characteristics of the problem instances from the Carter Benchmark Suite

Instance |V | |E| %

Hecs92 81 1363 0.42
Staf83 139 1381 0.14
Yorf83 181 4691 0.29
Utes92 184 1430 0.08
Earf83 190 4793 0.27
Tres92 261 6131 0.18
Lsef91 381 4531 0.06
Kfus93 461 5893 0.06
Ryes93 486 8872 0.08
Carf92 543 20305 0.14
Utas92 622 24249 0.13
Cars91 682 29814 0.13

Table 4 presents some instances taken from the Carter’s Benchmark [5]. We again
present the number of vertices, edges and edge density of these graphs in this table.
Table 5 represents the best colorings obtained after 50 runs. In Figure 3, the average
colorings of 50 runs for some instances in Carter’s benchmark are presented.

Table 5. Best colorings obtained for the instances in the Carter’s Benchmark Suite

Instance LIMX LIFX GPX-LI GPX-CB Carter Caramia Merlot
Hecs92 17 17 17 17 17 17 18
Staf83 13 14 14 14 13 13 13
Yorf83 20 20 20 20 19 19 23
Utes92 10 10 10 10 10 10 11
Earf83 23 24 24 23 22 22 24
Tres92 21 21 21 21 20 20 21
Lsef91 17 18 18 18 17 17 18
Kfus93 20 20 20 20 19 19 21
Ryes93 23 23 23 23 21 21 22
Carf92 36 36 36 36 28 28 31
Utas92 38 39 38 38 32 30 32
Cars91 36 36 37 35 28 28 30

For instances in the Carter’s timetabling benchmark, again, a significant difference
among crossover operators is not observed. However, LIMX has a slightly better perfor-
mance in terms of best and average color (group) number. LIMX gave the best colorings
in staf83 and lsef91 instances while others were one color behind it. Yet, the difference
between average colorings and standard deviation is not statistically significant for al-
most all instances.
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We have also compared the best colorings after 10000 generations with some of
the results from the literature (Carter et. al [5], Caramia et. al. [4] and Merlot et. al
[21]). Like DIMACS instances, the performance of the graphs with vertices above 500
suffered due to the limit on the maximum number of generations. For instances, our
crossovers gave similar results in terms of best grouping obtained. Generally they ob-
tained colorings equal or one color behind colorings of Carter et. al and Caramia et. al,
and better than of Merlot et. al.

5 Conclusion

In this paper, we have investigated the performance of LLE on well known grouping
problems, exam timetabling and graph coloring. Several crossover operators that can be
used with LLE are presented. The results obtained are promising since LIMX and LIFX
perform approximately similar to the two variants of GPX, which is an integral part of
the most successful graph coloring algorithm [10]. Also our crossover operators gave
satisfactory results for instances in Carter’s and DIMACS benchmark suites. In the fu-
ture, the stochasticity of crossovers which are currently deterministic will be enhanced.
Linear Linkage Encoding will be used on other grouping problems together with the
crossover operators aforementioned and their stochastic versions. The multi-objective
LLE framework will be used for timetabling problems with additional constraints.
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Abstract. Four heuristic algorithms based on or inspired by the well-
known Tabu Search method have been used to cast heuristically opti-
mized schedules for a clinical training unit of a hospital. It has been
found experimentally that the algorithm of choice for this problem de-
pends on the exact goal being sought where the execution time is one
of the components of the goal. If only one run is allowed, then classical
Tabu Search with a tenure of 5 gave the schedule with the lowest average
(and fixed) penalty. If time is not of concern and many runs are allowed
then the Great Deluge algorithm may generate the schedule with the
lowest penalty.

1 Introduction

In work described in a previous PATAT conference [1] a stand-alone system
for casting schedules of medical staff in the Internal Medicine Clinical Teaching
Unit of the Ottawa Hospital was built using the Java programming language.
The algorithm constructed an initial feasible schedule and then heuristically
optimized it to reduce its perceived “badness”. The algorithm used was a simple
version of the tabu search (TS) algorithm introduced by Glover [2] and used
many times since.

The requirement was to produce duty rosters (locally referred to as call sched-
ules ) for medical trainees (residents and medical students) in the Clinical Teach-
ing Unit to man the overnight shift. The duties of a shift consist in rendering
medical assistance to patients in need of it during the night when the majority of
the medical trainees are no longer on duty. For each night in a 28 night cycle, a
shift of (ideally) 5 persons consisting of a senior resident, 2 junior residents and 2
medical students has to be scheduled. Because of chronic understaffing the shift
often consists of fewer than 5 persons. Sometimes 4 and sometimes 3 persons
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are used if there are not enough staff available. The staff chosen for these shifts
have various “ranks” and may belong to one of two teams. Since these evening
rounds are in addition to regular day shifts that the medical trainees must work,
there are very stringent requirements that prohibit the personnel from being
overworked beyond a certain point. These numerous requirements are formu-
lated as soft constraints and each violation of a constraint is associated with an
integer penalty whose magnitude is a measure of the undesirability of relaxing
that constraint. The sum of these integers is the measure of the “badness” of the
schedule. The TS algorithm is used to minimize this badness. The constraints
are examined in detail and the penalties associated with them are discussed in
the earlier paper [1]. An example of a call schedule is shown in figure 1.

Team A Team B

Senior 1st Call 2nd Call 1st Call 2nd Call

Tue: Zaidi Shefrin Carrier Puglia ------

Wed: ElFirjani Mongiardi ------ Rajput Mufti

Thu: Jolicoeur Marwaha Payne Oliveira Cohn

Fri: Ellen Mongiardi Carrier Oliveira Bal

Sat: Zaidi Taylor Radke Rajput ------

Sun: Ellen Mongiardi Carrier Oliveira Bal

Mon: ElFirjani Taylor ------ Puglia Mufti

Tue: Treki Shefrin Payne Puglia ------

Wed: Stewart Taylor Carrier Bal ------

Thu: ElFirjani Mongiardi Radke Rajput Cohn

Fri: Jolicoeur Taylor ------ Puglia Mufti

Sat: Stewart Mongiardi Payne Oliveira Bal

Sun: Jolicoeur Taylor ------ Puglia Mufti

Mon: Treki Marwaha Radke Rajput Cohn

Tue: Stewart Taylor Payne Bal ------

Wed: Jolicoeur Shefrin Carrier Oliveira ------

Thu: Ellen Marwaha ------ Oliveira Mufti

Fri: Zaidi Shefrin Radke Rajput ------

Sat: Jolicoeur Marwaha Carrier Cohn ------

Sun: Zaidi Shefrin Radke Rajput ------

Mon: Ellen Mongiardi ------ Rajput Mufti

Tue: ElFirjani Marwaha Payne Puglia Cohn

Wed: Zaidi Shefrin Radke Oliveira ------

Thu: Treki Taylor ------ Bal ------

Fri: Stewart Marwaha Payne Cohn ------

Sat: Ellen Shefrin ------ Puglia Mufti

Sun: Stewart Marwaha Payne Cohn ------

Mon: ElFirjani Mongiardi Radke Bal ------

Fig. 1. An example of a call schedule
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The senior resident is the doctor in charge. The two teams, A and B, consist
of a “First Call”, i.e. the first person to call if required, and a “Second Call”,
the next person to call (if there is one).

The penalties can be broadly classified as horizontal or vertical penalties.
Some nights e.g. the third and fourth lines on the schedule, corresponding to
Thursday and Friday of the first week, are fully staffed with appropriate members
from each team. Other nights e.g. the final Thursday are very short staffed, with
only three medical trainees on duty. The first of these examples attracts a penalty
of 0 while the second example attracts a penalty of 300. These are examples of
horizontal penalties which are ones that can be evaluated simply by scanning
each line separately.

Vertical penalties are those that arise from consecutive days. The first ex-
ample of two nights referred to above has one trainee, Oliveira, working for two
consecutive nights. This attracts a penalty of 100. The weekends, defined to con-
sist of Friday, Saturday and Sunday, are very sensitive. A pattern consisting of
working on Friday and Sunday (but not Saturday) or its converse are greatly
desired. Failure to achieve this attracts a high penalty. The example of table 1
manages to achieve this goal at the expense of attracting horizontal penalties.
As a rule, horizontal and vertical penalties play against each other, reducing one
usually implies increasing the other. The one that “wins” is the one having the
higher value. Table 1 lists the various defects that each night’s shift might have
and the corresponding penalties.

Table 1. Conditions and their penalties

Condition Penalty

one student missing 5
student replaces missing junior - senior is on student’s team 10
two student missing 20
junior and student missing - student takes junior’s place - senior is on
student’s team

40

student replaces missing junior - senior is not on student’s team 80
junior and student missing - student takes junior’s place - senior is not
on student’s team

100

two juniors missing - replaced by two students 300
anything else 500

In the quest to cast the best schedule in a reasonable time, four different
heuristic algorithms based on the local search strategy were implemented and
tested with real data obtained from the hospital. A number of different data sets
were used. For real data, the results all exhibited the same overall behaviour. We
believe this is so because the staff mix and numbers were chosen by a supervisor
having much experience casting schedules by hand, thus they all exhibit a certain
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homogeneity. This paper summarizes the four algorithms used and discusses the
results obtained from each one.

2 Algorithms Investigated

The algorithms investigated were:

– Tabu Search with Fixed Tenure
– Tabu Search with Random Tenure
– Great Deluge
– IDWalk

The first of these is deterministic. The algorithm always yields the same
answer when given the same data. Thus the Tabu Search with fixed tenure was
executed once for each tenure value. The other algorithms are not deterministic.
A pseudo-random generator is used and therefore each run may yield a different
result. For these cases, 20 runs were made and the values shown in the tables
are based on these 20 runs. For the Great Deluge algorithm, an additional 1800
runs were made and analyzed more thoroughly.

The results were all obtained from code written in C# on the Microsoft Visual
Studio .Net IDE and executed on a PC under Windows XP with a Celeron chip
at 2.8 GHz. with 192 MBytes of RAM.

2.1 Tabu Search with Fixed Tenure

The classical Tabu Search algorithm (TS) whose entries in the single tabu list
have a fixed tenure was the original algorithm implemented in the project [1].
This algorithm was rerun with actual hospital data keeping the tenure fixed but
varying its value in different runs. This algorithm is deterministic. A run always
returns the same schedule having the same penalty. The aspiration function
used by TS was set to return a value equal to the best value found so far. The
algorithm was run using fixed tenures of 5, 10, 20 and 40. The values of the
penalties and execution times of the schedules obtained are shown in table 2.

Table 2. Values of penalties and execution times

tenure (fixed) penalty execution time (s.)

40 1520 27.6
20 1495 27.0
10 1415 25.8
5 1270 25.9
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2.2 Tabu Search with Random Tenure

This variation of the classical TS differs only in that the tenure of an entry
in the tabu list is drawn from a series of pseudo-random integers whose value
is determined when the entry is inserted into the list. This procedure is the
same as that discussed by Di Gaspero and Schaerf in [3]. The distribution of
these tenures was uniform discrete on the interval [10, 40]. This algorithm is
not deterministic and successive runs with the same program and the same data
usually give different schedules having different penalties. Statistics obtained
from the 20 runs are summarized in table 3.

Table 3. Statistics obtained from runs of TS with random tenure

penalty execution time (s.)

min 1235 26.4
max 1495 28.5
mean 1342 27.2

std dev 82.8 0.6

2.3 Great Deluge

This method was introduced by Gunter Dueck in 1993 [4]. The name “Great
Deluge” was chosen by Dueck to illustrate the progress of the algorithm in an
analogy where a person is trying to keep his feet dry by climbing in mountain-
ous terrain during a great deluge. The person moves by taking a step in some
randomly chosen direction while the water level continues to rise. He stays in
the new position only if he can keep his feet dry. If this is not possible he moves
randomly again. Eventually all moves result in wet feet or the time has run out
and the algorithm stops. This algorithm has the desirable property that there is
only one adjustable parameter, the rate of rise of the water level. As above, this
method is not deterministic. The results are summarized in table 4.

Table 4. Statistics obtained from runs of the Great Deluge algorithm

penalty execution time (s.)

min 1210 7.4
max 2840 9.6
mean 1720 7.8

std dev 353.9 0.6
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2.4 IDWalk

This method, called Intensification/Diversification Walk (or IDWalk), was intro-
duced by B. Neveu et al. [5] and is related to the TS method. There are three
parameters, S, the number of moves, Max, the number of potential neighbours
studied in each move and SpareNeighbour, the diversification strategy.

This algorithm performs S moves and returns the best solution it found. In
choosing the next move to make, it examines at most Max candidate neighbours,
selecting them randomly. If the penalty of this candidate, x′, is less than or equal
to the penalty of the current solution, then the solution corresponding to x′ is
chosen for the move. If no neighbour has been selected from among the Max
examined, then one of the rejected candidates is chosen for the next move. If
SpareNeighbour was set equal to ”best”, then the least bad of the rejected
neighbours is chosen for the next move. Otherwise, SpareNeighbour was set to
”any” and any one of the rejected neighbours is chosen randomly for the next
move.

In this investigation, S = 1000 and Max = 378. The two choices for SpareNeighbour
were tried and it was found that the value, ”best” gave the superior results. As
before a number of runs were made using the same input data. The results are
summarized in table 5.

Table 5. Statistics obtained from runs of the IDWalk algorithm

penalty execution time (s.)

min 1160 57.4
max 1810 77.5
mean 1394 68.1

std dev 225.1 7.7

3 Comparison of penalties obtained by the four methods

These results are shown graphically in figure 2.
The scale of the entire figure is shown by the top line. The left end of the line

has the value 1100 and the right end has the value 2100. The second line of the
figure shows the penalties when TS is used with fixed tenures of 5, 10, 20 and
40. The best call schedule (with the smallest penalty) is found when the tenure
was fixed at 5. This schedule has a penalty of 1270.

When random tenures in the interval [10, 40] are used, the schedules obtained
are generally better than those obtained with a fixed tenure set to any value
within this interval. Recall that about 66% of the values obtained are within one
standard deviation on either side of the mean (which means that about 33% are
not). The best value obtained was 1235 which is better than anything that was
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Fig. 2. Comparison of results

obtained using fixed tenure. The worst value was 1495 which is about the same
value as that obtained using a fixed tenure of 20 and better than the results
with a value of 40. The mean value and the interval delineated by plus or minus
one standard deviation (containing about 66% of the values) is shown on figure
2 immediately below the results for TS(fixed).

As expected, the values obtained with the Great Deluge algorithm were
rather poor. The average penalty value of 1720 was the worst of the four methods
and the standard deviation was the largest obtained. The spectrum of values ob-
tained was such that the worst was worse than any of the TS results but the best
was also better than anything found by TS. The algorithm executed rapidly and
its mean time to completion, at 7.8 seconds was better than three times faster
than its fastest rival. The mean value and the one standard deviation interval
are shown on figure 2.

The IDWalk method yielded a mean penalty of 1394, better than Great
Deluge but worse than TS with random tenure. The large standard deviation of
about 225 illustrates the range of values obtained. Its lowest value of 1160 was the
best value obtained by any of the algorithms. Its highest value was higher than
any obtained by any of the TS methods but worst than Great Deluge. Its mean
execution time of 68.1 s. makes it the slowest algorithm to complete execution.
The lowest value was obtained by the run having the longest execution time. As
before the mean value and the one standard deviation interval are shown on the
last line of the figure.

A t-test on pairwise comparison of the three distributions assuming unequal
variances shows that the TS (random) and IDWalk algorithms result in distri-
butions having identical means, at the 95% level. When TS (random) and Great
Deluge are compared the means were found to be different. The same was true
when the IDWalk and Great Deluge distributions were compared.

Because of the wide range of penalty values found by the Great Deluge algo-
rithm, this case was studied further. Using the same input data, 1800 runs were
made. The histogram of the results obtained is shown in figure 3.

It is evident that there is a large variation in the values obtained, the smallest
value being 1135 (obtained 3 times) and the largest value being 3620 (obtained
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Fig. 3. Histogram of 1800 penalties obtained for the Great Deluge algorithm

once). Therefore the worst schedule has an associated penalty that is more than
three times larger than the best one. The penalty of 1135 is the best obtained in
any run of any algorithm studied here. Although the mean value was the worst
obtained in this study, the minimum value was the best minimum value due to
the high variability of the results.

4 Discussion

Using the experimental results obtained using data from this medical call sched-
ule problem, the ranking of the four methods tested based on their mean penalty
is:

1. TS - fixed tenure = 5
2. TS with random tenure [10, 40]
3. IDWalk
4. Great Deluge

For consistency of results, the method of choice is TS with random tenure for
the non-deterministic algorithms and TS with fixed tenure for the deterministic
ones.

However, if execution time is not critical, the method of choice may be the
Great Deluge which yields results rapidly, even if most of them are not very
good. One of them may be very good indeed.

If it is desired to find the minimum minimorum and execution time is not a
concern then IDWalk may well give the best results. If time is a concern, then
it may be useful to run the Great Deluge multiple times and select the schedule
having the smallest penalty. For the time of one run of IDWalk, we could have
about ten runs of Great Deluge. This may be the method of choice in a setting
where actual schedules have to be produced and used in a real hospital. The
system can be left running overnight and the best of the schedules obtained can
be retrieved in the morning. With 12 hours available for repeated automatic runs
and an 8 second run time, about 5400 schedules can be produced and the best
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one used. If desired, the best schedule could be taken as the initial solution for
another metaheuristic to further improve.

It should be remembered that these results strongly reflect the specific re-
quirements and data taken from one institution. Discussions with other units
in the same hospital revealed that apart from having to use different data the
algorithms would have to use different weights and different criteria in forming
the corresponding penalties. This might lead to different conclusions. We are
investigating this further.

5 Conclusions

Depending on the desired goals and available execution time, the algorithm of
choice for this problem will vary. The lowest average penalty is obtained by TS
with fixed tenure of 5. The lowest penalty found in the comparative samples
was obtained by IDWalk, simultaneously taking the longest time to get it. The
lowest penalty of all was obtained during the additional Great Deluge runs. If
time is of little concern, multiple runs of Great Deluge may be the best strategy.
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1 Introduction

In this abstract we describe the university timetabling problem as it is perceived
and solved at the KaHo Sint-Lieven School of Engineering. Timetabling is carried
out manually by dragging and dropping events in a room-timeslot matrix, but
potential conflicts are automatically spotted by the conflict module built into
the application. We are now in the process of automatizing the construction
of timetables itself. In the next sections we describe the specific timetabling
problem at KaHo Sint-Lieven and the steps we follow to tackle it. The approach
is based on a tabu search algorithm. Inspired by Kingston [13], we group sessions
in order to make the timetabling problem less complex.

2 University Course Timetabling

University timetabling is probably one of the best studied timetabling prob-
lems [2,4,6,14] in academia. Bardadym [2] classifies university timetabling into
5 groups.

– faculty timetabling: assign qualified teachers to courses,
– class-teacher timetabling: assign courses with the smallest timetabling unit

being a class of students,
– course scheduling: assign courses with the smallest scheduling unit being an

individual student,
– examination scheduling: assign examinations to students such that students

do not have two examinations at the same moment,
– classroom assignment: after assigning classes to teachers, assign these class-

teacher couples to classrooms.
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The problem considered in this abstract can be classified as course schedul-
ing. That problem consists of placing events (which we will call sessions) in
appropriate class rooms and timeslots, taking into account that the number of
students attending a session has to fit into the room and that the duration of the
session cannot be greater than the length of the timeslot it is assigned to. Other
constraints that have to be taken into consideration are that students and lectur-
ers cannot be at two places in the same timeslot and that a session can only be
assigned to one timeslot and one room. The university timetabling problem that
is studied in this paper is in general more complex than the secondary school
timetabling problem. In the latter, timeslots are equal in length and the schedule
is weekly repeated during a semester. At the KaHo Sint-Lieven School of Engi-
neering, a timetable is typically constructed for a period of a semester (which is
twelve weeks long). The problem however is that some subjects are taught every
week; some sessions are taught every fortnight, others only the first six weeks of
the semester, others only nine times a semester, ... It is even more complex since
the timeslots are not equal in length, and since they can overlap. This has to
be taken into consideration when constructing the timetable. Multiple lecturers
can be assigned to lab sessions which are taken by large student groups. This
makes the manual construction of timetables a hard and time consuming task.
It usually takes a couple of days to remove all the conflicts in the timetable that
appear once the semester has started.
The considered problem size for one semester is:

– 12 weeks,
– 133 different teacher groups,
– 212 different student groups,
– there are 100 class rooms of different sizes available,
– there are 20 different (sometimes overlapping) possible timeslots per day,
– 1215 sessions need to be scheduled.

Most university timetabling applications described in the literature have been
developed by universities that experienced the need for automatizing their own
timetabling problem [6]. Bardadym [2] remarks that most of these systems are
usually very problem specific and can only be applied in that particular univer-
sity. We are attempting to overcome that by developing a general timetabling
framework [7].

3 Tabu Search Approach

The literature about university course timetabling teaches us that researchers
applied different approaches to tackle the problem (see [14] for an overview).
Meta-heuristics approaches are known to produce good results. Early papers
(beginning 1990’s) of Hertz [11,12] report good results applying tabu search [9]
on the university course timetabling problem. More recent papers on university
course timetabling combine tabu search with other search methods: Schaerf [15]
applies a combination of randomized hill-climbing with tabu search, while Burke
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et al. [5] use a hyperheurisitic in which a tabu search algorithm is employed to
select the lower level heuristics.

3.1 General Description of the OpenTS Framework

In this contribution we report on the OpenTS[10] framework and its employa-
bility on university course timetabling. That framework contains a Java based
implementation of a tabu search algorithm. Developers who start applying the
framework are expected to implement the problem specific interfaces. They thus
describe how a solution will be represented, what will be the different neigh-
borhoods, and how the different constraints will be evaluated. The OpenTS
framework also offers the opportunity to dynamically adapt the length of the
tabu list (reactive tabu list) and to switch between different neighborhoods.

3.2 Application of OpenTS to the Course Timetabling Problem

In this section we describe how we applied the OpenTS framework to the univer-
sity course timetabling problem. We implemented the problem specific interfaces
and incorporated the possibility to dynamically adapt the tabu length size and
switch between neighborhoods.

– The implementation of the OpenTS Solution interface consists in this case of
a two dimensional matrix with the class rooms in the rows and the timeslots
in the columns. If a session is planned, the matrix will contain a session ID,
otherwise it will contain 0.

– We also implemented different moves which define neighborhoods. One move
simply shifts a session ID to a matrix element that equals 0. If a selected
element differs from 0, it swaps the two sessions. Another move swaps all
the scheduled sessions in a particular timeslot with any other timeslot.

– The last interface that a user of OpenTS needs to implement is the Objec-
tive Function interface. By implementing this interface the developer decides
how the different hard and soft constraints will be evaluated. To ascertain
the quality of a solution proposed by the tabu search algorithm (how many
constraints are violated by the proposed solution), this solution needs to
be evaluated by the objective function. At this moment only the hard con-
straints described in the previous section are evaluated.

– If an iteration is unsuccessful - no better solution is found in the consid-
ered iteration - the tabu length is increased. If, however, a better solution
is found the length of the tabu list is decreased (until the lower limit of
size 7 is reached). We opt to choose primes as tabu lengths. Switching be-
tween neighborhoods happens when the number of unimproving moves in
one neighborhood exceeds a predefined value.

The described method allows to schedule a weekly timetable. As noted in Section
2 however, some sessions are only taught a few times during a semester.
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4 Aggregation

To keep the problem size small, we opt not to construct twelve independent
weekly timetables, which probably would not differ much from week to week.
Instead we decided to carry out a pre-processing step. The idea is to group
lectures which are not organized on a weekly basis into aggregate sessions, which
we call ‘pillars’. If a lecture is only organized six times during a semester, the
application will try to find a lecture that is also taught six times (or less). Fig.
1 shows a graphical representation of a semester consisting of twelve weeks.
The ‘pillar’ in the middle of the figure is built up of two lectures organized in
interleaved weeks (marked with and without a cross) that are each organized six
times during a semester to the same class group. The evaluation method in this
example only has to check the constraints for two consecutive weeks (assuming
of course that these lectures are organized alternatingly).

Fig. 1. Graphical representation of pillars. Sessions in the pillar are taught on a fort-
nightly basis.

The method is based upon the tiling approach that Kingston [13] successfully
applies to Australian high school timetabling. He groups similar sessions and
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treats them as one. We are also thinking about generalizing the pillars concept. In
the case described above, the pillar can only be constructed for lectures organized
to the same class group, using the same location and timeslot.

5 Results

The above described model is implemented and tested on real-world data. The
preliminary results look rather promising.

6 Conclusion and Future Work

The presented model with the pillar representation offers a good quality method
to solve large timetabling problems. Currently, it only deals with hard con-
straints. Remaining problems to solve are:

– investigating if the pillar representation can be generalized and applied to
sessions that only have lecturers or students in common.

– taking into account soft constraints (e.g. avoid sessions on the last timeslot
of the day, avoid free hours, take into account personal preferences of lectur-
ers,...). One candidate approach is the linear numberings method [3,8] that
was first introduced for employee timetabling. In that linear numberings
method constraints are expressed in terms of eight numbering constraints
and a corresponding template of numbers.
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1   Introduction 

Producing good quality examination timetables is a difficult task which is faced by 
many academic institutions.  Due to the complexity and the large size of the real-
world university examination timetabling problems, it is difficult to obtain an optimal 
solution. Indeed, due to the complex nature of the problem, it is questionable if an end 
user would recognise a truly optimal solution.  

Carter and Laporte [1] defined the exam timetabling as: “the assigning of 
examinations to a limited number of available time periods in such a way that there 
are no conflicts or clashes.”  

In principle, the exam timetabling problem involves, assigning exams to timeslots 
subject to a set of hard and soft constraints. Hard constraints are rigidly enforced 
whilst soft constraints should be satisfied as far as possible. For example, exams 
which have common students have to be assigned to different timeslots (hard 
constraint). Wherever possible, examinations should be spread out over timeslots so 
that students have large gaps in between exams (soft constraint). Constraints vary 
among institutions and further discussion of exam timetabling constraints can be 
found in Burke et al. [2] and Carter and Laporte [1]. Timetables that satisfy all the 
hard constraints are called feasible solutions. Due to the complexity of the problem, it 
is not usually possible to have solutions that do not violate some of the soft 
constraints. Indeed, the evaluation of the cost function (how good the solutions are) is 
a function of violated soft constraints. A weighted penalty value is associated with 
each violation of the soft constraint and the objective is to minimise the total penalty 
value.  

The exam timetabling problem can be modelled as a graph colouring problem (see 
Burke et al. [3, 4]). Usually, graph colouring heuristics, which order the events/exams 
based on an estimation of their difficulties, are used to construct the timetable. These 
include: 

Largest degree first. This first schedules the exam that has the largest number of 
conflicts with other exams. 
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Colour degree. Exams with a greater number of conflicts with the exam that have 
already been scheduled have a higher priority of being scheduled next.    

Saturation degree. Exams with fewer feasible slots are scheduled as early as 
possible. 

Largest weighted degree. Exams with the higher number of students in conflict are 
scheduled earlier. 

Largest enrolment. Exams with larger student enrolments are scheduled earlier. 
Many approaches have been developed to solve the exam timetabling problem. 

These include graph heuristics (Burke et al. [5]), tabu search (Di Gaspero and 
Schaerf, [6]), evolutionary algorithms (Burke et al. [7]; Erben [8]; Côté et el. [9]), 
simulated annealing (Dowsland [10]), hyper-heuristics (Burke et al.[4]) etc. Extensive 
surveys and overviews on various approaches in solving timetabling problem can be 
found in Carter [11], Carter and Laporte [1], Schaerf [12], Burke and Petrovic [13] 
and Petrovic and Burke [14]. 

A survey by Carter [11] covers the exam timetabling research from 1964 until 
1984, with Carter and Laporte [1] extending that survey. The later survey classifed the 
methods used in solving the exam timetabling problem into four groups: cluster, 
sequential, meta-heuristic and constraint-based approaches. Cluster methods group 
the exams and then assign a timeslot to each group. Sequential approaches assign 
exams to timeslots consecutively. Constraint-based methods represent exams as a set 
of variables that have to be assigned to which values that represent resources such as 
rooms and timeslots, which satisfy some constraints (White [14]). Meta-heuristic 
approaches start with initial solution(s) and then apply search strategies to improve 
the solutions. Carter and Laporte [1] argued that most approaches only use simple 
constraints in solving the exam timetabling problems.  

The exam timetabling problem is considered as an un-capacitated problem when 
room capacity is ignored. Whereas, a capacitated problem limits the number of 
students sitting exams in a slot but does not directly assign exams to specific rooms. 
The benchmark datasets (available at ftp://ftp.mie.utoronto.ca/pub/carter/testprob), 
which are used in this work, are an un-capacitated problem. These benchmark 
datasets were presented by Carter et al. [15].  
This paper describes a computational approach to examination timetabling. A 
constructive heuristic based on saturation degree is used, followed by a local 
improvement heuristic based on a variant of variable neighbourhood search.  

2   Variable Neighbourhood Search 

Variable neighbourhood search (VNS) was introduced by Mladenović and Hansen 
[16]. VNS is a heuristic that is capable of exploring multi-neighborhood structures, 
hence it can explore distant neighbourhoods of the current solution (Mladenović and 
Hansen [16]). The shaking procedure in the basic VNS approach is a diversification 
factor whilst the local search will intensify the search to lead it converge to a local 
optimum. A local search (see Reeves and Beasley [17]; Aarts and Lenstra [18]) is 
applied repeatedly to obtain the local optima from the selected neighbouring solution.  
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There has recently been increasing interest in the VNS approach. For example, 
Avanthay et al. [19], developed an adaptation of VNS to solve the graph colouring 
problem with a Tabucol (a variant of tabu search) algorithm (Hertz and de Werra 
[20]) as a local search. They used three neighbourhood structures; these being vertex, 
class, and non-increasing neighbourhoods. Their VNS algorithm, however is not 
superior to the hybrid algorithm proposed by Galinier and Hao [21] that integrates a 
tabu search and a genetic algorithm. Some other works on VNS include Caporossi 
and Hansen [22], Morena Pérez et al. [23] and Fleszar and Hindi [24], which 
demonstrate that it is suitable across a number of different problem types. 

3 Iterative Re-start Variable Neighbourhood Search 

The basic VNS algorithm is a descent heuristic (Hansen and Mladenović, [25]), whilst 
our iterative re-start VNS (IR-VNS) is a descent-ascent heuristic. Let nw, w=1,2…,W, 
be a set of predefined neighbourhood structures, and nw(x) is the set of solutions in the 
wth neighbourhood of x, f(x) is the quality of solution x. W is the total number of 
neighbourhood structures to be used in the search. Our VNS algorithm is presented in 
fig. 1. 

In our approach, we do not apply a shaking procedure before starting the local 
search since this might prolong the search time. Since exam timetabling problems 
have to deal with many constraints, finding good quality feasible solutions can be 
difficult and time consuming. The shaking mechanism within basic VNS (Mladenović 
and Hansen [16]) may cause the search to jump to a poor solution which may be 
difficult to escape from. Therefore, in our approach, we replace the shaking procedure 
by accepting the best neighbour (which might be worse) of the incumbent solution.  

Since the initialisation strategy could influence the performance of the search 
algorithm (see Burke et al., [26]), especially when the search space is disconnected 
(which is a common case in exam timetabling problem), we use the saturation degree 
heuristic to iteratively construct incumbent solutions when the search becomes 
trapped in a local optimum.   

At the improvement stage, we employ four neighbourhood structures as follows: 
1. Steepest descent (N1). A neighbour solution of x is generated by swapping all 

exams in the jth slot with all exams in the (j+k) th slot. This local search returns the 
best neighbour after visiting all neighbours of x.     

2. Free slot (N2). A neighbour solution of x is generated by changing the slot of each 
exam to the best available slot. The local search returns the best neighbour (not 
necessarily an improved solution) after assigning the best new slot for each exam. 

3. Swap two exams (N3). A neighbour solution of x is generated by swapping one 
exam in the jth slot with one exam in the (j+k) th slot. Again, this local search 
returns the best neighbour after visiting all neighbours of x.   

338 M. Ayob et al.



Exponential Monte Carlo, EMCQ (N4). This local search is adapted from Ayob and 
Kendall [27]. The EMCQ accepts an improved solution but probabilistically accepts a 
worse solution depending on the solution quality, search time and the time it is 
trapped in a local optimum. As in N1, a neighbour solution of x is generated by 
swapping all exams in the jth slot with all exams in the (j+k) th slot. However, a trial 
solution will be accepted based on the EMCQ acceptance criterion. If it is accepted, 

we move to a new solution and the search continues by exploring a new 
neighbourhood (by continuing with the subsequent slot). Some moves might be 
performed before returning the best obtained solution to the VNS level. This is 
different from the N1 neighbourhood, which only returns the best neighbour of one 
neighbourhood.   
 
Currently, we use the following permutation: {N1, N2, N1, N3, N1, N4}. We repeatedly 
apply N1 after exploring each neighbourhood structure because N1 explores all 
neighbours of one neighbourhood. Since each local search explores different 

 

Step A: (Initialisation) 
(1) Select the set of neighbourhood structures nw, w=1,2…,W that will be used in 

the search; choose a stopping condition and value of MAX;  
(2) Sorts the exams in decreasing number of exams in conflicts; Let N as the 

number of exams and Ei as the ith exam where iЄ{1,2,...,N}. Set i=1; 

Step B: (Construction Stage) 
(1) Use Ei as a starting exam and construct an incumbent solution x using 

saturation degree heuristic with back-tracking and random slot assignment; 
(2) If this is the first iteration, then record the best obtained solution, xbest←x 

and f(xbest) ← f(x);  
(3) Set Unimproved=0; 

Step C: (Improvement Stage) 
(1) Set w←1; 
(2) Do  

a). Exploration of neighbourhood. Find the best neighbour, x’ from 
the wth neighbourhood of x(x’Єnw(x)).  

b). Accept the solution, x← x’; 
c). If f(x’)<f(xbest) then xbest←x’,  f(xbest) ← f(x’) and Unimproved=0; 
d) Else, Unimproved= Unimproved+1; 
e) w←(w mod W)+1; 

Until Unimproved =MAX or the stopping condition is met.  
(3) If Unimproved =MAX but the stopping condition is not met, then i=(i mod 

N)+1 and goto step B.  
(4)  Otherwise, return the best obtained solution.     

 
Note: MAX is the upper bound for Unimproved counter. 

Fig. 1. The Proposed VNS algorithm for exam timetabling problem 
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neighbourhood structures, it might be worth visiting all neighbours in N1 after 
applying other local searchers. We are still investigating the effectiveness of 
repeatedly applying N1, the order in which neighbourhood are explored and the upper 
bound value, MAX for an Unimproved counter. At this stage, we use MAX=20 and the 
above permutation. 

4 Objective Function 

We use a proximity cost as an objective function, which has been presented in Carter 
et al. [15], as follows: 
 

 
(1) 

 

 

Subject to: 

 (2) 

 

 

 (3) 

 

Where, 

N: is a number of exams; 

M: is a number of students; 

T: is a given number of available timeslot; 

C = (cij)NxN : is a conflict matrix where each element denoted by cij, where i,j 
Є{1,2,...,N}, is the number of students taking exam i and j;   

ti : is a timeslot for exam i where ti Є{0,1,…,T-1} 

 

 

 (4) 
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Equation 4 presents a weighted value (suggested by Carter et al. [15]) that reflect 
the cost of assigning exam i and j to timeslots. These being 0, 1, 2, 4, 8 and 16, where 
the cost is ‘0’ if the gap of slot for exam i and j is greater than 5. Equation (2) and (3) 
ensure a clash free timetable where each student will be sitting one exam at each 
timeslot.    

5 Experiments and Results 

In this work, we use the benchmark exam timetabling datasets presented in Carter et 
al. [15]. These datasets have been used by many researchers. However, due to some 
changes made by Carter et al. [15], there are two sets of benchmark dataset. Table 1 
shows the latest version (updated on June 7, 2005) of Carter et al. [15]. 

Table 1. Characteristics of  benchmark  exam timetabling problems. 

 Exams Students Slots 

car-f-92 543 18,419 32 

car-s-91 682 16,925 35 

ear-f-83 190 1,125 24 

hec-s-92 81 2,823 18 

kfu-s-93 461 5349 20 

lse-f-91 381 2,726 18 

pur-s-93 2419 30,032 43 

rye-f-92 486 11,483 23 

sta-f-83 139 611 13 

tre-s-92 261 4,360 23 

uta-s-92 622 21,266 35 

ute-s-92 184 2,750 10 

yor-f-83 181 941 21 

   

As discussed in section 3, this is ongoing research. Our preliminary experiment 
shows the following results (see table 2), which are comparable to the state-of-the-art 
approaches reported in the literature (Abdullah et al. [28]; Asmuni et al., 2005; Burke 
et al., [5, 4]; Burke and Newall [29]; Caramia et al.[30]; Carter et al. [15]; Di Gaspero 
and Schaerf, [6]). 

Based on our preliminary result in table 2, we can see that our IR-VNS is capable of 
producing good quality solutions across all datasets. This shows that exploring 
various neighbourhood structures with iterative re-start is an effective search, which 
can avoid local optima and can jump to distant neighbourhood that might be more 
promising region. 
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Table 2. Results from our IR-VNS and the state-of-art approaches on benchmark exam 
timetabling problems based on the proximity cost..   

 IR-
VNS 

Abdullah 
et al. [28] 

Asmuni 
et al. 
[31] 

Burke 
et al. 
[5] 

Burke 
et al. 
[4] 

Burke 
and 
Newall 
[29] 

Caramia 
et al. 
[30] 

Carter  
et al. 
[15] 

Di Gaspero 
and 
Schaerf [6] 

car-f-92 4.51 4.36 4.56 4.2 4.84 4.0 6.0 6.2 5.2 
car-s-91 4.90 5.21 5.29 4.8 5.41 4.6 6.6 7.1 6.2 
ear-f-83 36.28 34.87 37.02 35.4 38.19 37.05 29.3 36.4 45.7 
hec-s-92 11.06 10.28 11.78 10.8 12.72 11.54 9.2 10.8 12.4 
kfu-s-93 14.74 13.46 15.81 13.7 15.76 13.9 13.8 14.0 18.0 
lse-f-91 12.08 10.24 12.09 10.4 13.15 10.82 9.6 10.5 15.5 
pur-s-93 4.66 - - 4.8 - - - 3.9 - 
rye-f-92 10.67 8.74 10.35 8.9 - - - 7.3 - 
sta-f-83 157.32 159.20 160.42 159.1 141.08 168.73 158.2 161.5 160.8 
tre-s-92 8.92 8.13 8.67 8.3 8.85 8.35 9.4 9.6 10.1 
uta-s-92 3.58 3.63 3.57 3.4 3.54 3.2 3.5 3.5 4.2 
ute-s-92 26.36 24.21 27.78 25.7 32.01 25.83 24.4 25.8 29.0 
yor-f-83 38.97 36.11 40.66 36.7 40.13 36.8 36.2 41.7 41.0 

6 Conclusions 

We have presented an iterative re-start variable neighbourhood search that has two 
stages; construction and improvement. In the construction stage, we employ a 
saturation degree graph colouring heuristic with back-tracking to construct an 
incumbent solution. We apply a variant of variable neighbourhood search to improve 
the incumbent solution. In our approach, we do not apply a shaking procedure before 
starting the local search. However, we diversify the search by accepting the best 
neighbour returned by the local search (which is not necessarily an improved 
solution). When the search becomes trapped in a local optimum, we jump to a distant 
solution space by reconstructing the incumbent solution using the saturation degree 
heuristic.  Our preliminary results shows that our strategy is very promising, which 
can produce good quality solutions that are comparable to other published result.        
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1   Introduction 

The university course timetabling problem involves assigning a given number of 
events (including lectures, seminars, labs, tutorials, etc) into a limited number of 
timeslots and rooms subject to given set of constraints. Two primary hard constraints 
are that no student should be assigned two events in one timeslot and that capacity 
and features of rooms should satisfy the requirement of the event. Other constraints 
can be different from one university to another. For example, some universities might 
want the timetable to be constructed so that there is a good separation between the 
courses that a student attends, while other universities may prefer to have consecutive 
courses.  

Timetabling is a well-known difficult combinatorial problem. Several techniques 
have been used to automatically generate university timetabling problems, including 
graph colouring heuristics (Burke et al., 2004), tabu search (Costa, 1994; Schaerf, 
1996), simulated annealing (Thompson and Dowsland, 1996; Kostuch, 2004), evolu-
tionary algorithms (Burke et al., 1998) and case-based reasoning (Burke et al., 
2006a). Hyper-heuristic approaches have recently been applied to timetabling prob-
lems (Burke et al., 2003; Burke et al., 2006b). In (Burke et al. 2003), a tabu search 
based hyper-heuristic was applied to both a nurse rostering problem and a university 
course timetabling problem to demonstrate the increased level of generality of the 
method. In their approach, the hyper-heuristic dynamically ranks a set of heuristics 
according to their performance in the search history. A tabu list was incorporated to 
prevent the selection of some heuristics at certain points in the search. At each itera-
tion, the hyper-heuristic keeps applying the highest "non-tabu" heuristic to the current 
solution until the stopping criterion is met. Competitive results have been obtained on 
both problems when compared with other state-of-the-art techniques. In (Burke et al., 
2006b), a case-based reasoning hyper-heuristic system was proposed for the course 
timetabling problem. The system differs from other case-based reasoning systems in 
that case-based reasoning was used to predict the best heuristic methods that can be 
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used to produce a good quality solution rather than finding a solution for the problem 
directly. The experimental results showed that the system can perform intelligently 
and effectively in the production of automated timetables.  

In this research, we propose a simulated annealing hyper-heuristic approach (see 
fig. 1) for the university course timetabling problem. The simulated annealing hyper-
heuristic manages a set of neighbourhood functions or heuristics and dynamically 
bias the selection of these heuristics. This approach has been successfully applied to a 
shelf space allocation problem (Bai and Kendall, 2005). It is hoped that the algorithm 
will either produce better results than the current proposed approaches or will reduce 
the computational time while generating good quality solutions.   

2   Problem Description 

In this research, we will study a course timetabling problem that was introduced in 
(Socha et al., 2002). The problem can be described as follows: 

Given a set of events ei (i = 0,...,n) and a number of rooms r j (j = 0, ...,m) with each 
room having f types of features. Each event is attended by a given number of students 
and the total number of students is K. The aim of the problem is to assign every event 
ei to a timeslot tk (k = 1, ..., 45) and a room r j so that the following hard constraints 
are satisfied: 

1. No student should be assigned to more than one event at a timeslot; 
2. The room assigned to an event should have sufficient capacity and all the fea-

tures required by the given event; 
3. No more than two events can be scheduled in one room at a timeslot. 
The objective of the problem is to minimise the number of students involved in the 

following soft constraint violations: 
1. A event is scheduled at the last timeslot of the day; 
2. A student has only one event in a day; 
3. A student has more than two consecutive events. 
In reality, the course timetabling problem is often much more complex 

(McCollum, 1998). Additional constraints will be considered in subsequent research 
to those presented here. 

3   Simulated Annealing Hyper-heuristics 

3.1   Hyper-heuristics 

The aim of hyper-heuristics is to develop a reusable, generic optimisation approach 
for a range of different problems and different problem instances. Hyper-heuristics 
can be defined as “heuristics to choose heuristics”. Hyper-heuristics search the solu-
tion space indirectly by operating on heuristics. A hyper-heuristic makes use of a set 
of diverse domain-dependent heuristics or neighbourhood functions and strategically 
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changes their preferences during the local search in order to adapt to different situa-
tions and problem instances (Burke et al., 2003; Ross, 2005). 

 

 

Fig. 1. The framework of simulated annealing hyper-heuristics for a maximisation problem 

3.2   Simulated Annealing Hyper-heuristics 

The proposed simulated annealing hyper-heuristic algorithm is a modified version of 
the algorithm in (Bai and Kendall, 2005), and is based on the following assumptions 
and observations. 

1. A heuristic is selected probabilistically rather than deterministically. The reason 
for this is based on the empirical conclusion that probabilistically biasing the 
candidate solutions in SA is more beneficial than using a deterministic method 
(Tovey, 1988). A deterministic heuristic selection approach may be not suitable 
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for the simulated annealing hyper-heuristics due to the probabilistic characteris-
tic of simulated annealing. 

 
Set initial temperature ts, stopping temperature tf and total iterations K; 
Generate an initial solution s0;  t=ts; 
Define a set of heuristic Hi (i=0, …, n), assign appropriate weight wi to 
each heuristic Hi; 
Do 

Select a heuristic (Hi) based on probability 
1

/
n

i i ii
p w w

=
= ∑ ; 

Generate a candidate solution using heuristic Hi; 
Let iδ  stand for the difference in the evaluation function between s 

and s’; 
If 0iδ >  

 s=s’; i iw w k= + ; 

else if 0iδ =  and a new solution is created 

 s=s’; i iw w ε= +  

else if 0iδ =  and no new solution is created 

 i iw w ε= −  

else if 0iδ <  and exp( / ) (0,1)t randomδ <  

 i iw w k= − ; 

if maxiw w>   

maxiw w=  

if miniw w< , 

 miniw w=  

Loop until stopping criteria are met 

Fig. 2. Pseudo-code of the simulated annealing hyper-heuristics 

 
2. To bias the selection of heuristics, each heuristic is associated with a weight that 

reflects their importance at the current stage. During the search, these weights 
are dynamically changed based on the performance of their corresponding heu-
ristics.   

3. The mechanism to change the weights of heuristics is a penalty-reward strategy. 
That is, the weight of a heuristic is increased if it produces a better solution and 
decreased otherwise. However, for those heuristics that cannot improve the 
evaluation function, we distinguish between the heuristics that generate new so-
lutions and those that do not. We observe that during the search, although some 
heuristics cannot improve the solution directly, they are still useful in creating 
some intermediate situations, from which the optimal solution (or a good quality 
solution) could be reached. Hence in this system, we give a minor positive score 
to those heuristics which could transfer the state of the solution but could not 
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improve the objective value. Meanwhile, we penalise those heuristics which 
could neither improve the current solution nor generate a new solution. 

The pseudo-code of the algorithm can be described in figure 2. 

4 Application 

To apply the proposed simulated annealing hyper-heuristics, we need to design a set 
of problem-dependent heuristics. We shall use the heuristics that were used in (Burke 
et al., 2003; Abdullah et al., 2005). The algorithm will then be tested on the bench-
mark problems that was introduced by (Socha et al., 2002). 
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1 Introduction 

Sports in society today are played by millions of individuals at the profes-
sional, scholastic and amateur levels. The success of the leagues and tourna-
ments often lies in the ability to generate a “good” schedule. Each league or 
tournament has a variety of constraints and objective measures to be used in 
the determination of a good schedule. Availability of venues, the order of op-
ponents, travel time and distance are but of a few of the myriad of issues con-
sidered by the sports league scheduler. 

The Traveling Tournament Problem (TTP), documented by Easton et al. in 
[4], describes a typical sports scheduling challenge. Specific instances and 
records can be found in [14]. The TTP is a double round robin tournament to 
be played by n teams over (2n-2) periods or weeks, where each team plays 
every period (we do not consider the “mirrored” version of the problem). 
Three unique constraints of the TTP are:  

 

1. Maximum “Road Trip” of three games: each team can play at most 3 con-
secutive games away from the team’s home site before playing again at the 
home site. A road trip is defined as one or more consecutive games played 
away from the team’s home site, before returning home again. It is as-
sumed that a team starts and ends the season from its home site. 

2. Maximum “Home Stand” of three games: each can play at most 3 consecu-
tive games at its home site. A homestand is defined as one or more con-
secutive games played at the team’s home site. 

3. Repeater Rule: a team can not play an opponent away in time period k and 
then home in time period k+1, or vice versa. 
 

The TTP seeks to minimize the distance traveled by each team. A distance 
matrix is used to calculate the distance from home to each opponent, and the 
distance between consecutive opponents. This calculation is done for each 
road trip, with the total being the schedule distance. The selection of the op-
ponents and their order on the road trip is critical, while homestands have no 
bearing on the distance calculation. Effective development and placing of 
road trips will yield good solutions to the TTP. 

The following sections describe related work and our general 3-phase ap-
proach, followed by a detailed description of each phase’s techniques and 
steps. The final two sections present results to date, and future work. 
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2 Related Work 

The initial approaches to the TTP problem, and its more general round-robin 
tournament problem, centered on constraint and integer programmer ap-
proaches. Variations of models using this approach can be found in [5], [6], 
[7], [9], and [15]. The approaches create models with variables for each oppo-
nent pairing, home or away venue and usually other variables that represent 
the constraint being studied. As the number of teams grows slowly, these 
variables grow exponentially, significantly reducing their effectiveness with 
teams > 12. 

 Heuristic approaches have also been used extensively. Regin in [11] 
looked at minimizing breaks (home game followed by an away game and vice 
versa) and patterns of home and away games. Pattern analysis and generation 
are also key components to the heuristic approach by Ribeiro in [12]. The 
pattern generation was then followed with local neighborhood swap tech-
niques to improve the solution. Shen and Zhang in [13] generated patterns of 
team match-ups using a greedy approach. 

As Henz described in [7], the TTP problem can also be viewed as a 
neighborhood search problem. Simulating annealing approaches in [1] and 
[10] take advantage of this perspective. Cardemil in [2] used tabu search 
logic.  

Several of the above approaches relied on making several runs to find good 
starting neighborhoods. This step was followed by an extensive and costly 
local search effort searching for an optimal solution. We seek a fast imple-
mentation method that can come within 5-7% of the good solutions without 
using intensive resources through tiling. A tiling approach that constructed 
tiles and then timetabled was also used for course scheduling by Kingston in 
[8]. Courses are combined into tiles for forms (high school student years) for 
similar purposes, as our roadtrip tiles, and then timetabled into the scheduling 
grid. 

3 Approach 

Our approach is to model the road trips as “tiles”. Each tile will contain 
“blocks”, which represent individual games. A road trip of 3 opponents is 
considered as one tile, with three blocks. A teams’ schedule can be thought of 
as a series of tiles, with home games as spacers between the tiles. Figure 1 
shows the scheduling grid and tiles for Team 1 and Team 2. 
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Fig. 1. Tile Placement for Teams 1 and 2 (shading cells indicate an away game) 
 

For each team a set of tiles is created that seeks to minimize the distance 
traveled for a particular team without concern of any constraints involving 
other teams. These tiles are placed in a scheduling grid of n rows representing 
teams and (2n-2) columns representing weeks.  

 As tiles are placed, other cells of the grid are filled in to keep the schedule 
consistent with the tile placement. When there are no tiles remaining that can 
be placed, the tiles are broken into their component blocks, and placed as al-
lowable by TTP constraints. If not all blocks can be placed, the block place-
ment is backtracked in an attempt to find a solution. The backtracking may 
reach back to the tile placement step, causing reassignments of tiles. If all 
blocks can be placed, a solution is generated, its distance calculated. Back-
tracking is again employed to find additional solutions. 

4 Phase I – Tile Creation 

The creation of the tiles is done on a team by team basis. For each team a 
minimum spanning tree (MST) is created by upon the Prim algorithm de-
scribed in [3]. The algorithm begins with the selection of a root node, or in 
our approach a team. All distance edges in the distance matrix, defined in the 
problem, are searched for the smallest edge, which has a vertex of a team in 
the tree, and a vertex of a team not in the tree. This edge is then added be-
tween the two teams. For the first branch, we are finding the nearest opponent 
of the root team. The second edge is the nearest team to the root team, or its 
first opponent. Edges are that are added to opponent will suggest the two ver-
tices or teams will be on the same road trip or tile. Two edges both with hav-
ing the root node as a vertex, suggest that the two opponents of the root team 
will be on different road trips. Figure 2 presents an example MST for the team 
Pittsburgh (PIT) in the nl6 problem in [4]. 
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Fig. 2. MST for PIT in nl6 and the accompanying distance matrix. 

Figure 2 suggests that the team PIT should have 2 road trips or tiles – one 
with ATL and FLA, and the other with PHI, followed by NYM and MON. If 
these two road trips are traveled by the team, the team will have the optimal 
minimum distance. This does not imply the league overall will have optimal 
minimal distance, but rather just this team.  

We use a tree collapsing algorithm to create tiles from the tree structure. 
Separate trees are created with each tree having the root node of a team. The 
collapsing approach merges child nodes into their parent node. When the par-
ent has 3 teams, a tile is made. When the parent must decide among its chil-
dren, a greedy method is used, to pick the best set of 3 teams from the parent 
and children. Figure 3 provides a sample collapsing process. 
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Fig. 3. Creation of Tiles through collapsing of the tree 

The tile creation process creates ceiling((n-1)/3)*n tiles. Note that all tiles 
have 3 blocks, with the possible exception of the last tiles created for the 
team. At the root node, if both children have a weight of two nodes, two tiles 
of 2 blocks are created for each child. 

5 Phase II – Tile Placement 

The tile placement process places tiles, in team order by highest distance 
schedule, on the scheduling grid. All the tiles for a team are considered to-
gether. If necessary a tile is “rotated”, or its opponents are re-ordered. Switch-
ing opponent 1 and 3 within the tile does not affect the distance of the tile, 
however other switches do impact the distance. Only switches resulting in a 
10% or less impact are acceptable. 

The tile is moved through the schedule week by week. After all weeks have 
been tried, the blocks within the tile (games) are rotated in order to find an 
acceptable placement. After each placement, consistency checks are made to 
ensure the league schedule meet all the TTP constraints. 
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When no more tiles can be placed, Phase III is executed, which breaks the 
unplaced tiles in individual blocks. Backtracking is then performed to rear-
range the blocks and look for additional solutions. During the backtracking, 
some tiles are placed in a “tabu” like status, so they are ignored temporarily 
giving less costlier tiles the chance to be placed earlier. 

One noteworthy aspect of our approach is that tiles are never broken and 
then formed into new tiles, referred to as reconfiguration. This process in-
volves breaking 2 tiles in their component blocks, and regrouping the blocks 
into two new tiles. 

6 Phase III – Block Placement 

Phase III is similar to other solutions focused on constraint programming so-
lutions ([5],[7],[9]). The phase breaks all remaining unplaced tiles into indi-
vidual blocks. These blocks, or games, are now placed in the scheduling grid 
one by one. Backtracking is used when a set of placed blocks can no longer 
lead to a solution. Multiple solutions can be found for the set of placed tiles 
through this phase. Other works have used a constraint programming package, 
such as ILOG, to accomplish this task. 

7 Results 

The first set of results examines the success of MST collapsing algorithm to 
generate valid tiles, based upon solutions in [4]. For comparison purposes, we 
looked at the solution records for leagues with teams of 6,8 and 16. When 
multiple away games appear in the solution schedule, a tile can be created 
(deduced) to represent those games. We compared the blocks of these tiles 
with those that are generated form the MST collapsing algorithm. The results 
are shown in Figure 5.  

These results show a high correlation between the roadtrips embedded in 
the solutions with the roadtrip tiles generated by the MST. For a low number 
of teams the percentage match is about 80% of the tiles consisting of over 
85% of the games. In the higher number of teams, the number of tiles and 
associated games involved is about 60%. In this case, the tiles that are differ-
ent only add 5-7% miles to the total distance. 

The second set of results considers the generation of the solution set itself. 
For the small instances where n = 6, the tiling approach produced a distance 
of 24,102. When the number of allowable free blocks (the maximum number 
of blocks or games needed to be scheduled individually) for entering Phase III 
(versus immediate backtrack) was increased beyond 3n, our approach 
achieved the current goal of 23,916. This parameter ensures that sufficient 
tiles have been used before attempting individual block scheduling. This pa-
rameter could be relaxed, since the number of teams was small enough not to 
materially affect the length of phase III processing. Processing times for both 
solutions was less than 10 minutes on a 1.63 GHz computer with 1 Gig of 
memory, executing a Visual Basic custom application. 
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Solution 
Name 

Total 
Solution 

Tiles 

Total 
Games 

Solution 
Tiles 

MST  
Complete 
Matching 

Tiles 

MST 2 
Partial 

Matching 
Tiles 

% of MST 
Matching 
Tiles incl. 

Partial 

% of MST 
Matching 
Games in 

Tiles 
Easton – 
6 teams 

11 28 6 3 82% 86% 

Easton –  
8 teams 

18 48 13 2 72% 90% 

Cardil – 
16 teams 

83 211 25 27 63% 61% 

Zhang – 
16 teams  
(8/6/02) 

83 219 17 40 69% 60% 

Fig. 4. Comparison of tiles deduced from existing solutions versus MST collapsed tree 
generation 

For n = 8 teams, a distance of 41,957 was achieved in under 30 minutes. 
This compares favorably to the existing best solution of 39,721, a 5.6% dif-
ference. During the tiling approach execution, 4,360 solutions were found. 
For 10 teams, the tiling approach achieved a distance of 62,916 compared to 
the existing best solution of 59,436, a 5.8% difference. The result took nearly 
an hour, however a solution of 68,204 was found within minutes. For 16 
teams, Phase III processing needs further efficiencies to complete the single 
block processing inherent in that step.   

8 Conclusion and further work 

The MST collapsing approach, coupled with tile processing looks promising 
for producing very good, but not optimal, solutions in quick fashion. Our 
work to date shows that with a custom application program, we can create 
tiles and generate solutions within a short time, that come within 5-7% of ex-
isting solution records. As our Phase III constraint processing logic comes 
closer to commercial packages, our processing times (currently concentrated 
in Phase III processing) will decrease. 

Improvement to our process will focus on consistency checks at the team 
level. Stronger analysis of the home and away pattern of a team at various 
points, can highlight inconsistencies, enabling necessary tile placement back-
tracking to occur earlier in the process. Also, Phase III processing may be 
replaced by a call to a constraint programming language such as ILOG.  
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In this paper, we are concerned with understanding the efficient planning and
management of teaching space, such as lecture rooms, within universities. There
is a perception that such space is a rather scarce resource. However, some studies
have revealed that in many institutions it is actually chronically under-used [3, 4].
Specifically, overall space-usage efficiency is measured by the “utilisation” (U),
which is basically the percentage of available “seat-hours” that are exploited:

Utilisation, U =
used seat-hours

total seat-hours available
(1)

It is also standard practice to measure the overall frequency, F ,

Frequency, F =
used time-slots
total time-slots

(2)

and the room occupancy, O,

Occupancy, O =
used seat-hours within occupied rooms

total seat-hours available within occupied rooms
(3)

The three measures U , F and O are not independent. If all the rooms were the
same size, then, directly from the definitions, we would have U = FO, and a
similar relationship continues to hold when we have rooms of different sizes.

Surprisingly, in practice, rooms are often occupied only half the time (F ≈
50%), and even when in use they are often only half full (O ≈ 50%), with the
result that utilisations of 20-30% are not uncommon. The ‘Higher Education
Funding Council for England’ (HEFCE) has reported low utilisations, and two
of the authors have commercial experience of such low utilisations from their
work with Realtime Solutions Ltd [3, 4].

Naturally, many institutions would like to improve this situation in order to
reduce costs, improve services, or to permit teaching space to be converted to
other uses. Also, for long-term capacity planning it is necessary to incorporate
? Contact Author (ajp). Authors listed alphabetically.
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excess capacity in order to compensate for the expected low utilisations. Natu-
rally, this is expensive, and we want to be able to ensure that spare capacity is
well-engineered. However, such better management is hampered because there
does not appear to be a good understanding of why low utilisations happen in
the first place. This motivates our two main goals:

1. to understand the factors leading to low utilisations.
2. to develop methods to choose excess capacity that is more cost-efficient:

aiming to reduce the teaching space that needs to be provided, whilst not
increasing the risk of it turning out to be inadequate

To model the domain, we start from a simple event allocation problem. The
goal is to select events so as to maximise the utilisation yet permit an assignment
of events to rooms that satisfies the following standard hard constraints:

1. the size of an event must not exceed the room capacity
2. the number of events allocated to a room must not exceed the number of

time-slots, as events cannot share room time-slots.

In this model the utilisation can be optimised in polynomial time [2]. However, on
using real data for rooms and courses (obtained from one building of a university
in Sydney, Australia) it was clear that this model gave unrealistically high values
of utilisation (around 80-95%). This suggested that a model based purely on
space issues is inadequate for real-world universities.

Moreover, in reality, event allocation usually takes place within the context
of many constraints on locations and timings of events. Accordingly, we also
included within our model objectives that are intended to provide a simplified
approximation/abstraction of real timetabling issues; in particular the use of a
conflict matrix between events, and a location penalty for placing events in rooms
that belong to different departments. Note that the inclusion of the conflict
matrix means that the polynomial time methods can no longer be used, and
instead we use local search together with simulated annealing.

On exploration of the resulting multi-objective trade-off surfaces, we find that
the utilisation can be forced down to much more realistic levels, in the range of
20-40%. The results support the hypothesis that the location and timetable
penalties have the potential to dramatically drive down utilisations, and are a
reasonable candidate to explain low utilisations in the real world.

Now let us return again to the issue of planning future capacity. We take the
point of view that a (tentative) set of courses effectively form a “request for a
given number of seat hours”, and hence correspond to a request for a given level
of utilisation. In the absence of low utilisations, then we would be confident that
as long as we request no more than 100% of the available seat-hours then we
would be able to satisfy all of the request. However, this is no longer true when
utilisation is expected to be lower than 100%. Hence, we set up the methodology
to answer the following question

“Under what conditions is a request for utilisation fully satisfiable?”
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Fig. 1. An example of Requested Utilisation (UR) vs. Achieved Utilisation (UA). The
line UR = UA is given for reference purposes.

We studied this question by taking a wide variety of randomly-selected sub-
sets of our real set of events, and for each subset finding the maximum achievable
utilisation. A representative example is shown in figure 1 for the achieved utilisa-
tion plotted against the requested utilisation. From this and other experiments,
we obtain the following results.

Firstly, the values of achieved utilisations for given corresponding requests,
tend to be “grouped around the mean”: The variation between points near to
some requested value is small. This implies that properties of the system are
statistically predictable.

Secondly, we see a threshold phenomenon on the utilisation U . There is a
“critical value”, UC , for the requested utilisation, UR, that demarcates a sharp
division between regions in which the answer is “almost always yes” and those
of “almost always no”. (In the case of Figure 1 we have UC ≈ 30%.) We then
have two distinct regions:

SAFE: UR < UC . Requests for the seat-hours are almost always totally
satisfied.
UNSAFE: UR > UC . Requests for the seat-hours are almost never totally
satisfied. Even in the cases when there are sufficient seat-hours available, it
turns out that the oversupply is very unlikely to be usable.

These results are typical of those in threshold phenomena; perhaps best-
known within the context of random graphs [1]. For example, the chromatic
number of random graphs is similarly predictable. The threshold behaviour has
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an important implication. When planning course offerings we cannot assume
that we can simply count seat-hours, but must realise that we are unlikely to be
able to rely upon using more than some predictable critical utilisation, and this
will (almost) inevitably mean that some of the events will need to be dropped.

Our work suggests that progress in space management and planning will
arise from an integrated approach. Firstly, combining purely space issues with
restrictions representing an aggregated or abstracted version of key constraints
such as timetabling or location. And secondly, also performing statistical studies
to reveal underlying threshold phenomena.
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1 Introduction

For many strongly NP-hard combinatorial optimization problems a natural rep-
resentation of a solution is a permutation. Practical approaches to solve such
problems are local search algorithms based on the neighborhood’s search. Well
chosen neighborhood is one of the key elements, which affects efficiency of this
method. Classic neighborhoods have polynomial number of elements and they
are generated by single moves. Neighborhoods with an exponential number of
elements have been successfully applied for a few years. We introduce the neigh-
borhood (and its properties – neighborhood graph, diameter, etc.), which has
application in the best local search algorithms. This neighborhood belongs to
very large scale neighborhood class (VLSN) and it is generated by swap multi-
moves. We present a theorem which states that any permutation (solution) can
be transformed into any other permutation by execution at most two swap mul-
timoves (that is the diameter of the neighborhood graph equals 2). The second
theorem of this paper states that the problem of determining an optimal swap
multimove in the neighborhood is NP-hard. Applying this neighborhood (and
the algorithms of its exploration) to local search algorithms allows us to obtain
the best known results for the most difficult scheduling problems considered in
literature (single machine total weighted tardiness problem, flow shop and job
shop problems ).

In this paper we propose a neighborhood generated by a composition of all
the swap moves, where supports of the permutation connected with these moves
are disjoint - that is different swaps of a multiswap does not change the same
elements of the permutation (they are commutative). Such a neighborhood is
very large (has an exponential number of elements). Determining its optimal
element is an NP-hard problem.

One of the characteristics of the neighborhood structure is the diameter of
the corresponding graph. We will also prove, that the diameter of the multiswap
neighborhood graph is 2. Applying this neighborhood to local search algorithms
allows us to obtain the best known results for the most difficult scheduling
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problems considered in literature (e.g. single machine total weighted tardiness
problem [2], flow shop [6] and job shop problems [7]).

2 Swap multimoves

We consider a combinatorial optimization problem with a permutational repre-
sentation of a solution. Let I = {1, 2, . . . , n} be a set of n elements (enumerated
by numbers from 1 to n). By S(n) we mean a set of all permutations of the set I.

Permutation σ ∈ S(n) is called involution [8], if it is inverse to itself, i.e.
σ2 = ε, where ε is the identity permutation. It is simple to see, that if σ ∈ S(n)
is an involution, then an inverse permutation σ−1 is an involution too.

Fact 1 Every involution is a composition of pair-independent (with disjoint sup-
ports) transpositions.

Conclusion 1. If π ∈ S(n) and m is a swap move, then executing of this
move generates a permutation β = m(π). If the move m swaps an element
π(i) with π(j), therefore it is easy to see, that β = m(π) = πα, where α =(

1 2 . . . i− 1 i i + 1 . . . j − 1 j j + 1 . . . n
1 2 . . . i− 1 j i + 1 . . . j − 1 i j + 1 . . . n

)
is a transposition. So the move m

can be identified with a transposition α. Therefore Fact 1 follows, that an invo-
lution is a composition of swap moves (and we call it a multiswap).

Theorem 1 [3] For any permutations π, δ ∈ S(n) there exists involutions α, β ∈
S(n) such, that παβ = δ.

Conclusion 2. From Theorem 1 and Fact 1 it follows that for any permutation
δ ∈ S(n) there exist involutions α = α1α2 . . . αl and β = β1β2 . . . βl, where
αsβs (s = 1, 2, ..., l) are independent cycles and such that δ = αβ. The method
of constructing of both involutions is precisely described in the proof of the
theorem.

Lemma 1 The diameter of the neighborhood graph corresponding to multimove
swap neighborhood is 2.

Proof. We consider any two permutations π, δ ∈ S(n) - nodes of the neigh-
borhood graph G = (V, A). From Theorem 1 it follows, that παβ = δ, where
permutations α, β are involutions. Because πα ∈ N (π), then (π, πα) ∈ A (that
is the length between them is 1). Similarly, δ ∈ N (πα), therefore (πα, δ) ∈ A. It
follows that the diameter of the multiswap neighborhood graph is 2.

Remark 1. In one of the advanced heuristic methods – path relinking – for
two permutations π and δ a permutation γ, lying on a path between π and δ
is constructed. Because παβ = δ, where α, β are involutions, so permutation
γ = πα, which is generated from π by an involution (multimove) α, lies on the
path between π and δ. It is possible to construct such an involution α that per-
mutation γ is in the required range of distance to π. In particular construction
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of involutions α, β (see Conclusion 2) can be successfully applied to diversify
the calculations, as a fully deterministic method. From construction involution
with many transpositions it follows that permutation πα is at a long distance
(counted as a number of swap moves) from π.
Remark 2. For any permutation π ∈ S(n) the set of all permutations S(n) can
be divided into three subsets (orbits): a) {π}, b) {πα : α ∈ S(n) and α is an
involution }, c) {παβ : α, β ∈ S(n) and α, β are involutions }. The dynasearch
neighborhood from the paper [4] is generated by single multimoves and these
neighborhoods are subsets of the set defined in point b).
Remark 3. The neighborhood based on swap multimoves is of very large-scale
(the number of its elements is asymptotically 1√

2

(
n
e

)n
2 e

√
n− 1

4 , see [8]). We will
prove that the problem of finding the optimal multiswap in the multimove swap
neighborhood is equivalent to finding an optimal traveling salesman path in a
certain graph.

Theorem 2 [3] The problem of determining an optimal multiswap in the mul-
timove swap neighborhood is NP-hard.

Remark 4. In the works [6],[7] and [2] multimoves are applied to intensify and
diversify the calculations. Because these moves are compositions of independent
moves, therefore one can estimate the goal function of the permutation generated
by these moves with good precision.

3 Application: The permutation flow shop scheduling

Garey, Johnson and Seti [5] show that for three machine flow shop problem
(F |3|Cmax) is strongly NP-hard. The best available branch and bound algo-
rithms are those of Lageweg, Lenstra and Rinnooy Kan [9]. Their performance
is not entirely satisfactory however, as they experience difficulty in solving in-
stances with 20 jobs and 5 machines. Various local search methods are available
for the permutation flow shop problem. A very fast tabu search algorithms is
proposed by Grabowski, Wodecki [6]. Multimoves are applied to diversify cal-
culations in this algorithm. We have checked how they influence computations
time and values of solutions.

The implementation of the tabu search algorithm TSGW [6] was tested on
benchmark instances taken from the OR-library [1] and compared with reference
results from this library. For comparison, the results of the TSGW algorithm and
the TSGWnoMM algorithm (i.e. TSGW without multimoves) are presented in
Table 3. The results are shown of two groups of columns: one is for the TSGW
algorithm, the other is for the TSGWnoMM algorithm. Time in seconds (CPU)
and percentage relative deviation (PRD) to the reference solutions are presented
in Table 1.
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Table 1. Quality test results.

TSGW TSGWnoMM
n|m CPU PRD CPU PRD
20|5 0.0 0.00 0.0 0.02
20|10 0.3 0.03 0.3 0.08
20|20 0.6 0.07 0.6 0.11
50|5 0.4 -0.08 0.4 0.05
50|10 0.9 -0.29 0.8 0.17
50|20 2.3 0.13 2.2 0.26
100|5 0.6 -0.03 0.6 0.14
100|10 1.4 -0.21 1.3 0.32
100|20 5.0 -0.68 4.5 0.19
200|10 4.4 -0.19 4.1 0.06
200|20 8.5 -1.12 7.9 -0.04
500|20 11.2 -0.81 10.7 0.23

all 2.96 -0.26 2.62 0.12

On the basis of results presented in Table 1 we can say, that computations
times are almost the same. However definitely different are average relative de-
viations to the reference solutions. Average relative percentage deviation (PRD)
for the TSGW (with multimoves) is -0.26, however for the TSGWnoMM (with-
out multimoves) average PRD is 0.12. Applying of the multimoves cause about
3 times decreasing of the average PRD.
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Sports league scheduling is a hard combinatorial optimization problem. There
is a vast field of requests arising in real world problems, e.g., organizational, at-
tractiveness and fairness constraints. A single round robin tournament (SRRT)
can be described as a league of a set T of n teams (n even) to be scheduled
such that each team plays exactly once against each other team and such that
each team plays exactly once per matchday (MD) resulting in a set P of n − 1
MDs. Matches are carried out at one of opponents’ stadiums. A team playing
twice at home or twice away in two consecutive periods is said to have a break
in the latter of both periods. The number of breaks is to be minimized. It is
well known that at least n− 2 breaks must occur. We focus on schedules having
the minimum number of breaks. Costs corresponding to each possible match are
given and the objective is to minimize the sum of matches’ cost. This can be
formulated as a cost minimization IP as follows:

min
∑
p∈P

∑
i∈T

∑
j∈T :j 6=i

ci,j,pxi,j,p (1)

s.t. ∑
p∈P

(xi,j,p + xj,i,p) = 1 ∀i, j ∈ T : i < j (2)

∑
j∈T :j 6=i

(xi,j,p + xj,i,p) = 1 ∀i ∈ T, p ∈ P (3)

∑
j∈T :j 6=i

(
xi,j,(p−1) + xi,j,p

)
− bri,p ≤ 1 ∀i ∈ T, p ∈ P≥2 (4)

∑
j∈T :j 6=i

(
xj,i,(p−1) + xj,i,p

)
− bri,p ≤ 1 ∀i ∈ T, p ∈ P≥2 (5)

∑
i∈T

∑
t∈P≥2

bri,t ≤ n− 2 (6)

xi,j,p ∈ {0, 1}∀i, j ∈ T : j 6= i, p ∈ P (7)

bri,p ∈ {0, 1}∀i ∈ T, p ∈ P≥2 (8)

xi,j,p is equal to 1 if and only if team i ∈ T plays at home against team
j ∈ T at MD p ∈ P . Constraints (2) and (3) force the matches to form a SRRT.
Equations (4) and (5) set bri,p to 1 if team i plays twice at home and away,
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respectively, at MDs p − 1 and p. The overall number of breaks is restricted to
be no more than n−2 by constraint (6). The objective function (1) represents the
goal to minimize the overall sum of cost of all matches. Costs can be interpreted
in an abstract way here but it is not difficult to think of several applications
having practical relevance. For example ci,j,p can be employed to represent the
teams’ neglected preferences to play home or away in p if match (i, j, p) is carried
out. There are several papers covering models being equal or at least closely
related to the one at hand, see [8], [3], [1], [7], and [4] for example. In [2] a basic
SRRT problem covering (1), (2), (3), and (7) is proven to be NP-hard.

We exhibit an approach employing the well-known concept called column
generation (CG) which enumerates the variables of a large-scale linear program
implicitely. CG has been successfully implemented for graph coloring in [5].
Scheduling a SRRT is equivalent to edge-coloring a complete graph Kn with n−1
colors. Our approach considers MDs as columns resulting in the pricing problem
being a standard perfect-matching problem. Furthermore, we take home-away
patterns (HAP) into account. A HAP can be represented by a string for each
team i containing 0 in slot p iff i plays home at MD p. If we assign a HAP to
each single team the pricing problem can be reduced to 2-dimensional assignment
problems which can be solved efficiently by, e.g., the hungarian method.

This CG approach is employed within a branch-and-price framework. The
branching concept underlies the idea to create sets of HAPs by branching on
break-periods of a specific team. There are several properties of HAPs inducing
a minimum number of breaks known from [6] which can be employed to reduce
the number of branches to be evaluated.

We present the integer program representing the structural requirements of
SRRTs and several additional constraints. Furthermore, we give possible ex-
tensions considering availability of stadiums, attractive matches, and fairness
aspects. Details of the CG approach are outlined as well as the branching con-
cept. Finally, we show that our algorithm outperforms CPLEX 9.0 by means of
computational results and propose fields of future research.
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In this abstract we present a new exam timetabling algorithm together with a set of 
results on the university exam timetabling problems from the University of Toronto 
collection, available at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. A 
number of recent papers have studied these problems e.g. Carter et al. [7], Caramia et 
al. [6], Casey & Thompson [8], Abdullah et al. [1], Burke et al. [2],[4]. We will 
compare the results of our new algorithm against these results. 

In [4] and [5], we investigated a Great Deluge algorithm for exam timetabling. The 
basic algorithm was introduced by Dueck [11] and accepts a candidate solution if it 
satisfies the following conditions: 

P′ ≤ B when P < B P′ ≤ P when P ≥ B (1) 

where P is the current penalty, P′ is the penalty of the candidate solution and B is the 
current upper limit (called the “level”). At the beginning, B is equal to the initial 
penalty and with each step it is lowered by a decay rate (denoted by ∆B), which 
corresponds to the search speed. In [4], it was shown that the right choice of ∆B helps 
to fit the search procedure into an available time limit and that (unsurprisingly) longer 
searches generally produce better results. 

In this paper, we propose an extension of the Great Deluge algorithm (which we 
call “Flex-Deluge”), where the acceptance of uphill moves depends on a “flexibility” 
coefficient kf (0 ≤ kf ≤ 1). The acceptance rules are outlined in Expression (2): 

P′ ≤ P + kf ( B - P)  when P < B P′ ≤ P  when P ≥ B . (2) 

By varying kf, it is possible to obtain an algorithm with characteristics of both the 
original Great Deluge (kf = 1) and greedy Hill-Climbing (kf = 0). This property is 
similar to that of the Peckish strategy (an intermediate between Hill-Climbing and 
Random Ordering) proposed by Corne and Ross in [9]. 

The proposed mechanism enables the search procedure to develop with an adaptive 
level of strictness of acceptance for each particular move. The method draws upon an 
idea of White & Xie [13], who suspended the movement of exams with low degree in 
order to leave more room for the movement of higher degree exams. The degree of an 
exam here is defined in terms of graph colouring (see [3]). Thus, when moving an 
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exam into a different timeslot we calculate the flexibility coefficient as a ratio of the 
exam’s degree to the maximum degree. 

 
A series of experiments has been carried out. The following three new features 

were added to the algorithm of Burke et al. [4]: 
 

• Employing the flexible acceptance condition as described above. 
• When a move causes an infeasible solution, the algorithm uses Kempe chains to 

repair infeasibility. The advantages of this technique for exam timetabling are 
highlighted by Thomson and Dowsland in [12]. 

• In addition, we also follow suggestions that are derived from the work of 
Di Gaspero [10]. The normal procedure is to re-allocate a randomly chosen exam 
to a new (also randomly chosen) timeslot. However, in this approach, in 
approximately 20% of the cases, we instead perform just the swapping of all the 
exams in two randomly chosen timeslots. The flexibility for this second type of 
move was chosen to be 0.5 (after a series of experiments). 

 
The software was written in Delphi 7 and run on a PC Pentium 4 3.2 MHz. Each run 
lasted 5-10 hours while performing up to 2×109 moves. In [4] it was stated that this 
time is quite acceptable for exam timetabling (because in real world situations exam 
timetables are produced months before they are required) and there is no reason to 
reduce the time taken at the expense of the quality of solution. 

We present the results of our algorithm on the eleven most commonly studied 
problems from the Toronto benchmark set. The identifiers and characteristics of the 
problems are presented in Table 1. Also, this table contains the comparison of our 
best results with a range of published ones, including the first results of Carter et al. 
[7], the original Great Deluge results [4] and the most successful results from other 
author’s work. 

Table 1. Published and our best results on benchmark problems 

Dataset Exams Periods 
Carter 
 et al. 
(1996) 

Caramia 
et al. 

(2001) 

Burke & 
Newall 
(2003) 

Casey & 
Thompson 

(2003)  

Abdullah 
et al. 

(2004) 

Burke 
 et al. 
(2004) 

Flex-
Deluge 

Car-s-91 682 35 7.1 6.6 4.6 5.4 5.21 4.8 4.42 
Car-f-92 543 32 6.2 6.0 4.0 4.4 4.36 4.2 3.74 
Ear-f-83 190 24 36.4 29.3 37.05 34.8 34.87 35.4 32.76 
Hec-s-92 81 18 10.8 9.2 11.54 10.8 10.28 10.8 10.15 
Kfu-s-93 461 20 14.0 13.8 13.9 14.1 13.46 13.7 12.96 
Lse-f-91 381 18 10.5 9.6 10.82 14.7 10.24 10.4 9.83 
Sta-f-83 139 13 161.5 150.2 168.73 134.7 150.28 159.1 157.03 
Tre-s-92 261 23 9.6 9.4 8.35 8.7 8.13 8.3 7.75 
Uta-s-92 622 35 3.5 3.5 3.2 - 3.63 3.4 3.06 
Ute-s-92 184 10 25.8 24.3 25.83 25.4 24.21 25.7 24.82 
Yor-f-83 181 21 41.7 36.2 36.8 37.5 36.11 36.7 34.84 
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The results produced by our method support the strength of the suggested 
approach. Also, they suggest that the effectiveness of the method is relatively higher 
for the large-scale problems. This also holds for the original Great Deluge exam 
timetabling method (see [4]). 
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Since the mid 1990’s, with the implementation of increasingly flexible modular
course structures in many UK Universities, the central production and coordination of
the associated examination timetable has become increasingly difficult with more
examination offerings having to be timetabled in such a manner as to provide students
with a maximum distribution of their exams throughout the examination session. Of
course, we must also ensure that time and resources usage maximised. Universities,
struggling with rising student numbers, more flexibility in choice and less time to
examine, have increasingly relied upon automation of this task to produce efficient
timetables which satisfy these constraints e.g. [1,2]. Although strong in some respects,
unfortunately, many of the search methodologies currently described in the literature
have some limitations in terms of potential application in a wide number of differing
institutions.
The examination timetabling problem has long represented an area where new and
exciting techniques have been trialed at an early stage of their development.  This, in
large part, is related to the inherently straightforward nature of the timetabling
problem which can be expressed by the following.  Students are examined over a
designated time period, within a finite area of space, in such a way as to ensure they
do not have two exams at the same time. This ‘hard’ constraint must be satisfied for a
solution to be viable.  The quality of the overall solution is measured by factors such
as how well an individual’s exams are distributed throughout the designated time
period e.g. soft constraints. Both type of constraints, hard and soft, were documented
in some detail for UK Universities in 1996 [1].  All subsequent research has been
trialed on datasets which have been in existence from the middle part of that decade.
The initiative described in this presentation sets out to update the situation with regard
to the examination timetabling problem by investigating the changes in the problem
along with providing new updated datasets for techniques to be subsequently trialed.
It is well reported that there is a gap between theory and practice in scheduling
research (eg [3]). A major contributor to the work presented in this abstract is our spin
out company, EventMAP Limited. From a practitioner’s point of view, the company
has reported the steady increase in complexity of the examination problem over the
last five years.
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Overall, there are a number of goals that we intend to tackle in this work. Firstly, we
aim to make available a number of new examination datasets complete with the all
important space details. A major criticism of the work to date is that essential
information relating to space usage has not been available for the purpose of allowing
a true representation of the problem to be worked on.  Although the capacitated
examination timetabling problem has been investigated [4], this only served to place
an upper limit on seats available at any particular time period.  Crucial issues related
to the number and sizes of rooms were absent.  The anonomised datasets of real world
scenarios will be made available to the research community via the web site at
http://www.cs.nott.ac.uk/~rxq/data.htm, which will be dedicated to the datasets along
with initial ‘diagnostic characteristics’ e.g. a conflict density matrix. In this way, we
suggest that a master copy of the datasets can be held eliminating various
discrepancies reported in the past [5]. This data provided by eventMAP Limited is
necessary to understand the exact nature of the current real world issues within
examination timetabling.
Secondly, we will introduce a new measure of solution quality which more accurately
reflects the desired goals of the university sector.  The issue of no room information
being available with regard to the currently used datasets has meant that the
optimisation function used to measure solutions has not incorporated all the necessary
issues.  Results using this newly introduced objective will be presented on the new
university datasets.  It is expected that this work will represent an important
contribution in both updating and enabling the entire area of research within
examination timetabling to move forwards.
Thirdly, information will be discussed with the purpose of determining the exact
nature of this need and how the situation within UK Universities has changed and
developed since the original investigation of  Burke et al in 1996 [1].  Details from the
institutions contributing to this research via the datasets will be gathered and
presented with the aim of updating the type and amount of constraints that need to be
taken into consideration when providing solutions.
Finally, eventMAP has shown that ‘best’ solutions to various datasets depend on the
combination of different types of construction and improvement heuristics.  This will
be briefly discussed as a conclusion to the presentation.
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1 Introduction

The methods of intensification and diversification are indispensable in successful
meta heuristics for local search. Intensification corresponds in some sense to local
optimisation; the neighbourhood of a solution is searched intensively for solutions
which are better or have better opportunities. On the other hand, diversification
tries to escape from (relatively small) neighbourhoods to solutions which might
lead to better final results. A heuristic that is well aware of the intensification
versus diversification problems, is the Variable Neighbourhood Search (VNS),
see [2]. In this method, more than one neighbourhood structure is considered.
After finishing intensification with respect to one neighbourhood, the heuristic
diversifies to another neighbourhood. In this way one hopes to escape from poor
local optima.

In this work we introduce a model to predict the quality of a neighbourhood.
We use this model to identify ‘bad’ neighbourhoods and avoid searching them.
We call this process ‘Progress Control’. Computational results are presented to
show that progress control helps us finding better solutions in the same amount
of time.

2 Problem setting

2.1 Alternating Neighbourhood Search

Our object of research is a specific type of VNS, in which there is a ‘small’
neighbourhood, and a ‘large’ neighbourhood. After reaching a local optimum
with respect to the small neighbourhood, we move our attention to another
solution in the large neighbourhood. From here we again perform local optimi-
sation with respect to the new small neighbourhood. If we reach a better local
optimum, we take this new solution as the starting point for further investiga-
tion, otherwise we revert to the old local optimum, and continue from there. We
call this method ‘Alternating Neighbourhood Search’ (ANS).
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In ANS it is normal that 99% of the calculation time is spent on local opti-
misation with respect to the small neighbourhood. A possibility to improve the
performance of ANS is to detect, somehow, that it is useless to continue the
current local optimisation. The most obvious way is to stop if, after some fixed
amount of time, a certain quality has not been reached. In our experience, this
method is not good enough: a bad solution that improves steadily might still be
a promising one.

In this section we propose a model for the progress of the local optimisa-
tion process. With this model we follow the progress and try to predict which
neighbourhoods are good and which are bad.

2.2 Modeling the progress

Suppose we follow the local optimisation and get an update of the result every τ
milliseconds. With cn we denote the cost after n periods. Furthermore we denote
with c = c∞ the cost of the local optimum that eventually will be reached. Since
we apply local optimisation, we know that cn+1 ≤ cn. The moves are selected
randomly, hence it seems reasonable that the chance that a move at time tn is
successful is proportional to the difference cn − c. Hence, for the expected value
of the cost cn we get

E(cn − c) = λ(cn−1 − c).

Solving this recursion relation we obtain

E(cn) = (c0 − c)λn + c. (1)

In continuous time we use tn = n · τ to get

c(t) = AeBt + C, (2)

which is more convenient to use. Here A = c0 − c, C = c, and eBτ = λ.

Several assumptions underlie this model:

1. The number of good moves is proportional to the difference of the current
score and the end score. In practice this is not correct: some violations of
soft constraints can be removed by several moves and will probably found
earlier. This implies that λ decreases with time (hence our early estimates
are optimistic).

2. The cost change of a good move is always the same. In practice this is
not correct: soft constraint violations with high costs are usually detected
earlier, as a move can lift this high cost at introducing small costs for other
soft constraints. Again early estimates are optimistic.

3. All moves take an equal calculation time. In practice this is not exactly the
case, but if τ is relatively big, several hundreds of moves occur between tn
and tn+1, and the number of these moves is with high probability close to
average.
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All these assumptions make that the predicted progress differs from the realised
progress: the realised progress is much more irregular, especially in the beginning
of the local optimisation. For this reason we use a rolling horizon for the progress
controller, see section 2.3.

Although the model above is the most appealing model, we did not use it
in our more extensive experiments. Preliminary experiments revealed that the
approach in (2) is hard to scale: quite soon the exponential factor B is strongly
negative, and C equals approximately the latest cost. To circumvent this problem
we assume that the local optimisation will reach a perfect result of cost 0. Hence
we try to approximate the progress with the curve

c(t) = AeBt. (3)

With this formula we can estimate t∗, the time needed before the local op-
timiser will reach the quality of the current best result. If this estimated time
t∗ is larger than a certain reference time T we stop the local optimisation. The
assumption that the local optimisation will end with cost 0 is obviously not cor-
rect. But as before we take an optimistic point of view: if we would estimate the
end cost to be higher, the time t∗ would be larger, which implies that we would
stop the process sooner.

2.3 Progress control

Using the (natural) logarithm in (3) leads to the linear function:

log c(t) = log A + Bt. (4)

We use the least squares method to find the line y = αx + β, approximating
the points (xk, yk) where xk = tk and yk = log(ck). A side effect of the least
squares method is that big jumps in the costs have a relative large influence;
since jumps are always downward, this will pull the curve (3) down. This seems
good in our situation, where jumps correspond to an unstable situation, in which
case some more patience seems appropriate.

We use our estimates of α and β to predict t∗ each time we record a new
value of cn. For calculating t∗ and taking the decision whether or not to stop we
use three parameters p, f , and m:

(p) We use a rolling horizon: we forget about early points, and estimate the
future progress only based on the last p points.

(f) We use a start-up time: for the first f points we record whether t∗ > T
or not, but we never stop the process. If f = ∞ we perform ANS without
progress control.

(m) We use forgiveness: we do not necessarily stop directly if some t∗n > T , but
only if this happened more than m times in the last p checks. Clearly we will
never stop before tm; hence it is useless to consider f < m. In particular if
m ≥ p, we do not stop at all.

We call a combination of these parameters (p, f, m) a strategy. Our main
objective is to investigate the influence of a chosen strategy on the quality of the
solution, assuming that we have a limited time at our disposal.
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3 Results

The problem area we consider is personnel scheduling; the objects we try to
schedule are shifts, which are fixed in time. The shifts have to be assigned to
resources (employees), such that all hard constraints are satisfied, and the cost,
resulting from trespassing soft constraints, is minimised. We use the Variable
Neighbourhood Search as introduced in [1] as ANS. This algorithm is imple-
mented in the advanced planning system HARMONY, developed by ORTEC
for workforce management and scheduling.

We tested our progress control on five different datasets with different sizes.
For each dataset we simulated 1000 runs and recorded the average values of some
key figures for different strategies. In Table 1 we give per dataset the key figures
for not applying any strategy (the lines with the ‘-’) and for the best strategy
found. The size of the problems is indicated by the column ‘# Em.’.

Name # p∗ f∗ m∗ Bad Bad Good Good Tries Time Dec. (Dec./
Em. stop cont. stop cont. Time)

*1000

DataA 12 - - - 0 318 0 682 1.5 1090 243 223
14 3 0 315 3 586 96 10.1 948 426 449

Data2 8 - - - 0 476 0 524 1.9 3105 14 4.6
33 3 1 470 6 478 46 22 2122 28 13.2

Data1 46 - - - 0 639 0 361 2.7 245 10.9 44
3 2 0 639 0 239 122 8.2 112 14.6 130

ORTEC1 16 - - - 0 704 0 296 3.4 515 503 975
46 3 2 646 58 229 67 14.7 459 605 1319

ORTEC2 16 - - - 0 800 0 200 4.8 952 324 341
33 9 4 748 52 116 84 11.9 760 472 622

Table 1. Best found strategies for five different datasets and the average values of the
key figures.

The columns ‘Bad stop’ and ‘Bad cont.’ show the number of ‘bad’ neighbour-
hoods that are stopped or continued by our strategy. A ‘bad’ neighbourhood is a
neighbourhood where the local optimisation eventually does not reach a better
solution than the best known so far. We see that the optimal strategies filter out
almost all of the bad neighbourhoods, just as we hoped. However, in the colums
‘Good stop’ and ‘Good cont.’ we see that our strategies also stop a lot of good
neighbourhoods. As a result we see in the column ‘Tries’ that our strategies need
3 to 10 times more neighbourhoods to find a better solution than not applying
any strategy. But still, in the column ‘Time’ we can see that it takes our strate-
gies less time to find a better solution. For Data1 we even see that we gain more
than 50% in time! The column ‘Dec.’ shows the difference between the score to
beat and the score of the solution found after the first improvement. Here we
see that the improvement in score is 20-100% higher for our strategies compared
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to not applying progress control. This is caused by the fact that we are likely to
skip neighbourhoods that give only a small improvement.

We can conclude that our progress control finds better solutions and that it
finds them faster. The combination of these effects is shown in the last column.
Of course it will be very hard, if not impossible, to find the optimal strategy
before the optimisation process. But we found out that most strategies are an
improvement compared to not applying progress control at all, so finding a good
strategy is not so hard.

4 Conclusions

We defined progress control as the process of estimating the progress of a local
optimisation in a neighbourhood and using these estimates to stop searching
‘bad’ neighbourhoods. The results show that progress control is a good idea in
our Shift Scheduling problem. Since we didn’t use any knowledge of the problem
or even of the VNS we used, we believe that it can be applicable to many versions
of Iterated Local Search.

Finally, we like to stress that we do not pretend that our model predicts the
expected value of c∞; as can be noted in equation (3) we do not even try this.
In fact, we are not even interested in the progress itself. We only try to predict
whether or not a local optimisation will end up in a solution with a better score
than the best known so far.
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Timetabling problems often consists from various requirements which can not
be satisfied together [11]. Unsatisfiable requirements can be handled within op-
timization criteria as soft constraints. Such soft constraints may not be satisfied
if there are some contradictions. The remaining hard constraints must be still
satisfied. The set of hard and soft constraints can be naturally expressed using
constraint programming [3]. Unfortunately there is no system available which
would allow to use both hard and soft constraints together. There are various
systems implementing soft constraints [2] but none of them allows to combine
efficient constraint propagation algorithms for classical constraint satisfaction
problems together with the propagation for soft constraints.

Our implementation of the system for timetabling problem at Purdue Uni-
versity [9] was able to use both hard and soft constraints together. Hard con-
straints were available from SICStus Prolog CLP(FD) library [1] and soft con-
straints were implemented using the Soft CLP(FD) Solver [8]. This solver for
soft constraints includes the specific set of soft constraints needed for the Purdue
University timetabling problem. Our current intent is to generalize this proposal
and implement the Soft CLP(FD) Solver as an open extendable library able to
solve a wide class of problems.

The new solver allows to define soft constraints as it is shown in the course
timetabling example in Figure 1. Hard constraint disjoint2 ensures that all

(1) class_timetabling( TimesAndRooms ) :-

...

(2) disjoint2( [class(Time, Duration, Room, 1) | Rest ] ),

(3) serialized( Times, Durations ),

(4) Time in 7..8 @ discouraged,

(5) TimeForLecture #< TimeForSeminar @ preferred,

(6) soft_serialized(TimeForSeminar1,TimeForSeminar2,TimeForSeminar3),

...

(7) labeling( TimesAndRooms ).

Fig. 1. Course timetabling example

* This work is supported by the Ministry of Education of the Czech Republic under
the research intent No. 0021622419.
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classes in the list do not overlap in time and space. Another hard constraint
serialized allows for example to teach all classes of the same teacher at different
times. The soft constraint (4) discourages placement of the class identified by
its starting Time at seven or eight o’clock. Soft constraints can specify desired or
undesired relations between classes (5). Soft global constraint soft serialized
allows to express that seminars of the same course should be preferably taught
at different times.

While the original solver is based on partial forward checking [4], the new
proposal allows to consider AC* and NC* consistency [6]. The variables in soft
constraints are called preference variables and they are implemented using the
attributed variable [5]. The attribute of each preference variable stores the cur-
rent cost for each value present in the domain of the variable. Each preference
variable is also a standard domain variable which allows to include it in any
(hard) constraint of the CLP(FD) library. The lower bound of the solution is
represented as a domain variable. Potential violations of soft constraints con-
tribute to this cost and backtracking occurs when the lower bound of the current
partial solution is greater than some existing upper bound.

The current implementation contains the basic unary and binary soft con-
straints. We plan to implement some soft global constraints based on princi-
ples described in [7]. There are some proposals for soft global cardinality con-
straints [10] we would like to study. These could be very interesting for solving
of the employee timetabling problems. We also intend to use the solver for ma-
chine scheduling problems where various soft constraints are specified by users
submitting tasks to the problem.
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1 Introduction 

This paper deals with the Lecture and Tutorial Timetabling Problem at an institution 
in a Tunisian University. Our objective is to construct a feasible timetable for all 
lectures and tutorials taken by different groups of each subsection of any section in 
the institution. For this, we describe the timetabling problem of the institution 
considered and list all specific hard and soft constraints. We formulate the problem as 
a zero-one integer linear program in which we define two binary variables 
corresponding respectively to lectures and tutorials. The quadratic objective function 
proposed tries to eliminate a real problem of congestion leading to a waste of time and 
students’ delays. Since the number of constraints is very large, the use of the heuristic 
procedures is of primary importance. We develop three heuristic procedures: first, we 
start by assigning all lectures of different student sections having the biggest size in a 
classroom with the smallest capacity that can fit the students. Second, we complete 
the output of the first phase by assigning the tutorials for different groups. Lectures 
and tutorials timetabling problem are correlated and cannot be treated independently 
if we desire to get a complete solution. The two first heuristics are illustrated with real 
data of one section at the Faculty of Economics and Management Sciences of  Sfax in 
Tunisia and compared with those manually generated. Since there are several criteria 
which are preferably satisfied as much as possible, we will formulate the problem as a 
multiobjective mathematical program, and then we develop later a third heuristic in 
order to ameliorate the quality of the solution. The different criteria which can be 
taken into account are: minimize the number of free inter-meetings, maximize the 
professor preferences, minimize the distance covered by the students between the 
classrooms and exempt the students as much as possible in the half day.   

Educational timetabling has been the subject of several papers in various scientific 
journals and the topic of many theses in different universities. This problem concerns 
essentially course and exam which are to be scheduled during the academic year. The 
course timetabling problem consists of scheduling a certain number of courses into a 
certain number of timeslots spread throughout the week in such away that hard and 
soft constraints are satisfied.  

Various techniques have been used to solve Timetabling Problems (see Burke et 
al. [3], Carter and Laporte [8]). One of the earliest methods used to solve this problem 
is graph colouring in which vertices represent events and two vertices are connected if 
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and only if there is a conflict. Welsh and Powell [18], Wood [19], Selim [16] and De 
Werra [12] proposed several formulations by graph colouring for a set of class-
teacher timetabling problems and discussed the inherent complexity. Recently, 
Timothy [17] has used graph colouring to solve both course and exam timetabling. 

Linear and integer programming models were frequently used to formulate the 
course time-tabling problem usually with binary variables (Diskalaki et al. [11], 
Diskalaki et Birbas (10] and Dimopoulou and Miliotis [13], [14]).  

Burke and Petrovic [2] discuss some recent development in the field of automated 
timetabling. The discussion deals with both course and exam timetabling. Overviews 
of four types of approaches to timetabling problems that have been applied are given: 
sequential methods, cluster methods, constraint based methods and metaheuristic 
methods. 

Another technique that has recently been successfully applied to course 
timetabling is Case-Based Reasoning (CBR). The origin of CBR dates back to 1977 
with the work of Schank and Abelson [15]. CBR has also been well applied to 
scheduling and optimization problems. 

Burke et al. ([1], [4], [5], [6]) were the first to adapt this approach to solve 
university timetabling problems. The main idea behind the use of CBR in timetabling 
is that previous timetabling problems and their appropriate solution procedures are 
stored in a knowledge base which is used to provide good solution for a new 
timetabling problem. 

In the papers [4] and [6], the authors illustrate the use of attribute graphs to 
graphically represent a course timetabling problem. In this graph, the courses (events) 
are represented by nodes and the relationship that exists between these events 
(including hard and soft constraints) is indicated by edges. Then a similarity measure 
is used to indicate which part of the attribute graphs of the stored cases in the 
knowledge base has the most similar structure of the attribute graph of a new 
timetabling problem. Finally, the most appropriate solution procedure used for the 
selected stored case is adapted to solve the new problem. 

In the paper [1], they keep using case-based reasoning approach for solving course 
timetabling problem but instead of using attribute graphs for constructing the 
knowledge base, a knowledge discovery process is performed based on a set of 
features that are judged to be most appropriate to describe the characteristics of the 
timetabling problem. 

In the recent paper [5], they use the multiple-retrieved case-based reasoning 
approach to solve large scale timetabling problem which were until then unable to be 
solved by CBR in the earlier papers. The main idea is to decompose the attribute 
graph associated with the large timetabling problem into smaller attribute sub-graphs 
whose associated timetabling problem can be solved using CBR approach. Then the 
partial solutions are all combined to obtain a timetable for the large time- tabling 
problem. 

In their article in press, Burke et al. [7] develop a graph-based hyper-heuristic 
(GHH) which has its own search space that operates in high level with the solution 
space of the problem generated by the so-called low level heuristics. 
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2 Problem description 

The construction of course timetabling at the Faculty of Economics and Management 
Sciences of Sfax (FEMSS) is performed manually by administration staff twice in 
each academic year (first and second semester). There are thirty timeslots distributed 
along the six days of the week: Monday to Saturday. There are six timeslots in 
Monday, Tuesday, Thursday and Friday and only three timeslots in the morning in 
Wednesday and Saturday. Each timeslot has one hour and a half duration followed by 
fifteen minutes break except the third timeslot in the morning is followed by thirty 
minutes lunch break.  

The lectures and tutorials are of two categories: there are some with only one 
period per week and others require two periods per week. Lectures with two periods 
cannot be held at the same day. There are lectures without tutorial, with only one 
period tutorial and with two-period tutorial. There are several sections divided into 
different subsections.  

Each subsection with a big size is divided into a certain number of groups having a 
size no more than thirty students. The lectures are to be taught to a whole section or 
subsection while the tutorials are only taught to groups in small classrooms. 

As any timetabling problem, there are both hard and soft constraints. The hard 
constraints are those that cannot be violated at any circumstances in order to obtain a 
feasible solution. 
 
We consider these hard constraints: 
– All courses (lectures and tutorials) included in the program of each section are 

insured.  
– Any professor cannot teach more than one course at the same period.  
– Any classroom cannot be used more than once in any period. 
– Any group of any subsection of any section cannot be taught more than one course 

in any timeslot. 
– Any subsection of any section cannot take two lectures in two consecutive 

timeslots. 
– Courses with two periods cannot be taught twice in the same day. 
– Any professor doses not teach three courses at three consecutive timeslots. 
– Any group of any subsection of any section cannot be taught consequently in the 

third and fourth periods. 
– Any professor cannot teach consequently in the third and fourth periods. 

The soft constraints are restricted to: 
– The time preferences of professors should be respected as much as possible. 
– For any group of any section the rate of occupation of the seats should be 

maximized. 

Other soft constraints can be considered: 
– Minimize the number of free inter-meetings. 
– Maximize the professor preferences. 
– Exempt the student as far as possible in the half day. 
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3 Problem formulation 

The course timetabling problem of the Tunisian institution was formulated as a zero-
one linear integer program in which we define two binary variables corresponding 
respectively to lectures and tutorials. In this formulation, we have considered all hard 
constraints cited in section 2. 

The objective function has a quadratic form in which we have considered a real 
problem of routing between classrooms and aims to minimize the distance covered by 
students between these classrooms. 

4 Tutorials’  Timetabling Heuristic (TTH) 

This heuristic completes the one that has been developed by Dammak et al. [9] in 
which the authors solve the problem of lecture timetabling in the same institution. 
This new heuristic is composed of eight steps detailed as follow:  
Step (1):    
Arrange the set of sections in non-increasing order of the enrolled student size. 
Arrange the classrooms in non-increasing order of their size. 
Step (2):  
For each group of each subsection of each section, we begin by assigning the first 
period of the two-period tutorial that needs to be taught to this group of the 
subsection. 
Step (2.1):  
We look for the first classroom which can hold the current tutorial and having the 
smallest size. 
Step (2.2): 
This classroom is assigned to this tutorial if and only if: 
We find a period in which this classroom is available and at the same time the group 
of the subsection is free in the current period. If this current period is the third 
(respectively the fourth) in the day then the group has to be free the fourth 
(respectively in the third) period. 

In case no such period exists, we check the availability of the immediately 
precedent classroom. 

If there is no classroom available that can fit this tutorial, we have to divide the 
group into smaller groups. 

Also we consider the availability and time preferences of professors that can teach 
this tutorial. 
Step (2.3): 
For a certain period, we check if the professor has taught in the two consecutive 
preceding periods or in the two consecutive following periods or in the two periods 
corresponding to the previous and the following periods. 
Step (2.4): 
If the current professor is busy or step (2.3) is satisfied then choose another professor. 
Step (3): 
We assign the one-period tutorials. We follow the same procedure used in step (2.1) 
to step (2.4) (respectively) denoted step (3.1) to step (3.4) (respectively). 
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Step (4): 
We assign the second-period of the two-period tutorials that has to be taught by the 
same professor. We follow the same procedure of steps (2.1) and (2.2) (respectively) 
denoted steps (4.1) and (4.2) (respectively). In addition, we have to prevent the 
assignment of the second period tutorial during the same day in which the first period 
tutorial is scheduled. 

5 Numerical Example 

We restrict our numerical example on only one group chosen from the first subsection 
of the first section of the institution. We denote Cijk the lecture k taught by the 
subsection j of section i, Dijt the tutorial t taught by the subsection j of section i, s the 
classroom, and h the professor. The output of our heuristic is summarized in the 
timetable 1: 

Timetable 1 

Day / Hour 08 – 9:30 09:45-11:15 11:30-13:00  13:30-15:00 15:15-16:45 17:00-18:30 

Monday C111, s = 3, 

h=1 

D112, s = 28, 

h=17 

  C113, s = 3, 

h=5 

D116, s = 28, 

h=29 

D114, s = 28, 

h=6 

Tuesday C112, s = 3, 

h=2 

D118, s = 28, 

h=36 

C114, s = 3, 

h=6 

  C115, s = 3, h=7 D117, s = 28, 

h=37 

Wednesday C111, s = 3, 

h=1 

D111, s = 28, 

h=14 

     

Thursday C112, s = 3, 

h=2 

D114, s = 27, h=6   C113, s = 3, 

h=5 

 D113, s = 24, 

h=20 

Friday C116, s = 3, 

h=9 

      

Saturday        

 

Timetable 2 

Day / Hour 08 – 9:30 09:45-11:15 11:30-13:00  13:30-15:00 15:15-16:45 17:00-18:30 

Monday   D112, s =31, 

h=2 

 C115, s = 2, 

h=7 

D114, s = 46, h=6  

Tuesday D118, s =35, 

h=36 

   C116, s = 3, 

h=8 

C113, s = 2, h=5  

Wednesday C114, s = 2, 

h=6 

C111, s = 1, 

 h=1 

     

Thursday C112, s = 4, 

h=2 

D114, s = 44, h=6   D117,s=36, 

h=33 

  

Friday C112, s = 3, 

h=2 

C111, s = 1,  

h=1 

D116, s =58, 

h=28 

  C113, s = 3, h=5 D113, s = 43, 

h=19 

Saturday D111, s =52, 

h=12 
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To illustrate the performance of our heuristic, we compare the results presented in 
the timetable one with those generated manually by the administration presented in the 
timetable two. 

From these two timetables, we can draw the following remarks: 
1. In the manual solution, the number of half days with single lesson is equal to 4. 

However, in the solution provided by the heuristic (TTH), there is only one half 
day with one meeting. It is preferable to schedule at least two courses per half day 
in order to prevent the student moving for only one meeting. 

2. The advantage of the output of our heuristic consists of releasing students as far as 
possible during the weekend (morning of Friday). For this, the amelioration of the 
solution is easier to perform in the heuristic solution than in the manual one. 

3. The constraint of excluding third and fourth timeslots in each of the four completes 
days is rigorously satisfied by heuristic solution but not considered by hand-made 
one. 

4.  Finally, this comparison is far from being definitive and conclusive since this 
work is considered partial for the following reasons. First, we considered only one 
group of one subsection of one section; a thorough test will include all sections. 
Second, data for at least three recent academic years need to be used in the test. 
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1 Introduction

The considered problem occurs in the maintenance service of a French software
company, Delta Informatique. This company sells software that allow to manage
bank information systems. The 24 employees of the maintenance service have to
ensure the maintenance of these software. They have also to solve dysfunctions
that could occur in these products or to give assistance to customers. The em-
ployees’ timetables have though to satisfy the clients’ requests, within a planning
horizon of three months.

The help desk is closed only one day per week (from Saturday at 2:00PM to
Sunday at 2:00PM). Four shifts are defined for the help desk: MS - Morning shift
(from 6:00 AM to 2:00 PM), AS - Afternoon shift (from 2:00 PM to 10:00 PM),
NS - Night shift (from 10:00 PM to 6:00 AM), SS - Sunday shift (from 2:00 PM
to 0:00 AM). A shift is defined for the employees not assigned to the help desk:
DS - Day Shift (from 9:00 AM to 6:00 PM, with a noon break). To respond to
clients requests, two employees have to be assigned to MS, AS and to NS, from
Monday to Friday. On Saturday, two employees are assigned to MS. On Sunday,
two employees are assigned to SS. Employees not assigned to help desk, work
from Monday to Friday on a classical shift, DS. These employees develop new
functions in software.

In this problem, several hard constraints have to be respected. Obviously,
the workforce requirements and the labour legislation must be respected. Each
employee must have at least eleven hours between two working days. Each em-
ployee must have at least two days-off per week. Moreover, if an employee works
on week-ends or on public holiday, some days-off have to be inserted in his/hers
timetable.

Another constraint concerns the spread of skills among the present employ-
ees. The employees of the maintenance service are divided in five different skill
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groups. Each skill group masters a specific part of the software. When an em-
ployee is assigned to the help desk, her/his skill group has one unavailable em-
ployee. Though the employees assigned to the help desk must belong to different
skill groups. Moreover, the customers could call the help desk for different prob-
lems. Two employees that are assigned to the same shift in the help desk have
to belong to different skill groups, such that the number of mastered skills at
the help desk is maximised.

Employees have also different levels: junior or senior. A senior employee has
been working for the company for a long time and masters more skills than a
junior employee. As only two employees work at night, at least one of them has
to be a senior employee.

Several preferences of employees have also to be considered. Each employee
can specify a few number of days when she/he can not be assigned to specific
shifts. Each employee have also to take a given number of days-off within the
three months. A part of these days are fixed by the employee. The remaining
days are set by the planner, with respect to hard constraints.

In addition to all these hard constraints, timetables should be as fair as pos-
sible. This fairness is evaluated by computing, for each employee, the number of
worked nights, week-ends or public holidays and the number of satisfied prefer-
ences. Car sharing could also be considered, such that two employees can specify
that they prefer to work on the same shifts.

We can observe that this problem is quite close to Nurse Scheduling Problem
(as in [1]). As the planner builds timetables by hand, our goal is to propose an
automated procedure that allows to find feasible solution quite rapidly.

2 Model

First of all, we have developed an Integer Linear Program. The model is very
huge, as all the hard and the soft constraints are considered. The objective func-
tion (to minimize) is a weighted sum of all the violated soft constraints and a
measure of unfairness. This approach was developed to know the limits of this
type of exact approach for this type of problem. Some computational exper-
iments have been carried. As forecasted, with a free solver (GLPK), it takes
more than a day to compute a simple timetable for about fifteen employees, for
two weeks. As mentioned in [2], it is not surprising. In fact, Integer Linear Pro-
gramming is not very efficient when global constraints or employees’ preferences
have to be considered.

Then a priority-rule based heuristic was developed. This greedy algorithm
reproduces the human way to build timetables and its first results are encour-
aging (Timetables are computed in less than five minutes for all the employees
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and for three months). This method uses different priority rules and different
strategies to assign shifts to employees.

3 Conclusion

The studied timetabling problem is quite different from classical timetabling
problems, due to some specific hard constraints and to the huge number of
considered soft constraints. Mathematical programming could not be used for
solving this problem, due to the size of the model. The greedy method we propose
obtain good-quality solutions, in less than five minutes. These results can be
improved by using a metaheuristic, such as a genetic algorithm.
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1 Introduction

Optimization in sports is a field of increasing interest. Some applications have
been reviewed by Ribeiro and Urrutia [7]. Combinatorial optimization techniques
have been applied e.g. to the traveling tournament problem [3, 9], to playoff
elimination in championships [8], and to the scheduling of a college basketball
conference [6]. Easton et al. [2] reviewed scheduling problems in sports.

A common problem found in sports management is the assignment of referees
to games already scheduled. The number of referees to be assigned to each game
may vary depending on the sport or the league. For example, soccer games
usually require three referees, while basketball games require only two. There are
a number of rules and objectives that should be taken into account when referees
are assigned to games. Games in higher divisions may require higher-skilled
referees. Since referees may officiate several games during the day in amateur
leagues, travel feasibility and travel times between the facilities where the games
take place have to be considered. Additionally, and especially in some amateur
children leagues, some of the referees are also players (or players’ relatives). In
this case, a natural constraint is that a referee cannot officiate a game that
he/she is scheduled to play.

Referee assignment problems in other contexts have been addressed in [4, 5,
10]. Dinitz and Stinson [1] considered a problem involving referee assignment
to tournament schedules, connecting room squares and balanced tournament
designs. In this work, we address a simplified version of a referee assignment
problem common to many amateur leagues of sports such as soccer, basketball,
and baseball, among others. In the next section, we describe the main constraints
and the objective function of the problem. The proposed solution strategy is
summarized in Section 3. Concluding remarks and further extensions of this
work are reported in the last section.

2 Problem statement

We consider the general problem, in which each game has a number of refer-
eeing positions to be assigned to referees. The games are previously scheduled
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and the facilities and time slots where they take place are known beforehand. In
our approach, referees are assigned to empty refereeing positions, not to games.
This approach allows not only to handle referee assignment problems in different
sports, but also problems in tournaments where different games may need dif-
ferent numbers of referees. Games with pre-assigned referees to some refereeing
positions can also be handled by this approach. Each refereeing position to be
filled by a referee is called a referee slot.

Each referee slot has to be filled by a referee with a minimum skill level, which
is previously determined and often related to the tournament division. Usually,
a division corresponds to a set of teams formed by players under a certain age
and with the same gender, e.g. boys under 16 years old. Each referee has a
certain skill level defining the games he/she can officiate. Additionally, referees
may declare their unavailability to officiate at certain time slots. Furthermore,
each referee establishes the maximum number of games he/she is able to officiate
and the target number of games he/she is willing to officiate. Travels are not
allowed, i.e. referees that officiate more than one game in the same day must be
assigned to games that take place at the same facility.

The Referee Assignment Problem (RAP) consists in assigning referees to all
referee slots associated to games scheduled to a given time interval (typically, a
day or a weekend), minimizing the sum over all referees of the absolute value of
the difference between the target and the actual number of games assigned to
each referee and satisfying a set of hard constraints listed below:

– all referee slots must be filled for all games;
– referees cannot officiate games in referee slots overlapping time slots where

they are already scheduled to play or to officiate;
– referees cannot officiate games in referee slots where they declared to be

unavailable;
– referees must meet the minimum skill level established for each referee slot;
– referees cannot officiate more than a given maximum number of games; and
– referees cannot officiate in two or more different facilities on the same day.

3 Solution strategy

The problem described in the previous section was formulated by integer pro-
gramming. Only small instances with up to 40 games and 40 referees could be
exactly solved by a commercial solver such as CPLEX 9.0.

We propose a three-phase heuristic approach to tackle real-life large instances
of the referee assignment problem:

1. Apply a greedy heuristic to find an initial solution, possibly violating some
constraints.

2. Make the initial solution feasible, by using a local search repair heuristic
based on swap moves (referees assigned to two referee slots are swapped),
exchange moves (the referee assigned to a referee slot is replaced by another
referee), and group perturbations (all referee slots assigned to two referees
officiating at different facilities are swapped).
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3. Improve the feasible solution built in the previous step, by using a lo-
cal search procedure based on exchange moves, simple perturbations (swap
moves that do not change the value of the objective function), and group
perturbations.

Randomly generated instances following patterns similar to real-life appli-
cations have been used in the computational experiments. They have up to
500 games and up to 1250 referees, different numbers of facilities, and differ-
ent patterns of the target number of games each referee is willing to officiate.
Preliminary experiments on a standard Pentium IV processor have shown that
the greedy heuristic was able to build feasible solutions for the largest instances
in less than 0.1 second. When a feasible solution was not found after the first
phase, the local search repair heuristic took less than 1.0 second to found one.
The third phase typically improved the feasible initial solutions by 50%.

4 Extensions

We are currently working on extensions addressing further constraints of real-life
applications. One of such extensions is the existence of hard or soft links between
some referees. In this case, some referees may want to work with the same referees
as partners in every game they officiate. This is the case when they are more
confident to officiate together, but also when they want to travel in car pools or to
officiate with relatives. In some situations, some referees can be unable to travel.
Moreover, managers may want assignments matching preferences regarding the
facilities, divisions, and time slots where the referees officiate.

Another extension occurs when referees are able to officiate games in different
facilities. In this case, travel times between facilities should also be considered
for feasibility matters. They can also be incorporated into the objective function,
so as that the minimization of the total traveling time turns out to be another
objective. The minimization of the waiting times between consecutive games
assigned to the same referee is also relevant.

The referee assignment problem has clearly the flavor of a multi-criteria opti-
mization application and we are also addressing the use of multi-criteria methods
coupled with decision support systems for its solution in practice.
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1 Introduction

There are 20 teams in the Chilean soccer first division. They take part in two
yearly tournaments: opening and closing. Each tournament is organized in two
phases: qualifying and playoffs. The qualifying phase follows the structure of a
single round robin tournament. The teams are evenly distributed over four groups
with five teams each. The groups are formed according to the performance of
each team in the last tournament. The first four teams are distributed on the four
groups. The teams from 5th to 8th place are randomly distributed in different
groups. This scheme is repeated until all teams are assigned to a group. At the
end of the qualifying phase, the teams that end up in the two first positions of
each group qualify for the playoffs.

The National Association of Professional Football (ANFP) is in charge of
scheduling the games of the opening and closing tournaments. Good schedules
are of major importance for the success of the tournaments, making them more
balanced, profitable, and attractive. All schedules were randomly prepared until
2004. Weintraub et al [1] addressed the main drawbacks of such schedules and
tackled the problem by integer programming. Their model is applied since 2005.
However, the computation times are very high and the solutions produced by
the model still lack quality.

In this work, we improve the original integer programming formulation. Valid
inequalities are derived and appended to the model. A new branch-and-cut strat-
egy is used to speedup convergence. The main constraints and the objective
function are described in Section 2. The solution approach and the branching
strategy are summarized in Section 3. Preliminary results on a real-life instance
are reported in the last section.

2 Problem statement

A HAP stands for a home-away pattern and defines a sequence of home and away
games for a given team. Popular teams are those with more fans. Traditional
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teams are the oldest teams. Strong teams are those better qualified in the last
tournaments. Tourist teams are those from Viña del Mar, Valparaiso, and La
Serena. A classic is a game between two traditional teams. The constraints of
the problem are the following:

– Each team plays against every other team exactly once.
– Every team plays exactly once in each round.
– Each team plays at least nine games at home and nine games away.
– A team may never have two consecutive breaks [5].
– A team may play at most three games at home in any five consecutive rounds.
– Some teams have complementary HAPs (whenever one of them plays at

home the other plays away, and vice-versa).
– There may be at most four games in Santiago in any round.
– There may be no breaks in rounds 1, 16, and 18.
– Pairs of excluding teams: if a team plays against one of them at home, then

it should play away against the other (and vice-versa).
– Classics should not be played before round 7 or after round 16.
– No team can play two consecutive games against popular teams.
– No team can play two consecutive games against strong teams.
– Each traditional team plays exactly one classic at home.
– Tourist teams should play at least once against a traditional team during

the summer rounds.
– Traditional teams cannot play twice in the same week in the same tourist

region.
– A team from the Central region cannot play in the same week against a team

from the South and another from the North.

Since only the teams in the two first positions of each group qualify for the
playoffs, games between teams in the same group are more attractive. Therefore,
these games should as much as possible be held in the last rounds. The objective
function consists in maximizing the number of games between teams in the same
group in the last rounds of the tournament. It is given by the sum of the indices
of the rounds where the games between teams of the same group take place.

3 Solution approach and branching strategy

The problem is formulated by integer programming and solved by a branch-and-
cut algorithm. Two variables were used in the original model [1]: xijk = 1 if
team i plays at home against team j in round k, xijk = 0 otherwise; yik = 1
if team i has a break at round k + 1 (i.e., team i plays two consecutive home
games or two consecutive away games in rounds k and k+ 1), yik = 0 otherwise.

The new formulation follows the same strategy proposed by Trick [3] and is
based on the introduction of a new binary variable: zik = 1 if team i plays at
home in round k, zik = 0 otherwise. All HAP constraints are rewritten in terms of
this new variable. This formulation is more easily solvable. Furthermore, the new
variable plays a major role in the branching strategy. Each round is a perfect
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matching in the complete graph whose nodes are the participating teams [2,
4]. Cuts associated with the most violated matching constraints in the linear
relaxation are progressively added to the enumeration tree.

The branching strategy plays a major role in the success of a branch-and-cut
algorithm. Branching on the xijk variables is not efficient, since most of them are
null in integral solutions. Our branching strategy is based on the zik variables.
Branching on the xijk variables starts only after all the zik variables are integral.
This strategy implicitly decomposes the solution in two phases. In the first phase
the HAPs for each team are computed, while in the second the dates of the games
are established. Once the variables zik are fixed, the branch-and-cut algorithm
needs just a few branches on variables xijk to find a feasible solution.

4 Preliminary results

Two algorithms based on the previous formulation have been proposed and eval-
uated: the B&C-ANFP branch-and-cut algorithm and the B&B-ANFP branch-and-
bound algorithm without cuts. Both of them were implemented using the library
Concert Technology 1.2 and version 8.0 of the CPLEX solver. The computational
experiments were performed on a 3 GHz Pentium IV machine with 1 Gbyte of
RAM memory. We illustrate the results obtained for the 2005 edition of the
opening tournament, comparing them with those reported in [1].

Computation times for solving the linear programming relaxation by different
algorithms available with the CPLEX 8.0 package are given in Table 1. The
problem is very degenerated and requires the use of perturbations, leading to
large computation times. The interior point algorithm was the best solution
strategy. We also can see in Table 1 that the new formulation considerably
reduced the computation time of the interior points algorithm, making possible
an efficient implementation of the cutting plane algorithm.

Table 1. Computation times for solving the linear relaxation.

Strategy time (s)

Primal simplex 27
Dual simplex 21
Interior points (original formulation) 12
Interior points (variables zik) 4

Results obtained with algorithms B&B-ANFP and B&C-ANFP are given in Ta-
ble 2, which reports the value of the objective function, the number of nodes
in the enumeration tree, and the integrality gap after some elapsed time. In the
beginning, algorithm B&B-ANFP finds good solutions faster than B&C-ANFP. How-
ever, the former was not able to find the optimal solution after 4 hours. On the
contrary, the cuts used by algorithm B&C-ANFP were able to improve the linear
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relaxation bound, which was already equal to the optimal value at the root of the
enumeration tree. The number of nodes is much smaller for algorithm B&C-ANFP,
that found the optimal solution in less than two hours of computation time.

Table 2. Comparison between algorithms B&B-ANFP and B&C-ANFP.

Elapsed B&B-ANFP B&C-ANFP

time objective nodes gap (%) objective nodes gap (%)

10 minutes 617 140 3.6 474 120 25.9
30 minutes 622 600 2.9 615 330 3.9

1 hour 631 1120 1.4 633 570 1.1
2 hours 633 2190 1.1 640 1560 0.0
4 hours 639 4860 0.2 — — —

In Table 3, we compare the results obtained by algorithm B&C-ANFP with
those obtained by the approach in [1]. We give the value of the objective function
and the integrality gap after 30 minutes and after two hours of computation time
(on a 2.4 GHz Pentium IV computer for [1]) for both algorithms. Algorithm
B&C-ANFP not only found a better solution (615) very quickly (30 minutes), but
also found the optimal solution value (640) after the same time that the approach
in [1] took to find a solution value 10.0% away from the optimal.

Table 3. Comparison between algorithms B&C-ANFP and Weintraub et al [1].

Algorithm time objective gap (%)

B&C-ANFP 30 minutes 615 3.9
2 hours 640 0.0

Weintraub et al [1] 2 hours 576 10.0
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1 Constant Distance Traveling Tournament Problem

In this abstract, we deal with the Constant Distance Traveling Tournament
Problem (CDTTP) [4], which is a special class of the Traveling Tournament
Problem (TTP), established by Easton, Nemhauser and Trick [1]. We propose a
lower bound of the optimal value of CDTTP, and two algorithms that produce
feasible solutions whose objective values are close to the proposed lower bound.
For some size of instances, our algorithms yield feasible solutions better than
the previous best solutions.

In the following, several definitions for CDTTP are introduced. Given even
n, the number of teams, a double round-robin tournament is a set of games
in which every team plays every other team exactly once at home and once at
away. A game is specified by an ordered pair of opponents. Exactly 2(n−1) slots
or time periods are required to play a double round-robin tournament. Each
team begins at its home site and travels to play its games at the chosen venues.
Each team then returns (if necessary) to its home at the end of the schedule.
The number of trips of a team is defined by the number of moves of the team
between team sites. Consecutive away games for a team constitute a road trip;
consecutive home games are a home stand. The length of a road trip or home
stand is the number of opponents playing against in the road trip/home stand.
The problem CDTTP is defined as follows.
Input: the number of teams, n;
Output: a double round-robin tournament of n teams such that

1. the length of any home stand and that of any road trip is at most three;
2. no repeaters (A at B immediately followed by B at A is prohibited);
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3. the total number of trips taken by teams is minimized.

The CDTTP and its variations are discussed in [3, 5]. The CDTTP can be
considered as a special class of the original TTP [1] such that all distances
between team sites are one.

In the rest of this abstract, a schedule of double round-robin tournament
satisfying the above conditions 1 and 2 is called a feasible schedule.

2 Lower Bound

We proved the following lemma that provides a lower bound of the optimal value
of CDTTP. Due to space limitation, the proof is omitted.

Lemma 1. The total number of trips of every feasible schedule of n teams is
greater than or equal to LB(n) defined by

LB(n) def.=





(4/3)n2 − n (n ≡ 0 mod 3),
(4/3)n2 − (5/6)n− 1 (n ≡ 1 mod 3),
(4/3)n2 − (2/3)n (n ≡ 2 mod 3).

3 Algorithms

We propose two algorithms for constructing feasible schedules by modifying sin-
gle round-robin tournaments. Due to space limitation, for both algorithms we
describe these procedures for the case of n ≡ 1 mod 3, and show only the results
for n ∈ {0, 2} mod 3.

3.1 Modified Circle Method

First, we propose the algorithm named Modified Circle Method (MCM). Denote
the set of teams by T = {1, 2, . . . , n}. We introduce a directed graph Ge = (T,Ae)
with a vertex set T and a set of mutually disjoint directed edges

Ae def.= {(j, n + 1− j) : dj/3e is even, 1 ≤ j ≤ n/2}
∪ {(n + 1− j, j) : dj/3e is odd, 1 ≤ j ≤ n/2}.

For any permutation π on T , Ge(π) denotes the set of n/2 matches satisfying that
every directed edge (u, v) ∈ Ae corresponds to a match between π(u) and π(v)
held at the home of π(v). For each j ∈ {1, 2, . . . , n − 1} = T \ {n}, we define a
permutation πj by (πj(1), πj(2), . . . , πj(n)) = (j, j +1, . . . , n−1, 1, . . . , j−1, n).
Let Go be a directed graph obtained from Ge by reversing the direction of the
edge between 1 and n. Let X be a single round-robin tournament satisfying
that matches in slot s are defined by Go(πs) (if s ∈ {1, 2, 3} mod 6) and Ge(πs)
(if s ∈ {4, 5, 0} mod 6). For each i ∈ {1, 2, . . . , (n − 1)/3}, we denote a partial
schedule of X consisting of a sequence of three slots (3i−2, 3i−1, 3i) by Xi. Now
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we construct a feasible schedule Y by concatenating partial schedules consisting
of three slots as follows:
Y = (X1, X1, X2, X2, X3, X3, X4, X4, X5, . . . , Xn−1

3
, Xn−1

3
), where Xi is a partial

schedule obtained from Xi by reversing venues.
For n ≡ 1 mod 3, MCM produces a feasible schedule Y of which the total

number of trips is (4/3)n2 − (1/2)n− 4/3 = LB(n) + (1/3)n− 1/3. Since we do
not have the space for describing MCM for n ∈ {0, 2} mod 3, we simply state our
results as below. Let the total number of trips of a feasible schedule Y be w(Y ).

Theorem 1. The Modified Circle Method produces a feasible schedule Y such
that

w(Y ) =





(4/3)n2 − (2/3)n− 1 = LB(n) + (1/3)n− 1 (n ≡ 0 mod 3),
(4/3)n2 − (1/2)n− 4/3 = LB(n) + (1/3)n− 1/3 (n ≡ 1 mod 3),
(4/3)n2 + (1/6)n− 5/3 = LB(n) + (5/6)n− 5/3 (n ≡ 2 mod 3).

3.2 Minimum Break Method

Here we propose the algorithm named Minimum Break Method (MBM). The
procedure of MBM is also described only for the case of n ≡ 1 mod 3.

Given a feasible schedule, it is said that a team has a break at slot s if it
has two consecutive home games (home break) or two consecutive away games
(away break) in slots s− 1 and s. The total number of breaks b(Y ) is defined as
the sum of the number of breaks of all the teams in a feasible schedule Y .

Let X be a schedule of a single round-robin tournament satisfying the fol-
lowing conditions:
(C1) the number of breaks b(X) is equal to n− 2;
(C2) at each slot s ∈ {3, 5, 0} mod 6, exactly two teams have a break.
When n ≤ 50, we have obtained a single round-robin tournament satisfying (C1)
and (C2) by solving integer programming problems (e.g., see [2]). Now we con-
struct a single round-robin tournament X ′ from X by reversing venues for each
even slot. Then X ′ satisfies that exactly two teams have n − 2 breaks, other
teams have n− 3 breaks, and every team has a break at slot s satisfying s > 1
and s ≡ 1 mod 3. For each i ∈ {1, 2, . . . , (n−1)/3}, we denote a partial schedule
of X ′ consisting of a sequence of three slots (3i − 2, 3i − 1, 3i) by X ′

i. Now we
construct a feasible schedule Y ′ by concatenating partial schedules consisting of
three slots as follows:
Y ′ = (X ′

1, X
′
1, X

′
2, X

′
2, X

′
3, X

′
3, X

′
4, X

′
4, X

′
5, . . . , X

′
n−1

3
), where X ′

i is a partial sched-

ule obtained from X ′
i by reversing venues.

For n ≡ 1 mod 3, the above procedure produces a feasible schedule Y ′ such
that w(Y ′) = (4/3)n2 − (5/6)n − 1 = LB(n). For n ∈ {0, 2} mod 3, again we
simply state our results as follows.
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Table 1. Results for 16 ≤ n ≤ 24

n LB(n) MCM MBM known

16 327 332 *327 327
18 414 419 426 418
20 520 535 529 521
22 626 633 *626 632
24 744 751 755 757

*: our solutions that attain the lower bound LB(n)
known: the known best solutions in [4], as of April 2006

Theorem 2. If there is a round-robin tournament satisfying Conditions (C1)
and (C2), the Minimum Break Method produces a feasible schedule Y ′ such that

w(Y ′) =





(4/3)n2 − (1/2)n− 1 = LB(n) + (1/2)n− 1 (n ≡ 0 mod 3),
(4/3)n2 − (5/6)n− 1 = LB(n) (n ≡ 1 mod 3),
(4/3)n2 − (1/6)n− 1 = LB(n) + (1/2)n− 1 (n ≡ 2 mod 3).

As mentioned before, we have already obtained schedules satisfying (C1)
and (C2) for n ≤ 50. Using MBM with them as initial solutions, we obtained
feasible schedules (see Table 1).

Lastly, we summarize our results. For n ≡ 0 mod 3, MCM gives better so-
lutions compared to MBM. In contrast, for n ∈ {1, 2} mod 3 MBM performs
better though it needs an initial schedule satisfying Constraints (C1) and (C2).
In addition, when n ≡ 1 mod 3, with an initial schedule MBM yields a solu-
tion that attains LB(n), i.e., an optimal solution. Table 1 shows the results for
16 ≤ n ≤ 24: for n = 24 both algorithms produced better solutions than the
previous best; for n = 22 MBM gave an optimal solution.
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1 Introduction

Tabu Search (TS) is a well known local search method [11] which has been widely
used for solving timetabling problems. Different versions of TS have been pro-
posed in the literature, and many features of TS have been considered and tested
experimentally. They range from long-term tabu, to dynamic cost functions, to
strategic oscillation, to elite candidate lists, to complex aspiration criteria, just
to mention some (see [10] for an overview).

The feature that is included in virtually all TS variants is the so called (short-
term) tabu list. The tabu list is indeed recognized as the basic ingredient for the
effectiveness of a TS-based solution, and its behaviour is a crucial issue of TS.

Unfortunately, despite the fact that the importance of a correct empirical
analysis has been recognised in the general context of heuristic methods [1,12]
and even in the specific case of TS [15], the definition of the parameters associated
with the tabu list remains in most research work still a handcrafted activity.

Often, the experimental work behind the parameter setting remains hidden
or is condensed in a few lines of text reporting only the final best configuration.
Even the recently introduced racing methodology for the tuning of algorithms
[3] only allows to determine the best possible configuration. This procedures
are certainly justified from a practical point of view, but a description of the
behavior of the algorithm with respect to its different factors and parameters is
surely of great interest in the research field.

In this work, we aim at determining which factors of basic TS are important
and responsible for the good behaviour of the algorithm. Instead of the one-
factor-at-a-time approach used in [15], our approach uses experimental design
techniques [14] combining the racing methodology for the definition of quanti-
tative factors and the analysis of variance for the study of qualitative factors.
We focus our analysis on the Examination Timetabling problem, for which
there is a consistent literature and many benchmark instances. In particular,
we consider the formulation proposed by Burke et al [5], which considers first
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and second order conflicts (exams in adjacent periods of the same day), but no
capacity of rooms.

We plan to extend the analysis to other formulations, and to other timetabling
problems so as to have a more general picture of the outcome.

2 Tabu Search Basic Features

At each iteration, TS explores the full neighborhood and selects as the new
current state the neighbor that gives the best value of the cost function, in-
dependently of whether its cost is less or greater than the current one. This
selection allows the search to escape from local minima, but creates the risk of
cycling among a set of states. In order to prevent cycling, TS uses a prohibition
mechanism based on the tabu list. This list stores the most recently accepted
moves, so that the inverses of the moves in the tabu list are forbidden (i.e., the
moves that are leading again towards the just visited local minimum). The two
main features related to the tabu list are the following:

Prohibition power: The prohibition power determines which moves are pro-
hibited by the fact that a move is in the tabu list. A move is normally
composed of several attributes; depending on the power, the prohibition can
be applied only to the move with the same values for all attributes or to the
set of moves that have one or more attribute equal to it.

List dynamics: The list dynamics determines for how many iterations a move
remains in the tabu list. This can be either a fixed value, or a value selected
randomly in an interval, or value selected adaptively on the basis of the
current state of the search.

For the Examination Timetabling problem, we consider the search space
and the neighborhood relation as defined in [8]. That is, we create one variable
per exam with domain equal to the set of periods, and change the value of one
single exam at a time. In this setting, a local search move m has three attributes:
an exam e, its old period o and its new period n. We identify m with the triple
〈e, o, n〉.

For the prohibition power, assuming that the move 〈e, o, n〉 is in the tabu
list, we consider the following three alternatives (where the underscore means
“any value”):

Strong: All moves of the form 〈e, , 〉 are prohibited.
Medium: All moves of the form 〈e, , o〉 are prohibited
Weak: Only the single move 〈e, n, o〉 is prohibited

Intuitively, in the first case, it is not possible to move the exam anywhere in
the tabu iterations. In the second case, it is not possible to move the exam back
to the old period. In the third case it is not possible only to make the reverse of
the tabu move.

For the list dynamics we also consider three possibilities:
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Fixed: The tabu list is a queue of fixed size t. At each iteration, the accepted
move gets in and the oldest one gets out. All moves remain in the list for
exactly t iterations.

Dynamic: The size of the list can vary within the range [tm, tM ]. Each accepted
move remains in the list for a number t of iterations equal toRandom(tm, tM ),
where Random(a, b) is the uniform integer-valued random distribution in
[a, b]

Adaptive: The value t depends on the current state. We use the formula (pro-
posed in [9] for graph coloring) t = bRandom(0, tb) + α ∗ cc where tb and
α (real value) are parameters, and c is the number of conflicts in the current
state.

3 Experimental Methodology and Results

There are two types of factors present in the analysis: quantitative and qualita-
tive. The two qualitative factors are the prohibition power and the list dynamics,
and consist each of three levels. The quantitative factors are the numerical pa-
rameters of the list dynamics strategy and may assume an unlimited number of
values. There are two issues that complicate the factorial design: (i) the quali-
tative parameters do not cross with all other factors (for example, there is no
α parameter with fixed list dynamics); (ii) the importance of each of the two
qualitative factors strongly depends on the values assigned to the underlying
quantitative parameters.

In order to understand the relative influence of the qualitative tabu list fea-
tures a possible way is to split the analysis in two phases. This approach allows
to maximise the fairness in the analysis, although perhaps it is not the most
economical in terms of number of experiments.

In the first phase, for each combination of qualitative factors, we tune the
numerical parameters: 〈t〉, 〈tm, tM 〉, or 〈tb, α〉. We tested the following values
for the parameters: t ∈ {5, 10, 15, 20, 25}, tm ∈ {5, 10, 15, 20, 25}, tM ∈ {t|t =
tm + 5 ∨ t = tm + 10}, tb ∈ {5, 10, 20, 30}, and α ∈ {0.3, 0.5, 0.8}.

We perform this task by means of the RACE algorithm developed by Bi-
rattari [4]. All experiments are run on 7 instances employed in [5] and each
configuration was granted 120 seconds of CPU time on an AMD Athlon 1.5GHz
computer running Linux. A t-test (p < 0.05) is used to discriminate between the
configurations. The best parameter settings found across the tested instances
are reported in Table 1. Further details on the racing process will be provided
in the forthcoming full paper.

In the second phase, after the values of the parameters have been determined,
we perform another experiment whose aim is to understand whether there are
main effects or interactions between the two factors, list dynamics and prohi-
bition power, and how these affect the performances of the algorithm. To this
aim, we run a full factorial design with 25 replicates per instance and perform an
analysis of variance [14]. Each experimental unit exploits a different combination
of list dynamics, prohibition power and test instance. In the analysis the test in-
stances are then treated as blocks and hence their influence on the performance
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Weak Medium Strong

Fixed t = 15 t = 10 t = 5

Dynamic tm = 20, tM = 25 tm = 5, tM = 10 tm = 5, tM = 10

Adaptive α = 0.3, tb = 30 α = 0.3, tb = 30 α = 0.5, tb = 10

Table 1. Best parameter settings for the various combinations of features

of the algorithms, though recognised, is not taken into account (this entails that
the results of the analysis are robust with respect to the set of instances).

Specifically, for the analysis of the 3 × 3 × 25 ({Strong, Medium, Weak} ×
{Fixed, Dynamic, Adaptive} × replicates) combinations we used two statistical
tests. The well known parametric ANOVA, through the F ratio, and the non-
parametric Friedman two ways analysis of variance by ranks. Though based on
less assumptions, the Friedman test is not able to recognise interaction between
the two factors [7]. On the other hand, the F ratio can detect also interactions
and is apparently robust even in cases of deviation from the assumptions. In the
parametric case we transformed each numerical result, expressed in terms of cost
violation of the solution, by standardization of the value within the results per
instance. In the non-parametric case the results are instead ranked within the
instances, as usual in the Friedman test procedure.

Surprisingly both tests indicated the absence of a significant influence of both
main and interaction effects (technically, the F ratio gave a p-value of 0.98 and
the Friedman test gave p-value = 0.54).

W/A W/D W/F M/A M/D M/F S/A S/D S/F

−
2

0
2

4
6

8

Configuration

z−
sc

or
e

Figure 1. Results of the 9 configurations for the qualitative features (W = Weak, M
= Medium, S = Strong, F = Fixed, D = Dynamic, A = Adaptive)
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The results are shown in Figure 1 by means of box-and-whiskers plots. A
closer insight in the numerical results revealed that indeed there is no important
difference in the results. The conclusion is that, if the quantitative parameters
are tuned by means of a statistically sound procedure, all configurations of the
qualitative parameters perform equally well.

In the future, we plan to investigate the difference in the robustness of the
qualitative features, by analysing the sensitivity of the tuning of the quantitative
parameters for different configurations. A response surface approach as suggested
in [2] would be more appropriate for the selection of quantitative parameters
(although it can be computationally more expensive).

We conclude by comparing, in Table 2, our overall best results (in bold) with
the currently published ones. From the table we first see that we improved signif-
icantly w.r.t. our previous best results ([8]). In addition, although our results are
still far from the best ones of Merlot et al [13], they are in most cases the second
best ones. This improvement is achieved mainly thanks to our statistically sound
parameter tuning.

Instance p W/A W/D W/F M/A M/D M/F S/A S/D S/F DS [8] BNW [5] CDI [6] MBHS [13]

car-f-92 40 271 292 265 263 278 275 297 224 242 424 331 268 158
car-s-91 51 46 38 38 53 54 32 37 40 33 88 81 74 31
kfu-s-93 20 1148 1027 1103 1047 914 984 1172 1104 932 512 974 912 247
nott 23 112 89 109 103 106 69 109 112 73 123 269 — 7
nott 26 17 17 17 7 15 15 16 13 20 11 53 — —
tre-s-92 35 0 0 0 0 0 0 0 0 0 4 3 2 0
uta-s-92 38 534 544 526 584 572 507 565 537 567 554 772 680 334

Table 2. Best results found for each configuration and comparison with the best known
results.
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Abstract. This paper focuses on minimizing the makespan of a multi-machine
flowshop group-scheduling problem that is typically found in the assembly of
printed circuit boards, which is characterized as one with carryover sequence-
dependent setup times. The intent is to minimize the makespan of schedules
comprised of the sequence of board groups as well as the sequence of board
types within each group. Specifically, the models and algorithms developed for
identifying strong lower bounds on the optimal/near optimal solutions within a
reasonable computation time are emphasized. The efficacy of the lower bound
developed is demonstrated by using it to quantify the quality of a heuristic
solution for the same problem, developed based on tabu search. To obtain
strong lower bounds, the problem is decomposed into a master problem and
single-machine subproblems which, except for the subproblem on the first
machine, are inserted idle time scheduling problems. A tabu search based
heuristic is developed to solve the subproblems approximately. Each solution
found during the tabu search process is evaluated using a timetabling problem
that is formulated as a simple integer program for identifying the inserted
optimal idle times on the machine in order to minimize the subproblem
objective function. The column generation algorithm developed for the
decomposed problem is demonstrated on a real problem obtained from the
industry.

Keywords: Carryover sequence dependent setup times, printed circuit board
assembly, mathematical programming, tabu search, column generation

1 Introduction, Motivation, and Problem Summary

This paper addresses the multi-machine flowshop group-scheduling problem with
carryover sequence-dependent setup times for minimizing the makespan. The
problem is typically found in the assembly of printed circuit boards (PCBs) in
electronics manufacturing. In order to solve the problem efficiently and effectively,
high-level metasearch heuristics based on tabu search have been developed [3]. The

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 412–415. ISBN 80-210-3726-1.



primary focus of this paper is to identify strong lower bounds on the optimal
makespan within a reasonable computation time, so that the quality of a heuristic
solution, i.e. an upper bound, can be quantified as its percentage deviation from the
lower bound. A mathematical programming decomposition approach is developed to
obtain strong lower bounds, which, interestingly, involves timetabling problems as
part of an efficient approximation algorithm used to solve the subproblems in a
column generation algorithm.

A PCB is a laminated board assembled with a dozen to thousands of electronic
components. The PCB assembly is performed on automated placement machines that
insert the components on the boards quickly and reliably. Before starting production
of a PCB on a machine, the required components are loaded on the appropriate
feeders during a setup operation. It is not practical to keep changing the component
feeders on a frequent basis for each individual board. Typically, in electronics
manufacturing, different board types requiring similar components are grouped
together and a single setup operation is performed for each board group. The intent is
to load all of the components required of the board types in a group on the proper
feeders in one setup, just so that the board types in that group can be produced one
after the other. As a result, the scheduling problem considered here falls under the
category known as group scheduling and the scheduling decisions must be addressed
at two levels. The problem at the first level is associated with the individual board
types within groups and is referred to as the “board level” problem. For the board
level problem, a sequence of boards in each group must be determined to minimize
the makespan, while different board groups themselves must be sequenced at the
“group level” so as to minimize the same performance measure.

The challenges encountered in group scheduling in PCB manufacturing are far
greater and distinctly different from that in traditional hardware manufacturing.
Although the placement machines automate the PCB assembly processes, high-speed
and precise operation and especially the flexibility in tooling makes it a difficult task
to control the operations on them. The setup time required of a group of PCBs on a
machine is dependent on the configuration of the components on the machines, which
in turn depends on not just on the immediately preceding group, but on all of the
preceding groups and the order in which they were processed. In a sense, the setup
times are not only sequence-dependent, but also carried over from the very first board
group to the one currently being considered for production. This makes the
relationships among setup times of board groups highly complicated compared to the
sequence-independent or sequence-dependent setup times encountered in traditional
hardware manufacturing. In other words, they can be defined easily in the latter, while
the carryover sequence-dependent setup times are hard to explicitly define. In
addition, the PCB assembly processes considered here are performed on multiple
sequential machines.
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2 A Mathematical Programming Decomposition Approach and
Timetabling

This paper presents a novel mixed-integer linear programming (LP) formulation of
the problem. This problem was addressed by a few researchers previously. However,
all of the previous research simplifies the problem either by approximating the setup
times as sequence-independent or sequence-dependent setup times, which results in
loosing valuable information and identifying inferior solutions. Our model, on the
other hand, considers the setup times explicitly, hence introduces a greater degree of
accuracy into the problem formulation than before. To obtain strong lower bounds,
the problem is decomposed into a master problem and single-machine subproblems
which, except for the subproblem on the first machine, are inserted idle time
scheduling problems [4]. Typically, in an inserted idle time scheduling problem, the
objective function is not a regular function and the machine can be kept idle for some
time when it could begin processing an operation.

We essentially reformulate the problem as an integer programming problem with
an exponential number of variables, each representing a schedule. A column
generation (CG) algorithm is developed to solve the LP relaxation of the master
problem. When solving the subproblems in the CG algorithm, a two-phase approach
is employed. In the first phase, the subproblems are solved approximately with a fast
tabu search algorithm - tabu search column generator (TSCG) - as long as TSCG
identifies new columns. Starting with an initial sequence of board groups and board
types within each group, TSCG keeps generating new sequences by performing
simple exchange moves. Each sequence (or move) must be evaluated. However, since
the subproblems are inserted idle time scheduling problems, it is not straight forward
how to evaluate the objective function value for each sequence identified during the
search. In this context, therefore, each time a sequence is to be evaluated, we need to
timetable the board types to insert optimal idle times on the machine in order to
minimize the subproblem objective function. Such a timetabling problem is
formulated as a simple integer program.

It is well known that CG algorithms are prone to the so-called tailing-off effect [1].
While usually an optimal solution is approached considerably fast, it may take a very
long time to prove LP optimality. Recently, several methods have been suggested
against this drawback. Our approach to stabilize and accelerate the CG algorithm is
similar to the one proposed by du Merle et al. [2].  First, a bound is imposed on the
dual variables by introducing artificial variables into the LP master problem (LMP)
and new negative reduced cost columns are generated until the subproblems fail to do
so. If some of the artificial variable values are nonzero, the bound imposed on the
dual variables is slightly relaxed at that instance, and the process similar to the one
before is continued until all the artificial variable values are zero and no negative
reduced column can be identified. In our case, the benefit of introducing artificial
variables is two fold: First, the dual variables are initially constrained in some interval
so that they smoothly converge to their optimal values. Second, we constrain the dual
variables in such a way that the subproblem objective functions - except for the
subproblem corresponding to the last machine - become regular and board types can
be timetabled without any idle time on the machines. Furthermore, it is shown that
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when dual variables are bounded in the subproblems, board types within each group
follow the shortest run time rule, which makes the subproblems much easier to solve.

The optimal solution to LMP usually provides a strong lower bound on the optimal
makespan, but it is not necessarily integral. Better lower bounds and integral solutions
can be identified by branching, resulting in a branch-and-price (B&P) algorithm. The
paper develops efficient branching rules that are compatible with the CG algorithm.
The idea is based on avoiding generation of sequences in which certain board types
are assigned to certain positions on one branch and also allowing them on the other
branch.

3 Conclusion

The CG algorithm is demonstrated on a real problem obtained from the industry. The
lower bound on the makespan identified by the CG algorithm after only a few
iterations is within 2% of an upper bound, and the lower bound obtained from the LP
relaxation of the original formulation is shown to be highly inferior to the CG lower
bound.
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1 Introduction

Timetable construction in Universities is a moving target. De Werra [1] indi-
cates that educational methods are driving changes in models and software ap-
plications, helping or constructing timetables. In this article we present a new
timetable model which came from a new program in one Faculty1 at the Uni-
versité de Sherbrooke.

The basic difference of this new program compared with other instances of
timetabling constructions in the University is that the courses in a term are
taught at different sites instead of only one. In the case of one site all rooms are
located in a single building, whereas in this new department the courses take
place in three different sites. These sites are located in three cities (the longest
distance between two sites being about 150 km). Some professors can teach at
one site, some others can teach at two sites. For the moment nobody teaches
at the three sites, but it could change, which means that the algorithm and the
program must handle this possibility.

One last special constraint is that in two sites there is one teleconference
room, which means that in some cases a professor can give a lecture in both sites
at the same time. This implies that the lecture can be taught to two sections at
the same time.

The article is organized as follows: First we introduce the current model for
courses timetabling, then we show the new model to make clear where the differ-
ences are. Next, we present the steps that we follow to integrate the functionality
of multi-site problem. After that we present how DIAMANT was modified to
take into account the new data and the new algorithm, followed with a discussion
of the experience. We end with a conclusion.

1 A program in this context means an entity that can deliver a degree, the entity is a
department, in this case a program can deliver degrees in various specialities.
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2 The Multi-site model

2.1 The Université de Sherbrooke timetabling model

Currently DIAMANT is used to schedule timetables at Université de Sherbrooke.
DIAMANT [2] is an iterative application developed at the University which helps
in scheduling courses and exams timetables. In this article we only talk about
how to schedule courses.

Various definitions of the timetabling problem exist [5], [6] and [4]. We prefer
that of fixing in time and space a sequence of meetings between teachers and
students, in a prefixed period of time.

At Université de Sherbrooke there are many entities preparing timetables,
each entity producing its own timetable using DIAMANT. Some entities work as
demand driven systems, the students select courses from a list, then the schedule
is prepared. Other entities prepare a master timetable, then the students can
select the courses they want to take.

A more detailed definition of the problem could be the scheduling of a set
of lectures for each course with a given number of rooms and time periods. For
each set of lectures there is a professor. A professor can teach more than one
course. Each entity has a prefixed period of time.

We formulate the problem following the presentation in [1], the we introduce
changes to handle unavailabilities and preassignments. We have also the multiple
sections and grouping subproblem and the classroom assignment subproblem.
The periods are of variable length. The period sizes are different from one entity
to an other.

2.2 The Université de Sherbrooke multi-site timetabling model

The multi-site problem came from an entity at the University, this entity offering
courses (lectures) in three (sites) cities, the distances between cities being about
150 km, 90 km and 60 km. A set of courses is assigned to each site. That means
a lecture of a course will take place on the specified site. A course can have
multiple sections, sections can have lectures in the same site or in different sites.
The students are assigned to each site, a set of rooms is defined for each site,
a subset of professors can teach at one site, another subset can teach at two
sites. For the moment nobody teaches at the three sites, but it could happen in
a future.

The professors are assigned to a course or a section. The schedule must
respect all hard constraints (no two classes in the same room, and so on). A new
special constraint came from the fact that the travel time from one city to the
other makes it impossible to teach two classes in a row at two different sites.

3 Steps to solve the multi-site problem

In order to solve de problem we proceed as follows:
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1. Simplified solution with no changes to the application, we recall that the
application can work manually or automatically.
(a) We divide the problem into three problems (three sites). This allow to

use the application three times to build three independent schedules.
(b) As the three problems are dependent, a professor assigned to a period

becomes unavailable elsewhere and the next, to let the professor travel
from one site to the other. Changing the professor availability is done
manually, when the schedule of the other site is prepared.

2. Solution with changes into the application.
(a) One problem instead of three. The resources (courses, rooms, and stu-

dents) are assigned to the corresponding site. As a professor is assigned
to a course, he is indirectly assigned to a site. Inside the application we
can have three sub problems. A menu allows the user to consult the state
of a schedule of each site.

(b) Professor availability can be calculated for each site by taking into ac-
count if he has a lecture in another. The unavailabilities are displayed in
different colors according to their site.

(c) The user can fix the of building sequence of the schedules of each site.
The sequence is executed automatically.

(d) Teleconference room problem is solved by the new class Teleconference-
Room which is a derived from of class Room.

4 Changes in the application DIAMANT

DIAMANT was build using object-oriented technologie and design patterns [3] in
order to simplify modifications. There are classes representing a set of resources
(courses, professors, rooms, and students). We modify each class representing a
resource to take into account the new data, for exemple we add a data member
to Student Class to indicate the site where the student follows a course.

While reading the data the application detects that a multi-site problem
must be solved. Then the menus are updated to work in multi-site mode.

Some dialogs where also modified to take into account the new data members.
We implemented the pattern Strategy to chose dynamically the algorithm

to be executed. When there is more than one site the multi-site algorithm is
executed. The multi-site algorithm follows the sequence of schedules fixed by
the user.

5 Experience

When we saw the requirements for the multi-site problem, we though that it
would be difficult to change the application. Using an iterative development
process and taking avantage of our object-oriented design, we succeeded in a
short period of time to satisfy our users. The whole development took about
four months.
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6 Conclusions

We introduce the problem of multi-site timetabling. We presented how we mod-
ified the application in order to treat a new the problem. Our the decision of
developing using object-oriented programming really pay off. This allows us to
add new functionalities without disturbing users that do not use these new func-
tionalities. The new multi-site functionality was added in a short period of time.
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1 Introduction

Especially in Europe, soccer has become big business, involving many parties
(e.g. teams, police, broadcasting companies, ...) and a lot of money. Naturally,
the schedule of the matches is of great importance, since it has a considerable im-
pact on the costs or revenues of all parties involved. Each party has its (possibly
conflicting) constraints and wishes, which makes it hard to generate a schedule
that is considered fair and acceptable to all parties. In literature, there are pa-
pers on the scheduling of the national soccer league of various countries, e.g.,
Germany [1], Italy [2], The Netherlands [5] and Austria [1]. However, because of
some specific constraints that characterize each of these competitions, the models
presented in these papers are not readily applicable to soccer league scheduling
problems in other countries. In the next section, we give an overview of the par-
ties involved in scheduling the Belgian Soccer League and their requirements.

2 Problem description

The Belgian Soccer League consists of 18 teams, which play a double round robin
tournament (i.e., each team plays against each other team twice). The league is
intermural, meaning that a team plays in its own stadium or in the stadium of
the opponent. Furthermore, for reasons of fairness, the schedule in the second
half of the competition should be the same as in the first half with opposite home
away pattern (i.e., mirroring). The 34 weekends on which there is a matchday
are given by the Royal Belgian Football League (KBVB).

Several other requirements must be taken into account. These requirements
are based on conversations we had with a representative of the KBVB. First
of all, two teams play in the same stadium and therefore, for each week, if one
of these teams plays at home, the other should play an away match and vice
versa. The same goes for another pair of teams that share the same advertising
panels. Also, a mayor can forbid that a game is played in his or her town on one
or more dates. The reason behind this is usually that there is some other event
(for instance, a summit with EU leaders) in his town needing the attention of
the local police. Furthermore, there are a number of so called ”risk matches” for
which national police is needed to maintain order. For reasons of security, risk
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games can also be forbidden for given dates and locations. Another requirement
is that teams should not play more than two consecutive home (away) matches.
Finally, the rights to broadcast live matches are sold to a company that in return
requires a calendar with at most one ”top match” (i.e., games between two of
the four ”big” clubs in Belgian) per matchday and at least one top match in the
final three matchdays (in order to have a competition that is thrilling until the
end).

Apart from these hard constraints, there are quite a number of soft con-
straints. Matches are normally played on a Saturday, however, the broadcasting
company has the right to shift a match to Friday and a match to Sunday on a
month’s notice. Since this could be problematic for teams that also play a mid-
week match (e.g. Champions League), matches between those teams should be
scheduled as much as possible on weekends that are not preceded or followed by
a midweek match. Furthermore, each team has its wishes regarding the calendar.
For instance, some teams prefer not to play at home when some other team plays
at home, because they are afraid that a part of their spectators would attend the
other game. Also, most teams prefer not to play against all top teams consecu-
tively, nor do they like to welcome all top teams at home during the first half of
the season. Finally, the number of breaks (i.e. consecutive home (away) matches
for a team) should be minimized. The scheduling problem is to decide for each
matchday which teams plays against each other and which one of each pair plays
at home, satisfying all of the hard constraints and as many soft constraints as
possible.

3 Solution approach

Currently, this problem is solved by a scheduler of the KBVB who starts from a
so-called basic match schedule (BMS). A BMS gives for each team a home-away
assignment and the opponent. For instance, if the BMS for team A looks like
−B + E − F + J..., this means that team A plays away against team B on the
first matchday, at home against E on the second, and so on. The BMS that is
used is a solution to the double round robin problem with perfect mirroring and
minimizes the number of breaks. The teams are then each assigned to a letter
in the BMS, taking into account the constraints. The scheduler solves this as-
signment problem by hand. With a lot of patience and a 30-year experience, this
results in a schedule that satisfies most of the hard constraints, but disregards
the soft constraints. Not surprisingly, during the last years, a number of teams
have expressed their displeasure with the league schedule, with some of them
even calling it unbalanced (see [3]).

Obviously, there is room for improvement in assigning teams to the letters
from the BMS. We developed a mathematical formulation for this problem, which
tries to satisfy the hard constraints (in so far that they are not conflicting). Each
of the soft constraints were given a penalty by the KBVB, so that the formula-
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tion minimizes the total penalty of the violated constraints. The model can be
solved using Ilog Cplex within the hour and was used to construct the schedule
for the season 2006-2007.

Although widening the search to multiple basic match schedules will typically
lead to a better calendar, the KBVB has decided to stick with the current BMS
in order to get a schedule that is compatible with those of the lower divisions.
However, it is our intention to investigate the possibilities of considering other
basic match schedules with regard to next year’s calendar.
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1 Introduction

Timetabling problems are present in all types of schools. The research in this
area is still very active; of the 19 selected contributions of PATAT 2004 ([1]), 12
are dedicated to Educational Timetabling. These problems can often be mod-
eled by a graph coloring problem. Here the vertices represent the events (lessons,
courses, exams) to be scheduled, the (vertex)colors the available timeslots, and
the edges express incompatibilities between two events. Typically incompatibili-
ties are caused by the effect that resources related to an event (teachers, students,
rooms) can attend at most one event at the same time.

Apart from the basic model of graph coloring, extra conditions are common.
Typical conditions are (room) capacities, resource (room, teacher) availabilities,
and precedence relations among events.

The subject of our study is a High School Timetabling Problem as it is
common in the Netherlands. Beforehand it is decided which teachers give which
lessons. Hence the events are the lessons, and, in principle, the problem can
be stated as a graph coloring problem with extra conditions on availability of
resources (rooms, teachers). However there is an extra dimension: the quality of
the constructed timetable. A feasible solution, though necessary, is absolutely
not sufficient: we need to improve the feasible timetable to a schedule that is
acceptable to use.

The size of the graph involved, and the extra efforts to improve the quality
are the main reasons for our 4-phase approach: we try to control the quality
by a preprocessing phase, and a post-processing phase. In the preprocessing
phase, we cluster events in so-called clusterschemes. These clustered events can
be considered as the new events to be scheduled. In the second and third phase
a feasible timetable is constructed. In the fourth phase a Tabu Search is used to
improve the best schedule found. The developed approach is tested by using data
from the Kottenpark, which is one of the locations of ‘Het Stedelijk Lyceum’ in
Enschede, the Netherlands.

2 Problem description

In the Kottenpark the timetable is still made by hand, and checked by computer.
The reason for not using the automatic planner, that their commercial package
provides, is mainly quality: this package is not able to generate any complete
solution, and moreover the part that is generated is of bad quality.
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In 2004, the Kottenpark had around 1000 students, 36 school classes, 71
teachers, and 40 rooms. There are 1049 lessons to be scheduled. As such it is a
school of average size in the Netherlands. A bottleneck is the number of rooms for
physical exercise, which is only 2, accounting a 100% occupation. All lessons have
to be scheduled in 37 timeslots: 8 timeslots on Monday, Tuesday and Wednesday,
6 on Thursday (2 hours are reserved for staff meetings), and 7 on Friday. The
classes have a timeslot occupation ranging from 73% up to 97%.

There is one major complication in the Dutch situation; for students in the
upper years, 2/3 of their lessons are in optional subjects. This means that the
basic class-teacher model (see for example [4]) can not be used anymore. We cope
with this situation by using clusterschemes, see Phase 1 in the next section.

The most important aspects, which were included in our research, are the
following:

– The lessons of a subject should be on different days.
– Some lessons should be given as a block. A block means that the subject is

scheduled on two consecutive timeslots on the same day. This is often the
case for physical exercise, but can also be the case for other subjects.

– Some teachers are not available on specific days, or parts of days.
– The lessons of some teachers should be concentrated on a limited number of

days.
– In the lower grades the schedule must be compact (without free periods); in

the higher grades free periods should be avoided.
– Free periods should be avoided for (most) teachers.

3 The four phase approach

Our approach consists of four principal phases.

Phase 1. Constructing the clusterschemes.

Students in the upper grades have optional subjects. All the groups for the
optional subjects of one grade (and level), are put in a clusterscheme. This
clusterscheme is divided in clusterlines, and students are to be placed in groups,
such that the groups within one line have no students in common. Consequently
all the subject groups in one line can be scheduled at the same time. Working
with clusterschemes is not new (see for instance [2, 3]), and is in use at (nearly)
all secondary schools in the Netherlands. We use a branch & bound algorithm
to solve this problem.

Phase 2. Assigning lessons to day-parts.

In second phase the lessons of clusters of subject groups are assigned to day-
parts one by one. The method we use is dynamic priority rule. At each stage
we estimate the difficulty for a cluster to be scheduled. This estimate is mainly
based on the availability of the resources. We schedule the cluster with the lowest
availability first. If a resource gets tight on a day-part, we construct a graph with
lessons of this resource on this day-part, and check whether these lessons can
still be scheduled.
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If this scheduling process breaks down (a particular cluster can not be as-
signed anymore), the heuristic lowers the availability (or increases the priority)
of this cluster, and starts all over again. After a few tries, all lessons are assigned
to day-parts, and we can proceed to the next phase. Because of the checks in
this phase we expect that there exists a feasible solution for Phase 3.

Phase 3. Scheduling the day-parts.

The third phase schedules the lessons on day-parts to timeslots. Hence the orig-
inal graph with all lessons is broken down to 10 smaller subgraphs. We use a
graph coloring heuristic, which colors the points one by one (first fit). Originally
we use the degree to sort the points, but we also use random orders to obtain
several schedules.

Phase 4. Improving the schedule.

We use a Tabu Search to improve the best schedule found in Phase 3. For this
we determine the worst resource (teacher or school class). Here ‘worst’ is mea-
sured by the objective function. For this resource we consider all lessons and
free timeslots and determine the 10 best (lesson, new timeslot) combinations,
as far as the worst resource is concerned. Starting with such a combination we
consider an ejection chain: rescheduling a lesson of the worst resource to a new
timeslot may be infeasible regarding the other resources of this lesson. We try to
lift this infeasibility, by shifting the conflicting lesson to another timeslot, which
can cause infeasibility, etcetera. We do not use branching of possibilities here,
and stop if the chain of shifts reached a given length.

If one or more of the (lesson, new timeslot) combinations can be rescheduled,
we perform the best chain of moves. We use tabu lists for lessons and resources
to make sure that the next step does not undo the current step.

4 Results and conclusions

The presented study is performed with data from a specific Dutch school, but
we believe that this data is representative for many schools in the Netherlands.
Unfortunately not all constraints were incorporated yet, which makes comparison
to the real timetable not completely fair. Comparing what was included we see a
huge improvement in quality; for instance the number of free periods for teachers
drops from 128 (hand-made) to 48. Using additional interactive methods, the
quality can be improved to a level hard to obtain by manual scheduling.
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Abstract. This contribution deals with the distributed version of the
nurse rostering problem. It is considered in a hospital with many sep-
arated wards. The nurse rostering problem within a ward is ‘the local
problem’, rosters within a ward are ‘local rosters’. At any time in the
process, i.e. at the time of the construction of a roster for a certain time
period as well as in the course of this time period when unexpected
events cause rescheduling, wards may call in the help of their peers. At
this level negotiation will take place. The details of the local rosters do
not necessarily enter this negotiation level, and when they do, they may
be translated from a local representation to a generally accepted vocabu-
lary. After a motivation for a distributed approach, a general architecture
is proposed and a negotiation protocol is described.

1 Introduction

The Nurse Rostering Problem (NRP) has been the subject of intensive study.
The literature is very extensive and an overview is presented by Burke et al. [1].
The NRP is by nature a highly constrained problem and very hard to solve. Much
attention has been paid to the local problem, i.e. at ward level. Rosters typically
have to satisfy each nurse’s work regulation while realizing a given coverage.
Nurse preferences must be satisfied if possible. Apart from generating rosters
for a fixed period of time, sudden staff shortages due to absence or unexpected
overload must be coped with.
In the presented approach, we allow for requests to be raised by a ward in case
of shortage. Other wards consider re-rostering in order to satisfy this demand.
They submit weighted proposals to the requesting ward, the weight representing
a cost associated with the rearrangement. When the specific request cannot be
resolved, alternative proposals can be formulated. For instance, suppose that
ward x signals a shortage of a nurse with a certain skill level within a particular
shift and suppose that ward y cannot satisfy this request. Ward y can decide in
that particular case to offer a nurse for another shift or with an equivalent skill
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level. Similarly, a request may specify a number of alternatives. We discuss this
approach in more detail below.
Section 2 presents a brief overview of related research. Real world requirements
related with the Nurse Rostering Problem are given in section 3. Using those
requirements, section 4 argues why a distributed approach is appropriate. Section
5 investigates the criteria used to evaluate the rosters at each level. In section 6,
we propose the ‘General Architecture’ designed to tackle the problem. Section
7 elaborates on an initial implementation. Finally, plans for future research are
discussed.

2 Relation to published work

The nurse rostering problem that involves staff shortage, is often solved by re-
planning under temporarily relaxed constraints. Several other solutions have
been studied. Trivedi and Warner [4], for example, introduce a pool of float
nurses. Siferd and Benton [5] resolve personnel shortage by calling nurses from
other wards and by allowing nurses to work overtime.
At the level of the hospital, the size and the complexity of the problem become
much larger. However, moving up to this level is not only a matter of scale. Some
concerns disappear and others come up. Each ward, e.g., will typically maintain
its own interpretation as to which extent certain constraints - not only prefer-
ences but work regulations as well - must be satisfied. Trying to solve the NRP
at this level with the methods described in [1] is much harder if feasible at all. In
the present contribution, we study the application of negotiation to tackle this
problem.
This approach was pioneered by Kaplansky and Meisels in [6]. They introduce
three stages. Scheduling agents generate a local solution in the first stage. The
second stage constructs a globally feasible solution. The last stage is used by
the scheduling agents to improve their local solutions. Kaplansky and Meisels
assume a fixed pool of shared resources. Within our framework, all nurses are
available for exchange.
Bard and Purnomo [7] introduce several ways to cope with personnel shortage.
We mention those that are relevant for the present discussion. Initially, nego-
tiation takes place with a pool of float nurses. Consequently, when a ward has
more nurses than needed, the remaining nurses are placed on an on-call list.
Other wards can call for those nurses when personnel shortage occurs. Finally,
agency nurses are used. Replanning never takes place.

3 Real world requirements

The purpose of this section is to state the real world requirements in a hospital.
In the next section, we use these requirements to show that they are naturally
met by a distributed system.
A first class of requirements have to do with the scale of a hospital wide system
and its associated maintainability problem. The second class of requirements
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stem from the kind of information that is available either at the local or the
global level and the inherent communication and interaction problems at the
different levels.
The scale of a ward allows to build systems that can be used as real-time roster-
ing systems [2]. This allows to react promptly to unexpected unavailabilities or
temporary work overload. The manager can use the system for on-line consul-
tancy and immediately discuss the possibilities with his staff. While hospital wide
systems can be built [3] the execution times and the flexibility of the interface
cannot be expected to allow for this kind of what-if analysis unless provisions
are made to do one-ward-only rescheduling. This is closely related to the main-
tenance problem when moves of personnel cause changes in the local constraints
and preferences.
The kind of information being processed at a local ward does not always have
relevance or meaning at the hospital level. A specific nurse may not like to work
on Thursdays or for interpersonal reasons two nurses should not make a team
too often. This gives rise to preferences that a ward manager will want to take
into account without spreading it throughout the hospital. A similar requirement
goes for the work regulations. Although official individual work regulations are
recorded at a central level, it might not make sense to have a central rostering
system dealing with those regulations when building a hospital wide work roster.
One rather wants these details to remain encapsulated at the ward level while
reasoning about hospital wide concerns at a separate level. Among these con-
cerns may be a fair distribution of resources and work load or strategic intention
to favor a certain ward in order to increase a quality level or to handle a chronic
safety problem.
We can thus conclude that a hospital nurse rostering system has to take at least
two levels of decision making into account and that the criteria and objectives
at the levels are essentially different. We argue in the next section that this
requirement is naturally met by a distributed rostering system.

4 Motivation

In this section we describe the properties and benefits of a distributed method.
First of all, a distributed approach offers a good scalability. When a new ward
is organized, little effort must be made to support the new ward. Second, such
a system is flexible and in a sense easy to implement. It can be introduced step
by step. A couple of wards could initially implement the system. The system
can then be gradually expanded with the other wards, but not every ward has
to join. The way rostering is performed locally may differ at each ward. This
way a large autonomy is provided to the wards. Our rostering approach also
allows a large amount of communication between the wards. Since decisions are
communicated, they might be more easily accepted.
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5 Evaluation criteria

Following the two level example from section 3 we investigate the evaluation
criteria and objectives that will be valid at each of the levels.
At the level of an individual ward, the criteria are those that have been ana-
lyzed in previous studies [2]. Broadly those are the satisfaction of the demands
and the constraints with (individual) work regulations. Demands stem from the
workload per time unit or shift in the ward and are typically expressed as a
number of nurses of a specific qualification. Work regulations define, sometimes
nurse-specific, values for e.g. the maximum number of consecutive night shifts,
the minimum number of consecutive days off, and so on . . . Sometimes patterns
are used to specify preferred work time distributions. These constraints are of-
ten very complicated and their modeling is a highly demanding task. In addition
one wants a system that allows to specify personal preferences and ad hoc re-
quests.We revisit implementation issues in the light of the present study during
the presentation.
At the hospital level other criteria must be taken into account. At this level the
manager wants to guard the fairness of the work load distribution, wants to raise
certain quality levels, wants to decide where resource shortages are allowable at
peak moments and so on . . .
A model must allow to express the requirements at all levels. In this contribu-
tion we will discuss a negotiation based model. Wards will be represented by
autonomous agents. They will generate rosters along well investigated lines, but
they will be able to detect a local shortage and to formulate requests to solve
shortages. The agents will also be able to interpret requests and generate an-
swers to requests. Our negotiation protocol is designed in such a way that it
allows to express local needs at the higher level, the hospital level. The decision
criteria for individual wards to respond to requests and to accept proposals are
used to express the hospital level requirements. We develop an example during
the presentation.

6 General Architecture

The General Architecture consists of three building blocks. A first building block
is a common language. This language enables the wards to formulate internal in-
formation into a representation that each ward understands. The second building
block is a negotiation protocol. This protocol allows a ward to formulate multiple
questions and to select one of the alternatives offered. The third building block
represents a ward. Each ward (e.g. W1, W2 and W3) is an autonomous entity
that consists of the following components:

– IDP: When a problem in a ward occurs, the Internal Problem Descriptor
specifies the problem.

– EDP: The External Problem Descriptor translates an internal problem into
a request in terms of a common language known by all wards.
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– ERD: The External Request Descriptor transforms an incoming request into
an internal representation.

– IRD: The Internal Request Descriptor passes the request to the internal
engines.

– IAD: A proposal to meet the request is formulated into an answer by the
Internal answer Descriptor

– EAD: The External Answer Descriptor translates the answer into a common
language.

– EOD: An offer by a ward is translated into internal terms by the External
Offer Descriptor

– IOD: The Internal Offer Descriptor handles offers.

They will be discussed in future work.

EPD ERD EOD EAD

IPD IRD IOD IAD

W2

EPD ERD EOD EAD

IPD IRD IOD IAD

W1

IPD IRD IOD IAD

EPD ERD EOD EAD

W3

RW1
AW2,1

AW
3,1

Fig. 1. General Architecture

An overview of the architecture is presented in Fig. 1. RWx denotes a request
by Ward x, and AWy,x denotes Ward y’s answer to Ward x.

7 Initial solution

In a first iteration of this problem, two building blocks are worked out. The
common language allows wards to raise specific requests in case of personnel
shortage and to submit proposals to satisfy demands. Particular attention is paid
to the assurance that minimal information needs to be exchanged for formulating
requests and answers. Secondly, a negotiation protocol is designed. In order to
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test our approach, a ward is elaborated with simplifications of the P- and R-
components.

8 Future research

Our initial common language supports full answers to requests. Further elabo-
ration must allow for partial proposals to satisfy requests. A more sophisticated
negotiation protocol needs to be worked out. Similarities and repetition of re-
quests should be analyzed. E.g. if ward x always lacks a nurse for a certain shift,
and ward y is always able to respond to this demand, a transfer of personnel
from y to x may be considered.
Intelligence must be built into the components introduced in Section 6. For ex-
ample, an internal request by the EPD could be translated in different versions
destined for different wards. The EPD can learn how a particular ward responds
to certain requests and attempt to formulate the requests in such a way so that
the ward will certainly respond.
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Abstract In many funding agencies a model is adopted whereby a fixed panel
of evaluators evaluate the set of applications. This is then followed by a general
meeting where each proposal is discussed by those evaluators assigned to it with
a view to agreeing on a consensus score for that proposal. It is not uncommon for
some experts to be unavailable for the entire duration of the meeting; constraints
of this nature, and others complicate the search for a solution. We report on a
system developed to ensure the smooth running of such meetings.

1 Background

The process of evaluating research grant proposals presents some interesting
opportunities for operations research practitioners and researchers. The model
we discuss here assumes that a fixed pool of evaluators exists and the set of grant
proposals is distributed amongst them subject to the evaluators’ stated abilities
to evaluate each. (Although this step of the process is outside the current scope it
is an interesting assignment problem with many side constraints. For example,
some evaluators, such as vice-chairs, may be expected to take a reduced load
of evaluations due to other duties; no proposal should have a majority of vice-
chairs evaluating it; and, for each proposal, one evaluator should be appointed as
proposal reporter amongst the – usually 3, although requests for larger financial
sums necessitate more – evaluators assigned to it with this extra duty evenly
allocated amongst all evaluators.)

In the present context our interest begins when a general panel1 meeting
brings all of the evaluators together. Each proposal is discussed face to face by the
assigned evaluators for the purpose of agreeing a consensus position and category
scores, from which the final evaluation report may be written; the consensus
meeting runs for fixed length of time. Following the entry of all scores in a
database a ranking list is generated which forms the basis for funding decisions
by the grant agency. So that the entire panel of evaluators may agree to the
ranking list it is desirable that all consensus meetings be completed as quickly
as possible allowing time for the inevitable clean-up before the final ranking list
acceptance process.

In its most restricted form the problem may be expressed as, given an assign-
ment matrix of proposals to evaluators, where each proposal has been read by
some subset of evaluators, generate a schedule of consensus meetings that uses

1 A panel may be thought of as a general research area, e.g. computer science.
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the fewest number of time periods where the meetings can be held. A maximum
of T time periods exist.

The constraints that must be respected, then, are:

1. A consensus meeting can only take place during one time slot;
2. An expert can only be in one consensus meeting during a time slot;
3. If a consensus meeting for a proposal takes place then all of the experts

assigned to it must be present;
4. No more than T time slots may be used

The goal is to minimize the number of time slots used. While the problem
bears some resemblance to the teacher-class timetabling problem, the objective
function differs, as well as some of the constraints. In the following section we
describe our first approach to solve the problem by modelling it as an ILP.

2 An ILP Model

Given E = eij , the assignment matrix that indicates what experts have been
assigned to read proposal j, we can view its transpose ET = P = pij as the
matrix that indicates what proposals have been assigned to expert j.

We introduce binary variables xij that indicate that the consensus meeting
for proposal i will take place in time slot j, and yij that indicate that expert i

is in some meeting during time slot j, 1 ≤ j ≤ T .
Constraint 1 above can be implemented by

∑

j

xij = 1 ∀i

Constraint 2 says that if an expert is assigned to a time slot then s/he must
be evaluating exactly one proposal from their allocation and, conversely, if an
expert is not assigned to a time slot then none of their allocation are being
evaluated in this slot.

yij =
∑

k

pikxkj =
∑

k

ekixkj ∀i, j

Constraint 3 can be interpreted as meaning “meeting for proposal i happens
at time j ⇒ all of the experts associated with this proposal are assigned to this
slot”. Note that this relation is not ’⇔’ since the same three experts may be
involved in a different proposal. Also, by virtue of constraint 1 an expert can
only attend one meeting in a time slot. Its implementation is

wixij ≤
∑

k

eikykj ∀i, j

where wi =
∑

j pij is the number of evaluators assigned to proposal i.
The goal is to minimise the number of time slots used. To do this we ask

“how many proposals were evaluated in time slot j?” (
∑

i xij) and charge j for
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each of these. This forces as many proposals as possible into “small” time slots
for, if a proposal is evaluated in a later time slot j′, instead of j, the cost rises
by an amount j′ − j. The cost z is

z =
∑

j

(

j
∑

i

yij

)

Thus the ILP model we solve is

minimize
∑

j

(

j
∑

i

yij

)

(1)

subjectto (2)
∑

j

xij = 1 ∀i (3)

yij =
∑

k

ekixkj ∀i, j (4)

wixij ≤
∑

k

eikykj ∀i, j (5)

xij , yij binary

For a problem instance involving 58 evaluators and 383 proposals using
CPLEX 7.0 and running on a Pentium V, the previous model had not terminated
after 3 days of running time.

Of equal concern was the inadequacy of the implemented model. It often
arises that an evaluator cannot be present for the entire duration or may arrive
late and thus, not all slots are equally suitable. Further, some evaluators (e.g.
vice-chairs) have other duties and it is desirable that their consensus meetings
be scheduled as early as possible. (One further constraint that the system was
required to deal with was that, on occasion, the entire panel meeting is actually
a coalition of smaller panels, with evaluators involved in some or all of these
smaller panels. It was desirable that smaller panels were completed as soon as
possible, allowing the data entry and ranking list generation to take place for
these smaller panels.)

An alternative solution strategy is described below.

3 A Refined Model

In addition to constraints 1 - 4, the following refinements are now also considered
to address the deficiencies described above.

R1 No consensus meeting may be scheduled at a time when not all assigned
evaluators are present;

R2 Evaluators with other duties should be scheduled to finish their consensus
meeting duties as early as possible;
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R3 Some proposals (for example, those associated with a smaller sub-panel)
should be scheduled as early as possible

Graph coloring is long associated with timetabling [2–4] and we adopt this
approach here. For the model presented in Section 2 we construct a graph G =
(V, E), where the vertices represent proposals and an edge exists between two
vertices if the corresponding proposals have one or more evaluators in common.
In any legal vertex colouring, vertices of the same colour may be scheduled
together since they are guaranteed to be non-adjacant. In the absence of limits
on evaluators availabilities Pi, the proposals of colour i = 1, . . . , C, may be
scheduled, respectively, in time slots Si, i = 1, . . . , C.

Using a Tabu search-based vertex colouring algorithm gives quite satisfactory
results on problem instances commensurate with that described earlier.

3.1 Restricted Evaluator Availabilities

Restricted availability of one or more evaluators can be accommodated by solv-
ing a maximum cardinality bipartite matching instance [1]. We construct the
bipartite graph B = (U, V, E), where U = {i|1 ≤ i ≤ C} is the set of colourings
and V = {j|1 ≤ j ≤ T }. Vertices u and v are connected by an edge if it is possi-
ble to schedule all evaluators involved with proposals Pu during time period v.
The neighbourhood of u is the set of time slots in which all proposals Pu may
be feasibly scheduled.

However, two proposals assigned to the same colour class may require evalua-
tors who cannot be present simultaneously and this will result in vertex u having
0 neighbours, and thus unschedulable. Therefore, it is necessary to add to G,
prior to colouring, an edge between every pair of proposals having evaluators not
present simultaneously. (A separate but related feasibility check ensures that if
two evaluators work together on k proposals then there are at least k slots when
both are available.

Soft Constraints Constraints R2 and R3 are treated differently since they do
not affect feasibility. We build the bipartite graph as previously described but
we now add weights to edges. Initially every edge (u, v) has weight 1 but under
certain circumstances these weights may be augmented by the following process:
for a colour class u and its neighbourhood, N(u) = {vi1 , vi2 , . . . , vim

}, 1 ≤ ij ≤
T, |N(u)| = m, a weight or bias bij , 0 < b < 1 is added to each such edge.
Different biases may be used for R2 and R3.

On this weighted bipartite graph we call a maximum weighted bipartite match-

ing algorithm, which has the effect of choosing earlier time slots for a coloured
set of proposals

In the case of constraint R2 each vice-chair is considered in turn, and the
previous process is applied to the colourings in which their proposals appear.
Likewise, in order to accommodate constraint R3, if a proposal is marked as
requiring early completion then it can be thus biassed. Funding agency officials
have the ability to specify different weightings depending on their priorities.
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The system is implemented in Perl and, when run on a Pentium V using
problem instance data of the magnitude discussed earlier, returns a schedule (or
indicates that there is an infeasibility) in a few seconds. We have also solved
problems along the scale of 110 evaluators and 1,000 proposals in approximately
30 seconds.

4 Discussion

Prior to the introduction of this system consensus meetings took place in a
haphazard, ad-hoc fashion, with evaluators wasting much effort searching out
their associates in order to discuss a proposal. According to one official, for the
scale of problem instance we have discussed in Section 2 the system has resulted
in panel meetings being completed a day sooner than heretofore.

The problem has been decomposed into a graph colouring subproblem and
a matching problem. While the latter is an exact solution, the former finds
a heuristically generated colouring. Further, by separating the problem in this
manner and ignoring the soft constraints initially we may loose opportunities for
finding solutions that are more satisfactory with respect to the soft constraints.

Clearly there is an interaction between the two constraints and the choice of
b for each type of soft constraint and this is an area which can be investigated
further.
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1 Problem description

We look at the problem of finding good rosters for the security personnel of the
academic hospital Utrecht Medisch Centrum (UMC) in Utrecht. The security
personnel have to man several posts in the hospital, seven days a week, 24 hours
a day. Therefore, the people work in three shifts: Morning, Late, and Night;
the required minimum number of persons varies per shift. Except for a number
of part-timers, each worker has a contract for 36 hours per week, but they are
assigned approximately 34 hours per week on average to compensate beforehand
for extra work that has to be carried out to replace people that are ill. Next to
the ordinary working shifts, there are the so-called stand-by shifts, during which
a worker can be called as a replacement. Finally, the workers have to follow a
training session once-in-a-while, which is done groupwise during the Wednesday
morning shift. Our task is to produce a set of good rosters for a one-year period.
These rosters have to satisfy several regulations, which decree for instance that
the number of hours worked per day should be reasonably balanced each week,
that the number of consecutive Night shifts is at most 4, and that there should
be enough time off after the last Night shift. Furthermore, there is a demand to
consider rosters in which the shifts follow the order Morning-Late-Night. Finally,
the rosters have to be personalized, such that they reflect the personal preferences
as much as possible; we wish to maximize the total satisfaction, with the side-
constraint that the unluckiest person is not extremely unlucky. Note that in the
current situation there are standard rosters: in week 1, person i gets roster i,
and when the week is over, he moves up to the next roster in the list, until the
whole cycle of weeks has been run.

2 Solution approach

Here we discuss our initial solution approach; the problem has been changed
recently (see Section 3). Initially, all 35 workers had the same function. We have
measured their preferences concerning:

– The number of Morning-Late-Night shifts in a basic sequence.
– The number of days off after the last Morning, Late, and Night shift, respec-

tively.
– A fixed weekly day-off.
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We have used this input to compute the quality of a year roster for each person.
Here we do not add the stand-by shifts; these are added later. Our solution
approach is based on integer linear programming. Assuming that we have the
complete set of possible, feasible rosters available, we can model the problem of
finding the optimal set as an integer linear programming problem, in which we
use a binary variable xjs to indicate whether person j gets a roster s, or not.
The constraints in this ILP enforce the minimum occupancy and the fact that
we can assign only one roster per person.

Since we do not know the full set of rosters, and since we cannot handle
such a big ILP problem, we solve the LP-relaxation approximately using column
generation, and we use this knowledge to find an approximate solution. To get
the column generation going, we enumerate all (approximately 70.000) four-week
rosters; this enumeration step is necessary to deal with the constraint that the
workload per week should not vary too much. Moreover, we can easily compute
the satisfaction that this roster provides to each of the employees, which enables
us to remove the ones that do not score satisfactorily well. We use these four-
week rosters to build our one-year roster. Ideally, we would be able to solve the
pricing problem by solving a shortest-path problem in a layered graph, where
each node in a layer models a four-week roster. This is computationally infeasible,
though, and therefore, we solve the pricing problem for only two or three four-
week periods at a time: given the ‘best’ partial solution for the first i four-week
periods, we solve the pricing problem for the periods i + 1, i + 2, starting with
the fixed roster for period i. We then add period i + 1 to the partial solution,
and move one. In the meantime, we compute a number of additional rosters that
we believe are worthy. After we have ‘solved’ the LP-relaxation, we solve the
original ILP for the set of generated rosters.

3 Continuation

Before it could be run in practice, the problem got changed by a function differ-
entiation: two groups of six people were split off. For the remaining 23 people, we
can still apply the approach described above, but it does not work for the groups
of six. Column generation is known to work well in case there are many feasible
solutions, and for the groups of six it is hard to just find a solution that satisfies
the basic constraints. Therefore, we have just started a constraint satisfaction
approach.
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1 Introduction

In recent years many solution approaches for different school timetabling problems
(TTP) have been tried, among them tabu search, simulated annealing, genetic algo-
rithms, and constraint programming [8]. However, most of the solution methods de-
veloped so far have been tested by means of only few (mostly only a handful) prob-
lem instances [6]. Further, until today there are nearly no reports on tests which
subject different methods to a comparative analysis on the basis of the same bench-
mark instances and thus provide empirical evidence for the (relative) suitability of
solution approaches.

In this paper, a tabu search algorithm [4] for timetabling at German secondary
schools of the Gymnasium type is presented. The TSA is subjected to an extensive
test including 1500 problem instances. The instances have been introduced by MARTE

[6] and used for the test of his constraint programming [5] method. Therefore, the re-
sults obtained with the TSA and the CP method are finally compared here.

2 Problem description

German secondary schools can be compared with the British grammar schools, but
they admit extensive choices to pupils [3]. Similar to MARTE [6], it is assumed here
that the timetabling is essentially based on the following conditions:

− The lessons are given on the grade levels 5 to 13.
− The sets of teachers, rooms, and classes are fixed.
− The rooms are classified according to certain room types (e.g. gym hall).
− On each grade level one or (from level 7 onward) more teaching programs are of-

fered. A program is fixing a selection of subjects and the number of weekly lessons
for each subject. Therefore, there exist one or more pupil groups (PG) per class
with the same teaching program for the pupils of a group. A typical feature of a
teaching program is a choice of foreign languages and/or a study direction such as
Social Sciences or Natural Sciences.

− The complete weekly teaching program is now specified as a set of lesson re-
quirements (LR). A LR is a combination of one teacher, one subject, one or more
PG's from one or more classes, and one room type. The teaching of a LR lasts al-
ways for a period (of 45 minutes). For each weekday the number of periods which
are available for the timetabling is fixed.
The TTP of a secondary school of the Gymnasium type (GYM-TTP) combines the

tasks of room and period assignment for pre-defined LR's and can be formulated as
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follows. Assign a room of appropriate type and a period to each of the LR's in such a
way that the following constraints are met:
− Clash constraints A1-A3: The scheduling of teachers, rooms, and classes or pupil

groups, respectively, must avoid clashes.
− Availability constraints B1-B3: Teachers, rooms, and classes must be scheduled

within their availability time windows.
− Coupling constraints:

C1 Certain LR's are to be scheduled for the same period.
C2 Certain pairs of congruent LR's are to be scheduled for two consecutive peri-

ods, and the same room is to be assigned to both of the LR's (2-hour lesson).
− Distribution constraints:

D1 The timetable of each class shouldn't contain idle periods.
D2 For each class the lessons should end as early as possible on each day.
D3 Certain LR's are to be scheduled for pre-determined periods.
D4 For teachers and for pupils the daily minimum and maximum number of les-

sons should be respected. Further, a lower and an upper limit of working days
per week are to be considered for each teacher.

D5 For each class the daily minimum and maximum number of lessons on the
same subject should be respected.

3 Mathematical model

The GYM-TTP is formulated as a binary optimization model. Except for D1 and D2,
all constraints are categorized as hard.

Depending on the type of constraint, either LR's or so-called complex lesson re-
quirements (CLR's) serve as the basis for the modelling. A CLR includes all LR's
which, according to C1, are to be held at the same time. Further, both of the LR's of a
2-hour lesson are, according to C2, always assigned to the same CLR. A CLR must
comprise either only 2-hour lessons or only (1-hour) LR's.

Two sets of binary decision variables – xnp and ymr – are introduced. A variable xnp

has the value 1 if the CLR n is scheduled for period p, and a variable ymr has the value
1 if the LR m is scheduled for room r. Due to the planning of periods on the level of
CLR's, the constraints C1 and C2 are automatically met. The remaining hard con-
straints are modelled explicitly.

The constraints D1 and D2 are integrated in the objective function f which is de-
fined as f = fip + fef and to be minimized. The term fip is summing up the number of
idle periods over all classes, i.e. the unplanned periods which are, however, followed
by lessons. The term fef measures the compactness of a timetable and, roughly ex-
pressed, sums up all variables xnp which are weighted with the indices of the periods
of a day. For evaluation purposes and by means of an obvious lower bound lbfef , the
compactness index is defined as lbfef / fef *100.
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4 The Tabu Search Algorithm

In the following, the essential properties of the proposed TSA, called TS-Gym, are
described.

TS-Gym is a purely deterministic method. In the interest of a high robustness, sto-
chastic components have been omitted.

A generated solution is represented by two vectors, a period vector and a room
vector. The period vector is assigning a period to each CLR, while the room vector
assigns a room of appropriate type to each LR. The search space contains feasible
solutions, which meet all hard constraints (cf. section 3), and infeasible solutions as
well.

An initial solution is generated by means of a specific construction heuristic. The
heuristic is based on the sorting of the CLR's according to the difficulties arising with
their scheduling, is using a graph coloring algorithm [1], and aims primarily at the
generation of a feasible solution.

In TS-Gym two types of neighbourhoods are alternatively applied. In the case of
the period-neighbourhood, a neighbour s' of a current solution s is derived through the
assignment of a deviating period to exactly one CLR. In the case of the room-
neighbourhood a neighbour s' of s results from a deviating assignment of a room for
exactly one LR. The room-neighbourhood is only applied in situations where the cur-
rent solution s violates one of the room constraints, A2 or B2. For both neighbour-
hood types, the best neighbourhood solution is determined by means of a specific
evaluation function. The function is attaching a high weight to the violation of hard
constraints and a low weight to the value of the objective function, f.

A best neighbourhood solution is accepted as the new best solution only if, in
comparison to the current best solution, the number of violated hard constraints is re-
duced or, for the same number of violated constraints, the value of the objective func-
tion is improved.

The tabu list management is designed similar to DESEF et al. [2]. As in the latter
case, two tabu lists are kept. The move list contains the (inverse) moves carried out
recently. Purpose of the frequency list is to avoid too frequent shifts of individual
CLR's. According to the aspiration by objective, the improvement of the best solution
in the sense defined above is used as aspiration criterion.

5 Results and comparison with constraint programming

TS-Gym has been tested on a standard notebook (1.6 GHz Pentium-M, 1 GB RAM)
using the 1500 test instances from MARTE [6][7] and a fixed parameter setting. The
1500 instances are subdivided into 6 test cases R1 to R6 which correspond to six sec-
ondary schools of various kinds and contain 250 instances each. The results obtained
with TS-Gym and the CP method from MARTE are shown in Table 1.

For almost all instances both of the methods calculate a feasible solution, i.e., they
achieve nearly the same high solution quality with respect to the share of instances
solved to feasibility. It should be emphasized, however, that in the case of TS-Gym
the consideration of the hard constraints D4 and D5 has not yet been implemented and
therefore not been included in the test.
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Table 1. Results for the secondary schools R1 to R6 [6][7].
Evaluation criterion Method R1 R2 R3 R4 R5 R6

MARTE 100 97 100 98 99 92Share of instances solved to
feasibility (in %) TS-Gym 100 96.4 99.6 98 99.2 92.4

Mean no. of idle periods TS-Gym 11.6 8.4 8.4 7.0 7.3 7.3
Mean compactness TS-Gym 65.8 73.1 73.3 77.3 76.0 76.7

Mean CPU time (in s) TS-Gym 62.1 60.1 90.0 61.1 56.6 100.3

For the criteria "number of idle periods" and "compactness" comparative values
are not available. Since the teaching program on the upper grade levels is similar to
that of a university, where only moderate compactness requirements are to be met,
these results and the computing times as well seem to be satisfactory.

Apart from the implementation of the constraints D4 and D5, the improvement of
the parameterization and of selected components of TS-Gym will be the subject of
further research.
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Abstract. We present a two-stage heuristic for the travelling tourna-
ment problem. It consists of first creating patterns for good quality soluti-
ons for each team, after which these partial solutions are used/combined
in an improvement heuristic to find overall solutions.

1 Introduction

The travelling tournament problem (TTP) involves minimising the total distance
travelled when organising a double round robin tournament among a number of
teams. Feasible solutions require that

- home and away games between two teams are not in consecutive timeslots
(no repeaters),

- teams do not play more than three consecutive home/away games [7].
Sports scheduling has been the subject of many academic publications (e.g. [5,
6, 8, 9, 11–14]). Agnostopoulos et al. [1] present the current best results for the
problems presented on the TTP website (http://mat.gsia.cmu.edu/TOURN/).
Instead of tackling the entire tournament as one problem, we propose a two-stage
approach in which we solve the problem for individual teams first. Similar decom-
position techniques have been successfully applied to other timetabling domains
(e.g. to nurse rostering [2–4] and university timetabling [10]). The main moti-
vation for decomposing the problem is that it considerably reduces the search
space, and thus the computation time.
The method proposed in this abstract includes solving the corresponding Travel-
ling Salesman Problem (Section 2.1) and generating feasible patterns with that
solution (Section 2.2).

2 Constructive Heuristic

2.1 Travelling Salesman Problem

The total travelling distance for a tournament equals the sum of the travelling
distances for each team. We decompose the problem into sub problems for each
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team. Each of these sub problems involves searching for the minimum travelling
distance for a team. If we ignore the constraint on consecutive home and away
games, the problem equals a Travelling Salesman Problem (TSP) for which the
cities correspond to the teams in the TTP. Each team should solve exactly the
same TSP problem.
The best solutions for the TSPs corresponding to the different TTPs are presen-
ted in Table 1. The sequence of numbers denotes a sequence of optimal distance,
in which the numbers refer to the order in which the teams appear in the distance
matrix on the TTP website referred to in Section 1.

n Dist. TTP Solution

4 2011 1-3-2-4

6 2971 5-1-6-4-2-3

8 3480 6-4-2-3-5-1-7-8

10 3834 6-4-2-3-5-1-9-10-8-7

12 5600 7-6-3-2-4-8-10-9-12-11-5-1

14 7427 1-5-11-14-13-12-9-10-8-4-2-3-6-7

16 7443 7-6-3-2-4-8-10-9-12-13-15-14-16-11-5-1

18 7426 9-11-15-13-16-14-18-12-2-10-7-4-17-1-3-6-8-5

20 7426 19-7-20-4-17-1-3-6-8-5-9-11-15-13-16-14-18-12-2-10

22 7989 9-11-10-2-12-18-14-16-13-15-22-21-8-3-1-4-17-20-7-19-6-5

24 8091 15-22-24-21-23-8-3-1-17-4-20-7-19-6-5-9-11-10-2-12-18-14-16-13

26 8274 17-4-1-3-6-8-23-5-11-9-21-24-22-15-13-16-14-18-12-2-26-10-25-19
-7-20

28 8393 11-25-19-7-20-4-17-1-3-6-8-23-5-9-21-24-22-15-13-16-14-18-12-28
-26-2-10-27

30 9393 9-5-11-30-15-13-29-16-14-18-12-28-26-2-10-27-25-19-7-20-17-4-1
-3-6-8-23-24-22-21

32 9412 7-19-25-27-10-2-26-28-12-18-31-14-16-32-29-13-15-30-11-5-9-21
-22-24-23-8-6-3-1-4-17-20

Table 1. Solutions for the TSP that corresponds to the TTP of size n

2.2 Feasible Patterns

After the shortest tour has been calculated, we apply a heuristic step that modi-
fies the optimal solutions into feasible patterns. We therefore introduce a number
of home-away edges in the optimal tour, in such a way that no more than three
consecutive home/away games occur. We call the results patterns, since they
do not specify any ‘home’ opponent of the team yet. An example of a pattern
for team 3 is presented in Fig. 1. The top row presents the shortest tour for
the TSP, starting from city/team 3 (which is the first and the last node in the
bottom row). The shortest tour is interrupted with additional away/home and
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home/away edges: 5→ 3, 3→ 1, 6→ 3 and 3→ 2 in the example. The pattern
denotes a feasible solution for team 3, provided that the assignment of home
opponents does not introduce any repeaters. Obviously, the presented pattern is
not optimal since it contains more home-away edges than necessary.

Fig. 1. Example of a pattern

In order to create the patterns, we first introduce a pattern array of length n.
The elements in the array are 0 and 1. A 0 in the pattern means that the next
team in the shortest path sequence should be visited without going home. A
1, on the contrary, means that the team should first go home before visiting
the next team in the shortest path sequence. We do not put consecutive 1s in
the patterns since the home games do not influence the travelling distance for
the home team. The pattern corresponding to Fig. 1, for example, is 1001001.
Any team always ends the competition at home, and thus the last element of
the pattern array is always 1. This leaves n − 2 0/1 elements to assign. The
total number of possible assignments thus equals 2(n−2). Table 2 indicates the
number of feasible patterns (i.e. patterns representing solutions which have not
more than 3 consecutive away games) for each of the TTP problems.
When mapping the possible patterns onto the shortest path, we can calculate
the distance for each team-pattern combination. Although the shortest tours are
equal for each team, the patterns are different. Those with the smallest distance
are the most interesting patterns to select for the tournament. Obviously, the
order in which home sequences or away sequences appear in a solution has no
influence on the distance of the home team.

3 Optimising Heuristic

From the set of patterns, we select and combine those that lead to good quality
solutions. In the optimisation step we improve the solutions with local search.
Examples of the neighbourhood moves considered are:

- swap the first and the last opponent team in a sequence of three,
- swap entire sequences of opponent games,
- etc.

The results will be presented at the conference.
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n # feasible patterns Best Dist. Best feasible pattern

4 4 2134 0001

6 12 4065 010001

8 40 3727 00010001

10 137 4692 0001010001

12 463 6930 010010010001

14 1560 9986 01000100010001

16 5264 11810 01001000100010001

18 17945 10388 010001000100010001

20 60708 11480 01000101000100010001

22 205372 12198 0100010001001000100011

24 694769 14428 000100010001000100010001

26 2350385 15704 00100010001000100010001001

28 7951296 14192 0001000100011000100010010001

30 26899040 15475 010010001001000100010001001001

32 90998801 20377 01000100010001000100100010010001

Table 2. Number of feasible patterns per problem of size n, the best feasible distance
and an example of a pattern corresponding to that distance, when mapped upon the
TTP solution
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1 Introduction

In the Department of Intelligence Science and Technology, Graduate School of
Informatics, Kyoto University, there are approximately 20 professors, and 40
graduate course students in each year. In the final year of the course, every stu-
dent submits a research thesis, and presents his/her work in twenty minutes to
obtain a master degree. Presentation meeting is scheduled for two days, and in
general, all professors attend the meeting and listen to all students’ presenta-
tion. For each student, three professors (usually from the same department) are
assigned as a referee basically according to the presentation topic and profes-
sors’ research fields, and it is mandatory for referees to attend and evaluate the
assigned students’ presentation.

This presentation meeting used to be scheduled in one room, and there have
been no serious problems. However, because of the increased number of graduate
students, it became difficult to hold the meeting in two days this year, and
we adopted a parallel session using two rooms. Then, there arises two major
restrictions: (1) Two students evaluated by the same referee must be assigned to
different timeslots. (2) Professors want to minimize the number of movements
between rooms. Restriction (1) is a hard constraint, and the problem requires
to decide if a feasible schedule exists. It is easy to see that this problem can be
solved in polynomial time, and hence in this paper we focus on restriction (2),
which is a soft constraint: We want to find a feasible schedule which minimizes
the total number of movements of all professors.

To understand the problem, consider the following small example: There are
six students s1 through s6 and six professors p1 through p6. The assignment
of professors to students is illustrated in Fig. 1: Student s1 is evaluated by
two professors p1 and p2, and so on. One example of the schedule, say C1, is
illustrated in Fig. 2. In C1, students s1 through s3, and students s4 through s6
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are scheduled to rooms r1 and r2, respectively, in this order of timeslots. Then
the cost of p1 in the schedule C1 is 2 since p1 has to move twice, from r1 to r2

and then from r2 to r1. The costs of p2 and p3 are 1 and 0, respectively. As a
result, the cost of the schedule C1 is 2 + 1 + 0 + 1 + 0 + 0 = 4.

Student s1 s2 s3 s4 s5 s6

Assigned professors p1, p2 p2, p3 p1, p4 p4, p5 p1, p6 p2, p6

Fig. 1. Example of referee-assignment

r1 r2 r1 r2 r1 r2

t1 s1 s4 t1 s1 s4 t1 s3 s6

t2 s2 s5 t2 s5 s2 t2 s1 s4

t3 s3 s6 t3 s3 s6 t3 s2 s5

C1 C2 C3

Fig. 2. Schedules C1, C2 and C3

It seems hard to attack this problem directly, and hence, we will consider two
restricted problems, denoted Room and Order. Room takes an initial feasible
solution as an input, as well as an assignment of referees to students. We are
allowed only to exchange the presentation rooms of a pair of students assigned
to the same timeslot; so it is prohibited to change the assigned timeslots. For
example, C2 in Fig. 2 is one possible output of Room when C1 in Fig. 2 is an
input schedule. C2 is the result of exchanging rooms of s2 and s5, by which we
can improve the cost of schedule to 3. The second problem, called Order, takes
the same inputs as Room. It allows to exchange the timeslots of two pairs, but
does not allow to change the assigned rooms. For example, C3 in Fig. 2 is one
possible output of Order when C1 is an input. Recall that a feasible solution
can be found in polynomial time as mentioned above, and hence, allowing to
give an initial schedule as an input is reasonable.

Our Contribution. In this paper, we investigate the time complexity of
Room and Order. It is reasonable to assume that the number of students each
professor evaluates, and the number of professors assigned to each student are
bounded by, say, s and t, respectively. Problem Room(s, t) is Room whose input
is restricted as above, and problem Order(s, t) is defined similarly. By defini-
tion, Room(1, t) is trivially in P for any t. This paper shows that (i) Room(2, 1)
is also polynomial-time solvable, but (ii) Room(s, t) is generally NP-hard and
furthermore it remains intractable even if s = 2 and t = 2. As for the complex-
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ity of Order, it is easy to see that Order(s, t) is polynomial-time solvable for
s ≤ 2. We show that (iii) Order(3, 1) is in P.

Related Work. In educational timetabling, a set of resources such as teach-
ers, students, rooms, and lectures must be assigned to a set of timeslots subject
to certain hard and soft constraints. There are three main categories in educa-
tional timetabling, namely, school (or class-teacher), university course, and exam
timetabling (e.g., see [7]). There are a large number of researchers investigating
in detail the complexity of university timetabling [2–6, 8].

The interview timetabling problem treated in this paper can be regarded as
the classical examination timetabling problem by considering students and ref-
erees in the former problem as exams and students in the latter problem, respec-
tively. However, interesting parameter setting where we can derive a boundary
between Pand NP-hard is the case when s and t are small. For such settings,
it is natural to interpret the problem as the interview timetabling rather than
examination timetabling.

2 Complexity of Room

It would be trivial that Room(1, t) is in P for any t because no professor needs to
move and hence the cost is 0 for any schedule. However, the precise complexity
of Room(s, t) for s ≥ 2 is not evident. First, we consider Room(2, 1) and give a
polynomial-time algorithm that solves it.

Let us call two students who are assigned to the same timeslot by an in-
put schedule a student-pair (or simply, a pair). In the following, if we write a
student-pair as (si, sj), it means that si and sj are assigned to rooms r1 and
r2, respectively, by the current schedule. By “flip a student-pair (si, sj)”, we
mean to exchange the rooms of si and sj , namely, we change (si, sj) to (sj , si).
Without loss of generality, we assume that each student is evaluated by exactly
one professor (namely, there is no student to whom no referee is assigned). So,
if professor p is assigned to student s, we write A(s) = p for convenience.

Starting from an initial schedule C, our algorithm decides, for each student-
pair, whether to flip it or not, in a sequential manner. We first select an arbitrary
pair, say (u, v), and fix the rooms of this pair as it is, and focus on the student
u. We select a pair (x, y) (if any) such that either x or y is evaluated by A(u).
If it is x, namely A(u) = A(x), we keep the rooms of x and y as it is, so that
the professor A(u) does not have to move. If it is y, then we flip the pair (x, y),
again, so that A(u) need not move. In this way, we continue determining the
rooms of pairs, so that a professor in question does not have to move. When
there is no pair to select, then we focus on the other student v of the initial pair,
and do the same operation starting from v. If there is no pair to select, we close
this “chain”, and start the next phase by selecting an initial pair again. The
algorithm stops when all pairs are processed.

Theorem 1. Room(2, 1) is in P.
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Proof (Sketch). Clearly, the time complexity is polynomial. It is not hard to see
that each phase gives rise to the cost of at most one, and if it is one, then the
set of pairs selected in that phase causes the cost of one in any schedule. Hence
the schedule the above algorithm outputs is optimal. ut

Next, we show an intractable case of Room(s, t).

Theorem 2. Room(s, t) for s ≥ 2, t ≥ 2 is NP-hard.

Proof (Sketch). Consider the following problem MAX E2LIN2(3): We are given
n variables x1, x2, · · ·, xn and m equations each with exactly two variables,
xi1 ⊕ xi2 = ai (1 ≤ i ≤ m, ai ∈ {0, 1}) such that each variable appears at
most three times in the equations. We are asked to assign 0 or 1 to variables
so that the number of satisfied equations is maximized. It is known that MAX
E2LIN2(3) is NP-hard [1].

Given an instance I of MAX E2LIN2(3) with n variables and m equations, we
construct an instance I ′ of Room(2,2). For each variable xi (1 ≤ i ≤ n), we create
a student-pair (si,1, si,2), and for each equation ej : xj1 ⊕ xj2 = aj (1 ≤ j ≤ m),
we create a professor pj . Referee-assignment is constructed as follows. Consider
the j-th equation ej (1 ≤ j ≤ m). If it is of the form xj1 ⊕ xj2 = 0, then either
(a1) assign pj to sj1,1 and sj2,1, or (a2) assign pj to sj1,2 and sj2,2. If xj1⊕xj2 =
1, then either (b1) assign pj to sj1,1 and sj2,2, or (b2) assign pj to sj1,2 and sj2,1.
Observe that each professor appears twice in I ′ since each equation contains two
variables, but three referees may be assigned to one student since a variable
can appear three times. Hence, at this moment, a constructed instance is of
Room(2, 3). However, we can create an instance of Room(2, 2) by appropriately
choosing (a1) or (a2) ((b1) or (b2)), although we omit describing how to do
it.

An assignment C for I naturally corresponds to a schedule C ′ of I ′: If xi = 0,
then the rooms of (si,1, si,2) is the same as in the initial schedule. If xi = 1, the
rooms of (si,1, si,2) is flipped to (si,2, si,1). It is not hard to see that the number
of unsatisfied equations under C is equal to the total number of movements of
professors under C ′. ut

3 Complexity of Order

Recall that the operation we are allowed in this problem is only to decide the
timeslot of student-pairs. Hence, as the simplest example, if each professor judges
at most two students, any exchange operation of timeslots of two student-pairs
does not change the cost of the schedule. It follows that Order(s, t) is in P for
s ≤ 2 and any t since any solution is optimal.

In this section we present a polynomial-time algorithm to find an optimal
solution for Order(3, 1). Let cost(C, p) be the number of movements of professor
p under a schedule C. Note that if a professor p appears at most twice in an
input referee-assignment, cost(C, p) is the same for any schedule C as mentioned
above. Even if p appears three times, cost(C, p) = 0 for any C if all three students
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are assigned to the same room by the input schedule. These professors are called
non-potential professors. If p appears three times, and if two of his/her students
are assigned to the same room, and the other one is assigned to the other room,
his/her cost can be one or two depending on the schedule. We call these professors
potential professors. As in the case of Room(2, 1), let A(s) denote the referee
assigned to student s.

As before, we sequentially determine the schedule of each pair. We construct
several blocks of student-pairs. Starting from an arbitrary initial student-pair
(u, v), we select a student-pair (x, y) where A(u) = A(x) and A(u) is a potential
professor, if any. We schedule (x, y) to the timeslot next to (u, v), so that two
students professor A(u) evaluates are assigned to continuous timeslots and to the
same room. Next, we select a pair (w, z) such that A(y) = A(z) and A(y) is a
potential professor, if any, and schedule (w, z) to the timeslot next to (x, y), and
so on. When there is no pair to select, we then go back to (u, v), and perform the
same operation starting from A(v). This time, we schedule new pairs to previous
timeslots of (u, v). When there is no pair to select, the work on the current block
is finished, and we start to construct a new block by selecting an arbitrary initial
student-pair. Finally, blocks are scheduled in an arbitrary order.

Theorem 3. Order(3, 1) is in P. (Proof is omitted.)

4 Concluding Remarks

In this paper, we considered the time complexity of Room(s, t) and Order(s, t)
for several values of s and t. The apparent next step in this research is to in-
vestigate the complexity of Room(3, 1) and Order(4, 1). An interesting gener-
alization is to allow both operations of Room and Order simultaneously. The
goal in this line is to consider the most general problem, namely, the problem
without an initial schedule in an input.
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1 Introduction

We consider the well known NP–hard teacher/class timetabling problem [1].
Variable neighborhood search and tabu search heuristics are developed to find
near optimal solutions to this problem. The heuristics are based on two types
of solution representation. For each of them we consider two families of neigh-
borhoods. The first family uses swapping of time periods for teacher (class)
timetable. The second family bases on the idea of large Lin–Kernighan neigh-
borhoods. Computation results for difficult random test instances show high
efficiency of the proposed approach.

2 Problem Formulation

In the teacher/class timetabling problem we are given the following finite sets: J
is the set of subjects, K is the set of classes, L is the set of teachers, T is the set of
time periods. These periods are distributed in 6 week days. By Tl ⊆ T we denote
the set of time periods which are available for teacher l. We suppose that classes
are disjoint sets of students, students in a chosen class have the same subjects,
and correspondence between subjects and teachers for a chosen class is one–to–
one. The number of lessons per week for each class and each teacher is known in
advance. We say that a timetable S is feasible if the following requirements are
satisfied:
a) a teacher l has at most one lesson at a time period t if t ∈ Tl and no lessons
otherwise;
b) a class k has at most one lesson at a time period t;
c) each teacher must fulfill his (her) weekly number of lessons.

The objective function F (S) is a penalty function for the following soft con-
straints:
1. each teacher has no time gaps;
2. each teacher has lessons in the most convenient time periods;
3. each class has no double lessons.
? This work was partially supported by Russian Foundation of Basic Research, grant

04–07–900096

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 454–457. ISBN 80-210-3726-1.



More exactly, we wish to minimize the following objective function:

F (S) =
∑
l∈L

6∑
d=1

αldf
1
ld(S) +

∑
l∈L

∑
t∈T

βltf
2
lt(S) +

∑
k∈K

6∑
d=1

γkdf
3
kd(S),

where positive α, β, and γ are the penalties and f i(S) is the number of violations
of soft restriction i, i = 1, 2, 3. The optimization problem is NP–hard. Moreover,
the decision problem on existence of a feasible solution is NP–complete. So, we
introduce semifeasible solutions to enlarge the search space and apply meta-
heuristics for this space to find near optimal feasible solutions.

3 Solution Representations

We introduce two types of semifeasible solutions.

Definition 1. A timetable Sa is a semifeasible solution of the type a if it satisfies
the restrictions b and c.

Definition 2. A timetable Sb is a semifeasible solution of the type b if it satisfies
the restrictions a and c.

It is convenient to represent an arbitrary timetable Sa as a K×T matrix (Sa
kt),

K = |K|,T = |T |, with values in {0, 1, . . . ,J}, J = |J |, where the k-th row
is a timetable for the k-th class. Nonzero entries of the row mean subjects for
the class k at the time period t; Sa

kt = 0 means free time. In a similar way we
represent Sb as a L×T matrix (Sb

lt), L = |L|, with values in {−1, 0, 1, . . . ,K}.
Entries of the matrix mean classes for the teacher l at the time period t if
Sb

lt > 0, and free time if Sb
lt ≤ 0. The case Sb

lt = −1 means that the time period
t is unavailable for the teacher l. The advantage of this representation is that it
eliminates conflicts for teachers. The occurrence of conflicts in column happens
when in a given period t more than one teacher is allocated to a class. A solution
Sb is feasible if and only if each column has not conflicts. An arbitrary feasible
solution S can be easily represented by (Sa

kt) and (Sb
lt) matrices. In order to

evaluate the semifeasible solutions we introduce the following function

F (S) = F (S) +
∑
l∈L

∑
t∈T

λltf
4
lt(S) +

∑
k∈K

∑
t∈T

µktf
5
kt(S),

where min(λ, µ) > max(α, β, γ) and f4(S), f5(S) are some penalty functions for
the restrictions a and b. Obviously, F (S) = F (S) if S is a feasible solution. It is
easy to realize a transition from a semifeasible solution Sa to Sb and back such
that the number of positive items in F (S)− F (S) does not increase.

4 Neighborhoods

Now we introduce four families of neighborhoods:
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– Ni(Sa), i ≥ 1, denote swap neighborhoods of a semifeasible solution Sa;
– Ni(Sb), i ≥ 1, denote swap neighborhoods of a semifeasible solution Sb;
– LKi(Sa), i > 1, denote Lin–Kernighan neighborhoods of Sa;
– LKi(Sb), i > 1, denote Lin–Kernighan neighborhoods of Sb.

The neighborhood N1(Sa) consists of neighboring solutions which are obtained
from Sa by swapping two different values of a given row in the matrix (Sa

kt). Each
element in this neighborhood is associated with a triplet 〈k, t′, t′′〉, where t′ and
t′′ are the time periods, k is the class, and Sa

kt′ and Sa
kt′′ are the interchanged

subjects. For i > 1, Ni(Sa) are formed of solutions which are obtained by a
sequence of interchanges with triplets {〈k, t′j , t

′′
j 〉}j≤i, k ∈ K is fixed. Families

Ni(Sb) are defined in a similar way. Moreover, only non-negative values of the
matrix (Sb

lt) can be interchanged. We note that arbitrary feasible solution can
be reached with the use of an appropriate sequence of neighboring solutions for
the neighborhoods N1(Sa) or N1(Sb). A Lin–Kernighan neighborhood LKi(Sa)
consists of i elements and can be described by the following steps [3].

1. Choose a triplet 〈k, t′, t′′〉 such that the corresponding neighboring solution
S′ ∈ N1(Sa) is the best even if it is worse than Sa.

2. Put Sa := S′.
3. Repeat steps 1, 2 i times; if a triplet was used at steps 1 or 2 of previous

iterations, it can not be used any more.

The sequence of triplets {〈kj , t
′
j , t

′′
j 〉}j≤i defines i neighbors Sj of the solution

Sa. We say that Sa is a local minimum with respect to the LKi–neighborhood
if F (Sa) ≤ F (Sj) for all j ≤ i. A local minimum with respect to the LKi–
neighborhood is a local minimum with respect to N1 and is not necessary a local
minimum with respect to Ni, i > 1. Family LKi(Sb) is defined similarly.

5 Variable Neighborhood Search

We adjust the framework of the VNS metaheuristic [2] for our problem as follows.

1. Initialization. Find an initial semifeasible solution S; choose a stopping con-
dition and sizes of neighborhood families imax, jmax.

2. Repeat the following sequence until the stopping condition is met:
(a) Set i← 1; if F (S) = 0 then STOP, return the optimal solution S.
(b) Repeat the following steps until i = imax:

i. Shaking. Generate a solution S′ at random from the Ni(S).
ii. Local search. Use a local descent algorithm with respect to N1 with

S′ as the initial solution; denote the obtained local minimum as S′′.
iii. Move or not. If F (S′′) < F (S) then put S ← S′′ and goto 2(a);

otherwise, set i← i + 1.
(c) i. Large neighborhood search. Use a local descent algorithm with re-

spect to neighborhood LKjmax
with S as the initial solution; denote

the obtained local minimum as S′′.
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ii. Change representation. If F (S′′) < F (S) then put S ← S′′, other-
wise change the solution representation; goto 2(a).

At the initial step 1 we generate S by a polynomial time heuristic. It has T
stages. At each stage we solve an assignment problem.

6 Computational Results

We test the VNS algorithm on random instances with T = 6 × 5 and α =
1 + α′, β = 3 + β′, γ = 5 + γ′, λ = 10 + λ′, µ = 10 + µ′, where α′, β′, γ′, λ′, µ′

are random noise, 0 < α′, β′, γ′, λ′, µ′ � 1. This rule removes plateaus and
improves the landscape for local search methods. Each class has T lessons. Each
teacher l ∈ L has Tl/5 inconvenient time periods. The VNS algorithm produces
50 KT moves from a solution to a neighboring one. Table 1 presents average
values of the objective function for the best found solutions in 50 trials. Each
row of the table corresponds to one instance. For all instances VNS finds feasible
solutions in all trials. For comparison, we present the results for a tabu search

n L K J
∑

l
Tl TS TSR VNS VNSR

1 14 6 83 210 32.9 27.7 30.3 27.0
2 16 8 120 336 21.6 15.7 17.9 15.1
3 23 12 195 552 82.3 67.5 65.5 64.2
4 31 13 207 558 70.1 66.9 67.4 66.3

Table 1. Average values of F (S)

method with and without changing the solution representation (columns TSR
and TS). Table 1 shows that change of the solution representation is a useful idea
for both methods. We hope it may be successfully applied for other approaches
as well.
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Public transport driver scheduling is the problem of determining the com-
position of a set of driver shifts (a schedule) for a day’s transport operation
requiring coverage by drivers, while minimising the operational cost (and/or ro-
bustness) of the schedule [2]. A relief opportunity (RO) is a (time, location) pair
where drivers can be relieved. In the case of rail driver scheduling, most relief
opportunities occur when a train stops at a station. It is frequently the case that
trains will stop for some time before continuing; this gives rise to windows of

relief opportunities (WROs).
Driver scheduling models usually approximate windows of relief opportunities

by their arrival time. WROs could be expanded into sets of 1-minute-apart ROs,
but the resulting model is unsuitable to be solved using the generate-and-select
(GaS) approach [1], because the number of valid shifts becomes unmanageable
in size [3]. However, it is expected that not all of the ROs derived from WROs
will be vital for yielding more efficient solutions. For example, some of these new
ROs that are close together are likely to be redundant.

Applying the 1-minute expansion to a typical instance of the rail driver
scheduling problem in the UK is likely to result in several hundred new ROs.
The problem is then how to select which of these potential ROs to include in the
expanded model; a brute-force approach (say, trying all subsets of size n, one at
a time) is clearly unsuitable, even for a fixed number n of ROs. In this work we
present a set of heuristics to select these ROs.

Many scheduling constraints can be looked at in terms of the boundaries they
define. Figure 1 depicts such an example: given an RO r on vehicle v at time t, a
maximum work spell length of x minutes will define a boundary in vehicle v at
time t−x, such that any spell on vehicle v ending at r will satisfy this constraint
if the spell starts at or after t−x, and will break the constraint otherwise. If t−x

falls inside a WRO w at vehicle v (but not at its arrival time), then considering
relieving inside w at t − x leads to forming a spell which was invalid on the
simplified, relief-on-arrival model. This would indicate that the RO at vehicle v

and time t−x is a good candidate to be included in the extended model, because
it allows for a new spell to be generated. There may be more than one potential
RO within w that fall on or after t − x, and all of these could in principle be
included in the expanded set, although this would probably result in too many
ROs being selected.

We derive a general framework to look at scheduling constraints in terms of
time boundaries. We show its application using different constraints, including
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Fig. 1. Looking at boundary conditions for the maximum spell length constraint. A
maximum spell length of x defines an interval [t − x, t) for the start of a spell ending
at time t. A new spell can be formed if the RO at time t− x is added to the model.

the existence of a feasible travel link and the maximum spell length. In particular,
we apply this analysis to the first constraint on a set of real-life driver scheduling
instances from four different UK railway operations. By adding these selected
ROs, we are able to improve on best-known solutions. A further study on one of
these instances shows that the same result could have been achieved by adding
just one of the about 90 ROs added by our heuristic. This reinforces our claim
that a careful selection of the ROs to add may be crucial in achieving the best
solutions.

Analysing a set of scheduling constraints simultaneously opens up a range of
possible algorithms/heuristics. A straightforward way of doing so is to look at
each constraint separately, and then somehow merge the sets of ROs obtained.
A completely opposite approach is to observe that the structure of the new
spells/shifts arising from the consideration of scheduling constraints is usually
similar across different constraints, e.g. new spells are obtained by adding a piece
of work at the start of a valid spell in the simplified model, and making the new
spell start properly inside a WRO. Therefore, a possible algorithm consists in
forming new spells/shifts with that common structure, then test whether these
are valid and suggest new ROs to be considered.

We develop two such algorithms: one working at spell level; the other, at shift
level, using the shifts created in the generation phase of a GaS solver as a base
for creating new shifts. Results show that this kind of approach can effectively
encompass several scheduling constraints simultaneously.
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In this abstract, we deal with the problem of minimizing the carry-over ef-
fects value in a round-robin tournament. The carry-over effects value is an index
of quality of a round-robin tournament schedule. We propose an effective algo-
rithm for generating schedules of small carry-over effects values. The proposed
algorithm produces better schedules than the previous best ones in short com-
putational time.

A round-robin tournament with the following properties is considered in this
abstract:
• the number of teams (or players etc.), n, is even;
• the number of slots, i.e., the days when matches are held, is n− 1;
• each team plays one match in each slot;
• each team plays every other team once.

Suppose that, in a round-robin tournament of high-contact sports (such as
rugby and American football), team 2 is very strong and another team will be
exhausted after the match against team 2. In this situation, which is a better
schedule, Figs. 1 or 2? In Fig. 1, five of seven opponents of team 1 play team 1 just
after playing team 2. Accordingly, team 1 is considered to have much advantage
due to team 2. On the other hand, in Fig. 2 each team (except team 2) derives
the advantage from team 2 at most once. In this regard, the schedule of Fig. 2
is better than that of Fig. 1. Such quality of a schedule can be measured by the
carry-over effects value. In the following, the definition of the carry-over effects
value is introduced.

It is said that team i gives a carry-over effect to team j if a team plays i
in slot s then j in slot s + 1 (s ∈ {1, 2, . . . , n − 1}; regard slot n as slot 1).
For a given schedule, the carry-over effects matrix C (coe-matrix for short) is a
non-negative matrix whose element cij denotes the number of carry-over effects
given by team i to team j in the schedule. By its definition, every coe-matrix
satisfies the following:
• the sum of each row is n− 1;
• the sum of each column is n− 1;
• every diagonal element is 0.
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1 2 3 4 5 6 7

1 8 3 4 5 6 7 2
2 3 4 5 6 7 8 1
3 2 1 6 8 5 4 7
4 5 2 1 7 8 3 6
5 4 7 2 1 3 6 8
6 7 8 3 2 1 5 4
7 6 5 8 4 2 1 3
8 1 6 7 3 4 2 5




0 5 0 0 1 0 0 1
0 0 1 2 1 0 3 0
3 0 0 0 0 0 1 3
0 0 3 0 2 0 0 2
1 1 0 2 0 2 0 1
2 0 3 0 2 0 0 0
1 0 0 3 0 3 0 0
0 1 0 0 1 2 3 0




Fig. 1. Schedule whose coe-value is 140 and its coe-matrix

The carry-over effects value (coe-value for short) is defined as
∑

i,j(cij
2).

The carry-over effects value minimization problem is to find a schedule of
which coe-value is minimum. Obviously, the coe-value of a schedule of n teams
attains the lower bound n(n − 1) when all non-diagonal elements of the cor-
responding coe-matrix are 1. Such schedules are called balanced. In a balanced
schedule, carry-over effects spread as evenly as possible. Fig. 2 shows a balanced
schedule for n = 8 and its coe-value is n(n − 1) = 56, while the coe-value of
Fig. 1 is 140.

Russell [2] proposed the carry-over effects value minimization problem, and
an algorithm for constructing a balanced schedule when n is a power of two.
In addition, it is conjectured that there is no balanced schedule unless n is a
power of two. This conjecture is still open; for n = 6 and 10, it was verified by
computation.

Russell also proposed a constructive heuristic algorithm to obtain schedules
of small coe-values for n = pm + 1, where p is an odd prime and m ≥ 1. (Note
that when n ≤ 20, every even n is either a power of two or the form pm +1.) The
heuristic algorithm produces schedules whose coe-values are 60, 138, 196, 260, 428
and 520 for n = 6, 10, 12, 14, 18 and 20, respectively. For n = 6, the schedule
by Russell is indeed optimal. However, for n = 10 and 12, better schedules
were recently obtained. For n = 10, Trick [3] reported a schedule whose coe-
value is 122; for n = 12, Henz, Müller and Thiel [1] did a schedule whose coe-
value is 188 (see Table 1). Both of them used constraint programming, and with
constraint programming it seems difficult to find better schedules for larger n in
practical computational time.

In the following, we propose a simple heuristic algorithm, which quickly gen-
erates better schedules than the previous best ones for n ≥ 14. Our algorithm
exploits the circle method (or polygon method), a well-known algorithm for
constructing a round-robin tournament schedule. However, it has not yet been
discussed in the context of minimizing the carry-over effects value.

The algorithm of the circle method is as follows:
in slot s (s ∈ {1, 2, . . . , n− 1}),
• team n plays team s;
• team i plays team j for (i + j) ≡ 2s mod (n− 1).
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1 2 3 4 5 6 7

1 4 5 6 7 8 2 3
2 5 4 8 3 6 1 7
3 8 6 5 2 4 7 1
4 1 2 7 6 3 5 8
5 2 1 3 8 7 4 6
6 7 3 1 4 2 8 5
7 6 8 4 1 5 3 2
8 3 7 2 5 1 6 4

Fig. 2. Balanced schedule

1 2 3 4 5 6 7

1 8 3 5 7 2 4 6
2 7 8 4 6 1 3 5
3 6 1 8 5 7 2 4
4 5 7 2 8 6 1 3
5 4 6 1 3 8 7 2
6 3 5 7 2 4 8 1
7 2 4 6 1 3 5 8
8 1 2 3 4 5 6 7

Fig. 3. Schedule with the circle method

In the rest of this abstract, we denote the schedule created with the circle
method by Cn, where n is the number of teams. In Cn, on the assumption that
playing itself means playing team n, every team except n plays matches in the
following order or its cyclic permutation: 1, 3, . . . , n−1, 2, 4, . . . , n−2 (see Fig. 3).
Accordingly, the coe-value of Cn is very large. (For instance, the coe-value of C10

is 468. We conjecture that Cn gives an optimal solution for maximizing the coe-
value.)

Consider permuting of the columns, i.e. slots, of Cn. For a permutation σ on
the set of the slots {1, 2, . . . , n− 1}, we construct the schedule Cn(σ) whose s-th
column is the σ(s)-th column of Cn. In addition, we define the sequence p(σ) as
follows: p(σ) = (σ(2)− σ(1), σ(3)− σ(2), . . . , σ(n− 1)− σ(n− 2), σ(1)− σ(n−
1)) mod (n−1). For a permutation σ, it is observed that if some elements of p(σ)
has a same value, particular elements of the coe-matrix of Cn(σ) increase; for
instance, the schedule Cn, which has a large coe-value, corresponds to the iden-
tical permutation and p(σ) = (1, 1, . . . , 1). Thus, we expect that a good schedule
is obtained by a permutation σ such that elements of p(σ) are as different as
possible.

To obtain schedules of small coe-values, we generated a number of permuta-
tions σ randomly. Our algorithm produced schedules whose coe-values are 254,
412 and 496 for n = 14, 18 and 20 respectively, in less than 1 second (CPU:
Pentium III 1.0 GHz, RAM: 1024 MB); all of which are better than the previous
results. The best coe-values after two days of random generation are 400 and 488
for n = 18 and 20, respectively (see Table 1).

Finally, it should be noted that we obtained schedules whose coe-values are
108 and 176 for n = 10 and 12, respectively (Table 1). These results were achieved
by adding constraints to the constraint programming formulation proposed by
Trick [3]. Due to the space limitation, the detail is omitted.
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Table 1. Upper bounds of the carry-over effects value

#teams old best (status) our results

4 12 ([2], balanced)
6 60 ([2], optimal)
8 56 ([2], balanced)

10 122 ([3]) 108
12 188 ([1]) 176
14 260 ([2]) 254
16 240 ([2], balanced)
18 428 ([2]) 400
20 520 ([2]) 488

2. Russell, K.G.: Balancing carry-over effects in round robin tournaments. Biometrika
67 (1980) 127–131

3. Trick, M.A.: A schedule-then-break approach to sports timetabling. In: Burke, E.,
Erben, W. (eds.): Practice and Theory of Automated Timetabling III (PATAT 2000,
Konstanz, Germany, August, selected revised papers). Lecture Notes in Computer
Science, Vol. 2079. Springer-Verlag, Berlin Heidelberg New York (2001) 242–253

Carry-Over Effects Value in a Round-Robin Tournament [...] 463



A Constraint Logic Programming Based Approach to 
the International Timetabling Competition 

Patrick Pleass1, Mark Wallace2, Mauro Bampo3 

1,2 Faculty of Information Technology 
Monash University, Melbourne, Australia 

{patrick.pleass, mark.wallace}@infotech.monash.edu.au 
 

3 Faculty of Engineering 
University of Bologna, Bologna, Italy 

mbampo@gmail.com  
 
This paper outlines the modeling, implementation and refinement of a solution to the 
International Timetabling Competition using Constraint Logic Programming methods. 
This is primarily carried out within the ECLiPSe constraint programming framework 
using lib(ic), the hybrid integer/real interval arithmetic constraint solver library.  

The International Timetabling Competition, organized by the Metaheuristic Net-
work and sponsored by PATAT (Practice and Theory of Automated Timetabling) was 
held in 2003. The competition presented a reduced university course timetabling 
problem and associated problem datasets designed by Ben Paechter. The aim of the 
competition problem was to deliver feasible timetables, in a set execution time that 
meets all hard constraints and minimized occurrences of soft constraints. 

Although this competition has already been held and winners announced [1,2,3,4], 
the outcome has provided researchers with a number of  independently verified solu-
tions and performance measures using a variety of different approaches. Further to 
this the Center for Emergent Computing at Napier University have posted new 
"Harder" Instances for the University Course Timetabling Problem [5] that can further 
challenge heuristic development in this field. 

The aim of this research is to provide a solution to the timetabling problem using 
as much as possible the ECLiPSe framework and minimal use of external custom-
built metaheuristics and solvers. The performance of this approach is then compared 
to the competition results and differences analyzed and discussed. This approach in-
troduces a number of design challenges in providing acceptable performance within 
ECLiPSe as opposed to a custom built heuristic. These challenges are outlined and 
discussed. 

The approach followed consists of the following stages: 

Modeling the problem data 

Data from the input file format specified by the competition is loaded into the 
constraint engine as a set of atomic facts such as:  

timeslot(timeslot_id) 

student(student_id,[classes]),  
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room(room_id,capacity,[available_features]) 

class(class_id,[required_features],TIME,ROOM) 

The objective is to find TIME and ROOM for each defined class that meets all 
hard constraints and as many soft constraints as possible in the given time. 

Modeling the hard constraints 

The hard constraints to be implemented include: 
 
• No student attends more than one event at the same time 
• The room allocated to an event is big enough to house all students and meets all 

feature requirements 
• Only one event is in each room for any timeslot 
 
There are multiple ways to model these constraints within ECLiPSe. We present a 

high performance solution that minimizes the search domain to reduce the total search 
space for the next stage of the solution. Central to this step is the application of the 
alldifferent(1) predicate to an array of compound variables (ROOM and 
TIME) unified with the element(3) predicate.  

Modeling the soft constraints 

The soft constraints to be implemented are as follows: 
− Minimize students with a class in last slot of each day 
− Minimize students with two consecutive classes 
− Minimize students with a single class on a single day 

There are many strategies that may be employed within ECLiPSe to minimize 
these values. We employ in the first instance using selective constraint propagation 
techniques and then extend as performance dictates to other strategies based on con-
straint based local search.  

Non-Exhaustive Search Strategies 

As more variables are added to the problem, the search space grows exponentially, 
and left unchecked a CLP based system will search all possibilities. We devise heuris-
tics that perform effective search strategies that focuses on promising parts of the 
search tree in order to avoid an exhaustive search. This step will also utilize local and 
hybrid search and repair, chain swap and large neighborhood search. 

Our approach is to find a complete assignment of variables that meet all hard con-
straints and as many soft constraints as possible in reasonable time. The total time the 
competition allows for finding a solution is 564 seconds on the hardware we em-
ployed. Reasonable time in our case is less than half of this time. The remaining time 
is used to perform constraint based local search to improve the solution. 
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Backtrack-Free Constructive Algorithms 

To be able to produce solutions in reasonable time we have employed a backtrack-
free, forward-checking constructive method as described by Schaerf [6]. This method 
will move from variable to variable and select the best value that meets the hard con-
straints and meets as many soft constraints as possible. The domains for each of the 
unassigned variables are then pruned to ensure that a total assignment of values exists 
before continuing. 

The task is to find values for the time T and room R variables for each class. Dur-
ing the constructive search we focus only on the Time variable as most of the soft 
constraints rely on this. However with the assignment of every time variable, we also 
combine a channeling constraint that ensures that for any Time selection for a class 
there is at least one suitable room available that meets all hard constraints. The final 
allocation of rooms happens after the time allocation is complete. 
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Abstract. As demand for Education increases and diversifies, so does the 
difficulty of designing workable timetables for schools and academic 
institutions. Besides the intractability of the basic problem, there is an 
increasing variety of constraints that come into play. In this paper we 
present a hybrid of two metaheuristics (genetic algorithm and tabu search) 
to tackle the problem in its most general setting. Promising experimental 
results are shown. 

Keywords: timetables, combinatorial optimization, genetic algorithms, 
tabu search, computational complexity.  

1 Introduction 

In academic institutions, nested groups of students (comprising streams, sections …) 
are concerned by a set of subjects. A subject may be a lecture of some specific course 
or a tutoring or a lab, or any other meeting involving the group on a regular basis. For 
example, the lecture of the course entitled MATH3802A is a subject. Tutoring 
associated with the same course is another subject. Each subject takes a certain length 
of time whose unit is referred to as a ‘period’. Each subject may be broken down into 
a number of meetings to be scheduled.  

To solve the timetabling problem (TTP) is to assign a qualified teacher to each 
subject and a time-slot together with a classroom of a suitable capacity and 
characteristics to each meeting. The assignment of times-slots, classrooms and 
teachers is subject to constraints that depend on the nature of the institution and its 
priorities. These constraints fall into three categories: physical constraints, which 
provide among others that no student can attend two different meetings at the same 
time; preference constraints and specification constraints bearing on some particular 
meetings, which, for example, must be held in some specified time window 
[3][4][5][8][10].  
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2 Application of genetic algorithms to timetabling problem  

A Genetic Algorithm (GA) makes a population of individual solutions evolve under 
the control of two operators: ‘mutation’ and ‘crossover’. Mutation operates on one or 
possibly many genes (attributes) of a solution by altering their values. Crossover 
consists in mating the parental genes pairwise, yielding offspring with new properties. 
Only the best-fit individuals are likely to survive down the generations. We encoded 
our timetables as vectors associating 3 genes with each meeting, referring to the 
period, the classroom and the teacher assigned to the meeting. In a bid to promote a 
well-spread search of the space of solutions, we allowed our initial generation to be 
constructed randomly by assigning a random time-slot along with a teacher to each 
meeting in a “greedy” fashion. We then defined our objective function to be the 
weighted sum of all the violated constraints, each constraint being associated with a 
penalty (a weight) in proportion to the importance we ascribe to the constraint. The 
individuals (timetables) are ranked in the order of descending fitness conditions (as 
measured by the objective function), the best-fit individual being ranked 0. The 
probability of replacing an individual i is then defined to be the ratio of ranki to the 
sum of all the ranks. In other words, the poorer the fitness condition, the greater the 
probability of an individual being replaced.  

2.1 Mutation 

The simplest way to define a mutation operator is to select randomly both the gene 
and the gene value to which mutation is to be applied. For large sized instances, 
however, this may lead to unacceptable running times because of the poor choice of 
the genes. In contrast, our mutation operator operates on the most problematic genes. 
With each meeting m of M, an integer-valued variable is associated representing a 
violation record. The evaluation process consists in computing the penalty record 
incurred by the timetable: It adds all the violation records of meetings involved in any 
constraint of the timetable.  

Thus, the violation record of a meeting is highest when the meeting is most 
problematic. The mutation operator then selects the gene to be muted as a function of 
the violation record. Likewise, a violation record is computed for each possible allele 
(gene value). The new value to be assigned to the mutating gene is deduced similarly 
as the sum of the penalties of all the constraints that will be violated if the change is 
accepted. 

2.2 Dedicated mutations 

We have designed a mutation operator for each of the three types of constraint. Each 
mutation operator of a given type maintains a violation record for that type for each 
meeting in M. This proved useful in many respects. First, the fact that only one class 
of constraint is handled in a mutation results in a significant gain in computing time. 
Secondly, in keeping separate records on different types of constraints we gain a 
better insight into which of the types is most violated, and by the same token, a means 
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is provided by which the sources of the problem can be accessed direct and dealt with. 
Thirdly, we now have another means (other than penalty value) to distinguish certain 
types of constraints and single them out as more important than others: it merely 
suffices to call their corresponding mutation operators more frequently. 

2.3 Crossover 

The role of crossover is to enable the combination of the good properties borne by the 
so-called parent-individuals. Our crossover operator is based on Abramson’s 
encoding scheme [1][2], where a timetable is represented as a vector of lists, one for 
each time-slot. Each list brings together the set of meetings assigned to that time-slot. 
The crossover operator consists then in swapping groups of the two parents. 

3 Hybridizing genetic algorithm with tabu search 

Violation-driven Mutation (VDM) provides an effective means (time-wise) by which 
to intensify search [6][7]. However, the resulting tendencies to explore vs. exploit the 
search space often conflict with each other. The reason is that VDM may lead to 
premature convergence, wherein the search process gets stuck in a local optimum. 
Moreover, GAs are oblivious to the history of the search process, since only the 
population of individuals may be regarded as a short-term memory. On the other 
hand, we feel that Tabu Search (TS), with its numerous built-in strategies and features 
is better equipped to offset both shortcomings. For one thing, TS distinguishes itself 
by a greater ability to jump out from local optima thanks to its diversification strategy 
[6][7]. Furthermore, it makes use of both a short- and a long-term built-in memory to 
investigate the search space. Tabu Search proceeds by stepwise improvement. Thus, 
at each step of the algorithm, we move from one solution to another through an 
operation referred to as a ‘move’. Attributes modified during a move become ‘tabu’ 
for a certain space of time in terms of the number of iterations. A list called Tabu list 
contains all tabu-attributes. Several hybridizing schemes are possible [9][12]. For one 
thing, two mutations on two identical individuals are most likely to perform the same 
selections of their genes. On the other hand, the mutation of an individual may bring it 
back to an already known state. Our solution requires that we keep two tabu-lists: a 
long-term list (“Long_list”) and a short-term one (“Short-list”). “ Long_list” is 
dedicated to storing the new values assigned to the genes so as to prevent new 
mutations from performing the same selection again. “Short_list” stores former gene 
values to prevent future mutations from restoring them.  

4 Experimental tests  

To analyze the performance of our algorithms, which were developed in C, we carried 
out an array of tests on instances of our own choosing, on benchmarks from literature 
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[2][11] as well as on a real case instance. We performed the tests using a micro-
computer of type Pentium 4 (2.4 GHz, 512 Mo de RAM) operating on Linux 2.0. 

The purpose of the first set of tests was to set the parameters of the algorithms. In 
the absence of relevant theoretical results on the subject, we had to resort to empirical 
tests to set our parameters. To determine each parameter value, we ran 10 tests per 
instance. Each such set of tests determined the most appropriate value of a given 
parameter, all else being unchanged. Crossover and mutation probabilities were set at 
0,75 and 0,3 respectively. The number of iterations was set at 20000 and the 
population size at 300 individuals. As for the sizes of the tabu lists, the sizes of 
Long_list and Short_list were 7 and 5 respectively. 

4.1. Theoretical instances 

The tests were performed on 4 types of problems: problem 1 is constituted of 64 
subjects with 12 teachers and 16 classrooms. Problem 2 has 100 subjects, 21 teachers 
and 25 classrooms. Problem 3 is made of 150 subjects, 26 teachers and 31 classrooms. 
Problem 4 has 200 subjects, 33 teachers and 37 classrooms. For each problem, we 
allowed the number of periods to vary between 20, 15 and 12 to test the efficiency of 
the algorithm for increasing period sizes. Run times are given in seconds.  

The tests show that the use of a violation-driven mutation speeds up search while 
compromising the stability of search and the rate of success. The genetic algorithm 
hybridized with tabu search provides much better results in terms both of the quality 
of the solution and of the convergence rate, thanks to the tabu component of the 
algorithm which provides a better spread of the search. This is illustrated in the two 
charts above featuring a comparison between a hybrid GA and a classic GA; a 
comparison between a GA that uses plain mutation and a GA that uses a VDM; and a 
comparison between a GA using a period-based cross-over and one using plain 
crossover.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Comparison between a classic GA 
 and a GA with MDV. 

Problem1      Problem2         Problem3          Problem4 

Fig. 2.  Comparison between a hybrid GA 
and a classic GA.  
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4.2. Instances from literature 

In our set of tests on instances from literature [2][11], we ran our algorithms on the 
challenging benchmarks Hdtt (High difficult time-tabling). These are difficult 
instances, because all the capacities are stretched thin: every teacher and every 
classroom must be assigned, and there must be no idle period at the optimum. 

Using an IBM SP2, Abramson and Dang [2] have tested these instances with two 
metaheuristics: simulated annealing and tabu search. We performed 20 runs for each 
instance. There is a similarity between the results found in literature [2][11] and those 
provided by our algorithms. For larger instances (Hdtt7 and Hdtt8), more iterations 
are required in order for the quality of the solutions to be conclusive. A parallel 
version of the hybrid algorithm would be of much help as it will make it possible to 
deal with larger populations and more iterations. 

4.3. Concrete Example 

We have applied the hybrid algorithm to the TTP instance of the University of 
Science and Technology Houari Boumediene USTHB of Algiers, which has 500 
groups, 1000 courses, 3000 teachers,  about 5000 subjects to be scheduled on six 
consecutive periods a day for six days. We had two types of rooms to hold lectures 
and labs: 24 amphitheatres and 181 classrooms. Before the algorithm was applied to 
the ten faculties of the university, the department of Computer Science had tried it on 
its own Faculty. The manual designing of timetables in that Faculty used to take a 
tremendous amount of time (three to four weeks). With our algorithm, that time was 
reduced to just one hour in average. 

Conclusions 

Genetic Algorithms and Tabu Search provide a great flexibility of use when it comes 
to solving combinatorial problems. We exploited this flexibility to design algorithms 
capable of generating timetables for any type of academic institution, a problem 
intractable for approximation. Our algorithms process more than 11 constraints from 
among the most common ones, with the possible extension to others. 

The idea of hybridizing of GA and TS stems from our desire to reap the benefits of 
both methods: the simplicity of use of GAs on the one hand, and such ability to jump 
out from local optima through a more diversified and balanced search as provided by 
TS, on the other hand. This hybridizing is enhanced by a host of ingredients of our 
own choosing and implementing. One of these is the so-called Violation Driven 
Mutation, which provides us with an intelligent operator capable of detecting and 
solving sources of conflicts. The idle time that might be generated in the process is 
eliminated via tabu-search. 

The efficiency of this method makes itself felt on both counts of the convergence 
rate (running time) and the rate of success, as a result of a good compromise between 

Hybridizing Genetic Algorithms and Tabu Search [...] 471



 

expansion and intensification, in terms of exploring new regions of the search space 
(through tabu-list) versus exploiting the solutions found (through crossover). In view 
of the variety of settings in which our algorithms fared well in comparison with other 
algorithms from literature, we conclude that our method together with its ingredients 
is pertinent to the timetabling problem. 

As an extension to this work, we contemplate parallelizing some of the algorithms 
proposed to enhance the quality of solutions and improve on their running time as 
well. We also contemplate using a constraint-programming approach that would, in 
our view, best fit the constrained character of this type of problem. Finally, we 
consider implementing a metaheuristic cooperation under a Mozart-Oz environment 
(http://www.mozart-oz.org/) to deal with our problem.  
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Bus scheduling is a complex combinatorial optimization problem [3], [10]. The op-
erations planning and scheduling process starts off with the designing of a timetable
of trips that have to be served by buses. Each trip has a starting time/location and a
destination time/location.

Bus scheduling involves assigning a set of trips to a set of buses such that:
1. The sequence of the trips for each bus is time feasible: no trip precedes an ear-

lier trip in the sequence
2. Each trip is served by exactly one bus

There are two types of operational cost involved, these are layover (idle time) and
dead running (relocating the bus between locations without passenger, this includes
leaving and returning to the depot). The objective is to minimise the operational cost
and the number of buses. Given the nature of the problem it is almost always impos-
sible to reduce the layover and dead running cost to zero. The complexity of the
problem quickly increases as the number of the depots and the types of vehicle in-
creases.

A solution is said to be λ-optimal (or simply λ-opt) if it is impossible to obtain a
better solution by replacing any λ relation instances by any other set of λ relation
instances. The λ-opt heuristic [5] is based on this concept of λ-optimality where in
each trial, λ instances of the chosen relation (mapping between problem components,
e.g. bus trips to bus’s timeslots) in the working solution are exchanged. The trial
process continues until a move that satisfies the specified acceptance criteria is found.
The accepted move is then used to update the working solution. Computational time
rapidly increases for increasing values of λ, as a result, the values λ = 2 and λ = 3 are
the most commonly used. When λ = number of relation instances we have an exhaus-
tive search where every possibility is tried. In many applications λ = 2 is powerful
enough to yield near optimal solutions in a fraction of the time needed for an exhaus-
tive search.
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Fig. 1. λ-opt Heuristic

Figure 1 illustrates the general scheme of a λ-opt heuristic. Apart from specifying
value of λ, there are four other decisions that need to be taken to fully configure a λ-
opt heuristic. The relative merits of the options are not obvious for example, which
relation should be selected, which trial solution should be accepted, etc. Different
combinations of design options constitute different search strategies. If dynamically
configured, these design options could adapt the heuristics to suit the current state of
the search process, but choosing “the right” combination of design options is not a
trivial task. Figure 2 illustrates the hyper-heuristic framework for the λ-opt heuristic
dynamic configuration.

BOOST [4] applies an object-oriented paradigm to solving the bus scheduling prob-
lem. Object classes like ‘Vehicle activities’ (represent bus links, the connection be-
tween two bus trips) and ‘Link swap rules’ are used. The link swap rules or the
scheduling heuristics provide the search moves for the optimization. For example,
swapping valid bus links (bus links that correctly follow the sequence) with invalid
bus links or valid bus links with start activities links (in order to find earlier starting
time). These link swap rules are the extended functions that made up the algorithm in
VAMPIRES [8]. These heuristics are the 2-opt scheduling heuristics. Although the
major benefit of applying object-oriented models was to increase the extendibility of
the application, the heuristics used inside the link swap rules class still require much
of the problem specific knowledge. Configuring the 2-opt heuristic use within the
system is still a tedious task. The heuristics were hard-wired and the design options
were specified by the system designer. A more desirable approach would be to have
the design options to be configured by the system itself based on the current search
situation.

Hyper-heuristics are a powerful emerging search technology [1]. Search algorithms
can be constructed from a collection of simple neighbourhood moves referred to as
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low-level heuristics. Rather than hard-wiring such simple moves, hyper-heuristics
employ a domain independent driver that iteratively makes dynamic decisions on
which simple move or moves should be executed next. The selected heuristics can be
knowledge-poor heuristics like simple add, drop and swap moves or complete algo-
rithms more akin to Meta-heuristics.

Soubeiga [9] proposed a choice function based hyper-heuristic driver, which has
components designed for search intensification and diversification and incorporates
some simple learning capability. The choice function provides the ranking of the low-
level heuristics, based on information about the individual performance of each low-
level heuristic, joint performance of pairs of heuristics, and the amount of time
elapsed since the low-level heuristic was last called. The low-level heuristic perform-
ance is calculated in terms of the amount of solution improvement the low-level heu-
ristic has achieved and the time it used to obtain this improvement. This choice func-
tion has been applied to select problem specific low-level heuristics on several time-
tabling and scheduling problems [2], [6].

Fig. 2. The Hyper-heuristic framework for the static heuristics (left) and λ-opt heuristic dy-
namic configuration (right)

There are many possible useful relations for bus scheduling, for example, a relation of
multiple bus trips to multiple bus timeslots of the same bus, a relation of a single bus
trip to a single bus’s timeslot. In the initial experiment, only the simple type of rela-
tion is experimented with, a trip to a bus’s timeslot. Instead of trying to swap exhaus-
tively between the 2 candidate sets (λ = 2), the trial swap performs the exchange
between a selected candidate instance (the first candidate) and all other candidate
instances (the second candidate). The first candidate is obtained by selecting ran-
domly from the top ten instance of the selected ordered candidate set. Three kinds of
instance order are used, based on four different kinds of cost (dead run, idle time,
start activity and end activity), max-min, min-max and random. After all candidates
are tried, the best pair will be selected and the update will be made to the schedule.
Figure 3 illustrates the move structures used. Each square represents each bus trip and
the dash line represent the bus link where the crossover is made.
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                 (a) Simple crossover                       (b) Multiple crossover

Fig. 3. Move structures

Similar rules were previously used on a university timetabling problem [7]. A few
minor modifications were needed to make it suitable to bus scheduling, for example,
the constraint violation in timetabling is considered as the operational cost in bus
scheduling. The starting solution is generated using a simple greedy assignment algo-
rithm. The trips are assigned to the bus based on their starting time (which was given
in the problem data set). A new bus is started once no more trips can be assigned to
the existing bus. The process continues until all buses are tried. If there are any more
trips left un-assigned then the rest of the trips are assigned to any empty bus timeslot.

In the initial experiment, all rules are expanded into every possible configuration
(every possible low-level heuristic that could be obtained within the provided set of
rules). The aim of this initial experiment was to investigate the feasibility of this gen-
eral framework. At each iteration, the hyper-heuristic selects an expanded combina-
tion based on their score (as if it was to select a low-level heuristic).

The initial results obtained on a test data set is comparable to a highly specialised
approach [4]. The fact that similar or identical low-level heuristics can be reused
demonstrates the main strength of hyper-heuristics, flexibility. Further tuning and
optimisation can improve performance but the fact that that isn’t needed can be seen
as a major success of the system. One possible fine-tuning is to supply hyper-
heuristic with a more problem specific rules. More details results will be presented at
the conference.

The initial investigation has revealed possible obstacles that need to be overcome
before this approach can be considered completely successful. For example, the hy-
per-heuristic is performing less well as the number of rules increases. Rather than
selecting an expanded configuration the hyper-heuristic has to be configured more
dynamically. It is believed that this dynamic configuration is too big a task for a sin-
gle choice function alone. Our current investigation is looking into a hierarchical
hyper-heuristic where each layer makes different decisions but all leading to one goal
of dynamically selecting the suitable configuration.
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1 Introduction

Railway transportations are more and more used in many countries for many
reasons (environment, costs,. . . ). Like public and freight transportations, relia-
bility (regarding timetables) is a crucial issue. With an increasing traffic, delays
occurs more often. To minimize the effects of delays is the main goal of the
dispatcher.

2 Problem description

Almost all trains have to run according a schedule. One exception may be some
freight trains which may start at a random time. Unfortunatly, for some reasons,
some minor problems occur and lead to have delays. Due to limited ressources
available (tracks, cars,. . . ), a small problem can lead to a chain of delays. To
monitor the traffic and take decisions are the main goals of the train dispatcher.
This person decides which train can run and on which track.

An example is the single-track problem. In this case, the schedule is built in
order to let trains going in opposite directions to meet in some specific places
(stations, yards,. . . ). If one train is delayed, the dispatcher should decide how
to organize the crossing. Basically, in most cases, he has to decide between to
keep the crossing at the same location (by delaying the other train) or to move
the crossing to another place (but may increase the delay of the already delayed
train). The decision is difficult since it may introduce other conflicts or delays
later.

Similar problems occur in general networks (dual-tracks,. . . ) where the dis-
patcher has to choose a compromise. Since improving existing infrastucture is
expensive and the traffic is increasing, the work of the dispatcher become more
and more complex and difficult. Another factor is the wider range of trains
used nowadays: suburban trains, freight trains, long-distance passengers, fast
trains,. . . Another complex problem to handle is the connections between trains.

3 Simulation tool

Researchers on this dispatching problem need to have a simulation tool (and a
benchmark too) to analyze different methods.
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3.1 Extended tool

This tool, called Distrain, is an extended tool since its main carateristic is to be
open and flexible. This tool is also targeting the general problem, not only single-
tracks or specific problems [1]. This openess and flexibility is useful to deal with
complex problems and to handle all constraints. An example of constraint is the
need to take into account pricing, i.e to charge each train with a price depending
of its physical caracteristics and which level of priority is used. Therefore, the
tool should be able to check for a future train which time will be required, and
the potential effect of this train on the future traffic to fix the price.

This tool intends to help the dispatcher to choose a solution. Therefore, to be
able to propose different possibilities is an interested feature. This can be easily
achieved by Genetic Algorithms since in such method there is a population of
solutions. Another interesting research issue is to let the software to learn which
“kind” of solution is preferred by the dispatcher.

3.2 The model

To achieve this goal, data are represented using XML in different configuration
files (networks, timetable, trains,. . . ) [2]. The choice of the model is critical since
it is used to represent data.

Data are decomposed into different parts. One part is the network. In this
part we represent the fixed infrastucture used (tracks, stations, yards, switches,. . . )
with all information needed to be able to simulate the network. The second part
of the representation is dedicated to technical specifications of different trains. In
order to run a simulation, technical caracteristics of the different trains need to
be known. By technical caracteristics, we mean information like weigth, length,
power, maximum speed, . . . . These informations are needed to compute trav-
eling time (especially time needed to accelerate) as well to know if a train can
stop in an upphill section. The third part is the timetable where precomputed
timetables are stored. Then, we need to represent all specific constraints between
trains, or between a train and another mean of transportations since inter-modal
transportations are more and more popular. Dependancies between trains can be
called “one-way”, when a train cannot start from a station before the arrival of
another one (plus the delay to let passengers to walk), or “two-ways” when two
trains needs to exchange passengers and therefore stay together at the station.
It’s worth to mention that depedancies can either be with a single or a list of
trains (usual case) or with a destination if the frequency of trains on the route
is high and therefore it’s worthless to delay such trains. In this second case, the
system should only take care at the end of day and maybe delay the last train.
The last part needed for the simulation is the list of unexpected events which
occurs along the day. An unexpected event is composed of three different steps:
discovery of a problem, information about the resolution of the event (when the
problem will be solved) and resolution of the problem.
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3.3 Methods and algorithms

In Sweden, dispatching is done mainly by humans with a computer system to
inform them [3]. It is important to notice that they work on a small area. Their
work is based on a priority list: on-time time trains have priority over delayed
trains, passengers trains over freight trains,. . . By using a tool working at the
country scale, the whole problem can be analyzed which is important with fast
long-distance trains. This approach can be implemented using heuristics. But
more complex optimization algorithms can be used. Since this tool is based to
help the dispatcher to choose a compromise, it’s important to have an algorithm
which can easily be tuned by changing some parameters and which can provide
different solutions. It’s why algorithms like branch and bound or genetic algo-
rithms are good candidates. Genetic algorithms are also interesting since they
don’t need to restart from scratch when a small modification of data is done.

4 Conclusion

The dispatching problem is a complex problem which involved a lot of human
factors (passengers) [4]. This problem is connected to other complex problem
like infrastructure dimensionning [5], . . . At this stage, a prototype is under con-
struction to deal with a section mixing single and dual tracks. This prototype
includes simple heuristics.
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1 Introduction

The yearly Brazilian Football Championship is the most important sport event
in Brazil. It is organized by CBF (the Brazilian Football Confederation) and its
major sponsor is TV Globo, the largest media group and television network in
Brazil.

The competition is structured as a compact mirrored double round robin
(MDRR) tournament [1]. The tournament is played by n teams, where n is an
even number. There are 2n− 2 rounds and each team plays exactly once in each
round. Each team faces every other team twice: one at home and the other away.
If team a plays against team b in round k, with k < n, at home (resp. away),
then team a plays against team b away (resp. at home) in round k + n− 1.

The organizers and the sponsors search for a schedule optimizing two differ-
ent objectives. CBF wants to minimize the number of breaks (a team playing
two consecutive home or away games, see e.g. [3]) along the tournament (break
minimization objective). TV Globo aims to maximize its revenues, by maximiz-
ing the number of relevant games it is able to broadcast (broadcast objective).
The schedule must also satisfy a number of hard constraints.

2 Problem statement

We consider the 2005 edition of the competition, with n = 22 participating
teams. Every team has a home city and several cities have more than one team.
Some of the teams are considered and handled as elite teams due to their number
of fans and to the value of their players. There are weekend rounds and mid-week

rounds.

São Paulo and Rio de Janeiro are the two largest cities in Brazil (with more
fans and, consequently, generating larger revenues from advertising) and both
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of them have several elite teams. Games cannot be broadcast to the same city
where they take place and only one game per round can be broadcast to each
city. Consequently, TV Globo wants to broadcast to São Paulo (resp. Rio de
Janeiro) games in which an elite team from São Paulo (resp. Rio de Janeiro)
plays away against another elite team from another city.

Belém is a city very far away from São Paulo and Rio de Janeiro. TV Globo is
not willing to broadcast games taking place at Belém, due to the high logistical
costs.

Besides following the structure of a MDRR tournament, the schedule should
also satisfy other hard constraints:

– Every team playing home (resp. away) in the first round plays away (resp.
home) in the last round.

– Every team plays once at home and once away in the two first rounds and
in the two last rounds.

– Some pairs of teams with the same home city have complementary patterns,
i.e. when one of them plays at home the other plays away and vice versa.

– After any number of rounds, the difference between the number of home
games and away games played by any team is either zero or one (i.e., the
number of home and away games is always balanced.

– Regional games between teams from the same city are not to be played in
mid-week rounds or in the last six rounds.

– There is at least one elite team from Rio de Janeiro playing outside Rio
de Janeiro and one elite team from São Paulo playing outside São Paulo in
every round.

– If in some round there is only one elite team from Rio de Janeiro (resp.
São Paulo) playing outside Rio de Janeiro (resp. São Paulo), then this game
should not be held in Belém.

– Flamengo and Fluminense have complementary patterns in the last four
rounds (Flamengo and Fluminense are two elite teams from Rio de Janeiro
that share the same stadium for home games).

The two objectives that must be optimized are the minimization of breaks
and the maximization of the number of rounds in which there is at least one
relevant game to be broadcast to São Paulo plus the number of rounds in which
there is at least one relevant game to be broadcast to Rio de Janeiro. Therefore,
the broadcast objective regards the number of relevant games that TV Globo is
able to broadcast. The break minimization objective establishes the home-away
equilibrium in the sequence of games played by each team.

3 Solution strategy and numerical results

To tackle this bi-objective problem, we enforce the break minimization objective
to be equal to a tight lower bound and search for a solution optimizing the
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broadcast objective. The proof of the tightness of the lower bound is performed
experimentally.

The structure of the constraints is such that 4(n− 2) is a lower bound to the
number of breaks. On the other hand, the broadcast objective is bounded by
twice the number of rounds (4n−4) (one game from Rio de Janeiro and another
from São Paulo at every round) and by the number of away games of elite teams
from Rio de Janeiro against elite teams from other cities plus the number of
away games of elite teams from São Paulo against elite teams from other cities.

To solve the problem, we used a strategy similar to the three-phase approach
used e.g. in [2]. In fact, we use a four-phase strategy involving complete enumer-
ation, linear programming, and integer programming. We were able to compute
an optimal schedule for the 2005 edition of the tournament in less than ten
minutes on a standard Pentium IV processor with 256 Mbytes of RAM.

The solution produced by this four-phase approach is better than those pro-
duced by the current human scheduler. A quick comparison shows that three
constraints were not fully satisfied in the official schedule of the 2005 edition,
the number of breaks was equal to 152 and the value of the broadcast objective
was equal to 43. In the schedule computed by the four-phase approach proposed
in this work, all hard constraints were satisfied, the number of breaks was reduced
to 80 and the broadcast objective was also improved to 56 (which is optimal).
The software system is able to generate a collection of same cost solutions to be
evaluated and compared by the user. The use of the schedules created with the
approach proposed in this work is under consideration by the organizers.
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We address the following problem: on certain days of the school year parents
can meet teachers to discuss about their children. Each parent tries to meet a
selected subset of teachers and the meetings are individual. Since in most schools
there is no advance planning, parents wait in lines for a long time (one line for
each teacher), not only wasting time but also preventing the possibility to meet
several teachers.

In this paper we propose a planning method in order to guarantee that each
parent meets all required teachers and the wasted time is minimized. A prereq-
uisite for the method to work is that all meetings must last a fixed amount of
time, we call time slot. Practically, this constraint can be relaxed if a meeting is
shorter.

We first consider the problem of minimizing the total time needed for the
meetings. This problem can be modeled as a minimum makespan open-shop
problem: there is a set I of teachers (machines), a set J of parents (jobs) and
each parent j wants to meet a specified subset Ij of teachers (each meeting is an
operation). The processing times are aij = 1 if parent j wants to meet teacher i
and aij = 0 otherwise.

This particular instance of the open shop problem is polynomial and can
be easily solved by means of the algorithm by Gonzalez and Sahni [2] for the
open-shop problem with preemption. The minimum makespan can be computed
as follows. For each i ∈ I, denote by bi := |{j ∈ J : aij = 1}| the number
of parents that want to meet teacher i. Similarly, for each j ∈ J , let cj :=
|Ij | be the number of meetings required by parent j. It turns out that α :=
max{maxi∈I bi,maxj∈J cj} is the minimum makespan, and the optimal schedule
is computed by solving a sequence of α bipartite matching problems, one for
each time slot.

Each matching problem assigns parents to teachers. Some teachers and/or
some parents may not be assigned in a particular time slot, which, in this case,
is called an idle time for the teacher and/or the parent. Although the concept
of idleness refers in general to both teachers and parents, we consider only idle
times of parents as a measure of wasted time. Furthermore, idle times of one
particular parent occurring either before or after his/her meetings do not really
count as a wasted time. Therefore, from now on we will use the term idle times
only for the parent idle times in between meetings.

More in detail, the algorithm by Gonzalez and Sahni uses the quantities
slack(i) = α− bi and slack(j) = α− cj , which are dynamically updated at each
iteration. Elements with zero slack are called critical and must be assigned. So
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an assignment of parents to teachers is computed under the only requirement
that critical teachers and critical parents must be assigned.

The structure of the above algorithm leaves some room to take into account
the lexicographically second objective function of the meeting problem, that
is minimizing the total number of idle times. The problem of minimizing the
number of idle times within a fixed makespan is NP-hard, as can be seen by
transforming the no-wait open shop problem Og|no-wait, pij ∈ {0, 1} |Cmax [1].
Being the problem NP-hard, we can approach its solution heuristically.

Our first strategy consists in solving, at each step, a max weight matching
problem instead of a feasible matching problem. To this aim let sk(j) ∈ {0, 1, 2}
be the state of parent j at time k, where the meaning is that sk(j) = 0 if no
meeting has been assigned to parent j up to time slot (k−1) (included), sk(j) = 1
if some, but not all, meetings have been assigned, and sk(j) = 2 if all meetings
have been assigned. Let Wk(j) be the number of idle times assigned to parent
j during time slots {1, . . . , k − 1} by the first (k − 1) matching problems. Then
each pair (i, j) receives the weight

wij :=
{

0 if sk(j) = 0
(1 + Wk(j))2 if sk(j) = 1 (1)

in the k-th matching problem (note that if sk(j) = 2 parent j is not considered
in the matching problem). Hence, until a parent has not been assigned, his/her
meetings receive a zero weight. As soon as a meeting for the parent is assigned,
the weight rises to one and then increases quadratically with the number of
assigned idle times.

With the cost function (1) the procedure tends to schedule the major part of
the meetings in the last slots, when all parents and teachers become critic. This
introduces inevitable idle times. In order to overcome this behaviour, we have
observed that it is useful to modify the cost function by randomly generating
the meeting costs so that parents still to be assigned might be encouraged to be
assigned a meeting. So we redefine (1) as

wij :=


− 1 with probability p1

0 with probability p2

1 with probability 1− p1 − p2

 if sk(j) = 0

c (1 + Wk(j))2 if sk(j) = 1

(2)

where the probabilities p1 and p2 and the coefficient c must be properly tuned.
A multirun use of this random algorithm has led to remarkable improvements.

However, the solution found this way may have some idle times. In order to
improve it we adopt the following local search procedures that modify the sched-
ule of a single teacher and a single parent, respectively. The first one considers
only exchanges between meetings of a same teacher. Given teacher i, define the
weighted directed graph G(i) having α nodes and, for each 1 ≤ t1, t2 ≤ α, an
arc (t1, t2). This arc is assigned a negative (positive) weight equal to the number

Scheduling School Meetings 485



of idle times deleted (introduced) by moving the meeting of i currently sched-
uled at t1 to time t2. Nodes corresponding to idle times of teacher i are called
sink nodes. Apparently, if there exists a directed cycle in G(i) of negative cost,
the corresponding sequence of switches in the meetings of i decreases the global
wasted time by the cost of the cycle. Detecting a negative cycle is easy. If there
are no negative cycles in G(i) and there are negative paths ending in a sink node,
then we switch the meetings of i according to the corresponding path. The search
for such cycles and paths can be repeated, after the necessary updating, until
no one exists.

With a symmetric approach, the second procedure tries to eliminate idle
times of parent j by performing local exchanges only in the meetings of j. To
this aim, define the graph H(j) having α nodes and an arc (t1, t2) whenever the
teacher i met by j at t1 is idle at time t2. In this case, the meeting (i, j) can be
moved from t1 to t2. As a consequence, if there exists a directed path in H(j)
from either the first or the last active time of j to one of her/his idle times, the
corresponding sequence of exchanges decreases the wasted time of j by 1.

Finally we may also consider to resequence the meetings in order to decrease
the number of idle times. This procedure works effectively mainly for solutions
with many idle times. We build a complete graph with nodes corresponding to
matchings. Any Hamiltonian path corresponds to a sequence of matchings. If we
assign to each pair of matchings a cost given by the number of adjacent time
slots for the parents, the cost of an Hamiltonian path is equal to the number
of all meetings minus the number of all parents minus the number of idle time
blocks. An idle time block is a maximal set of adjacent idle times. Since the first
two quantities are invariant, a maximum Hamiltonian path provides a matching
sequence with the minimum number of idle time blocks. This is however different
from minimizing the number of idle times.
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Università di Udine

via delle Scienze 208, I-33100, Udine, Italy

1 Introduction

The Examination Timetabling problem (ETTP) regards the scheduling for
the exams of a set of university courses, avoiding the overlap of exams of courses
having common students, and spreading the exams for the students as much as
possible.

Carter et al [3] provide a set of formulations for ETTP, which differ from
each other on some components of the objective function, along with a set of
benchmark instances [2]. Formulations and benchmarks by Carter have stimu-
lated a large body of research, so that many researchers (see, e.g., [1,5,4]) have
adopted one of the formulations of Carter (or a variant of them), tested their
algorithms on the benchmarks, and also added new instances. At present, all
instances and the corresponding best results are published on the Web [8].

Unfortunately though, the real-world formulation that applies to our institu-
tion and, up to our knowledge, to most Italian universities, differs substantially
from Carter’s and similar ones. Therefore, in order to solve our practical problem,
we have been forced to model and solve the specific situation of our university
almost from scratch.

In this paper, we present an ongoing research on the development of a solution
software for the ETTP at the school of Engineering of the University of Udine. In
details, we present the problem modelling, the structure of the real instances, and
the solution algorithm, which is based on Tabu Search [7] and on the interleaving
of different neighbourhood relations, in the spirit of [6].

2 Italian Examination Timetabling Problem

An examination session takes place after each teaching term and it is composed
by a set of w weeks, and each week is divide in 10 periods of half-day length
each (Mon to Fri).

For each session, all courses of the university are split into two sets: courses
given in the term preceding the session, called current courses, and courses given
in a different term, called past courses. For current courses there must be two
examinations in the session, whereas past ones must have just one examination.

The examination of each course (either current or past) is of one of the
following types:
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– Single test: the exam takes place in a single period
– Long test: the exam takes place in the two periods of one single day
– Double test: the exam takes place in two separated tests (typically written

and oral), with a predefined minimum distance between them

There are groups of courses, called curricula, that have students in common.
Exams of courses in the same curriculum should be given in different periods
and spread as much as possible (as explained below).

There are also groups of courses, called clusters, such that their teachers
want to have the examinations in the same period. Obviously, courses in the
same curriculum cannot be also in the same cluster.

Exam takes place in the classrooms, which are split into three categories
based on the size: small, medium, and large. Each exam, or cluster of exams,
requires for each test a number of rooms for a given type. Classrooms may also
have special equipments, so that some exams may take place only in specific
classrooms.

Teachers might declare both their unavailability for a (maximum) number of
periods and at most three (ordered) preferred periods. Exams cannot be sched-
uled when the teacher is unavailable and should be scheduled in the most pre-
ferred periods. If no preference is declared, all available periods are considered
at the same level of preference.

We search for the assignment coherent with the rules for current and past
exams, and with the exam types, such that the following hard constraints are
satisfied, and the violations of the following soft ones are minimised.

1. Strong Conflicts (hard): Exams of current courses in the same curriculum must
be all scheduled in different periods.

2. Room Occupancy (hard): Two distinct exams (not in the same cluster) cannot
take place in the same room in the same period.

3. Room Capacity and Type (hard): The number of rooms must be equal to
the request. The size must be at least equal to the request. If an exam requires a
special equipment, it must be assigned only rooms with that equipment.

4. Clusters (hard): Exams belonging to the same cluster must be scheduled in the
same period. If two exams in the same cluster have different exam type, then only
the first test has to be scheduled together.

5. Availabilities (hard): An exam cannot be scheduled when the teacher is unavail-
able.

6. Weak Conflicts (soft): Exams of courses in the same curriculum must be all
scheduled in different periods.

7. Day Conflicts (soft): Exams of current courses in the same curriculum must be
all scheduled in different days.

8. Same-exam distance (soft): The two exams of the same current course must
be scheduled with a given minimum distance.

9. Distance (soft): Exams of current courses in the same curriculum must be sched-
uled in periods with a given minimum distance.

10. Preferences (soft): If a teacher has expressed some preferences, exams scheduled
in the second, third or not preferred periods are penalised gradually according to
a fixed weight pattern.
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The objective function is the weighted sum of the soft constraints listed
above. Weight are adjusted according to experience and discussions with the
dean of the school.

3 Tabu Search for Examination Timetabling

We make use of a tabu search (TS) algorithm. In order to apply TS to our prob-
lem we have to define several features. We first illustrate the search space and the
procedure for computing the initial state. Then, we define the neighbourhood
structure, and finally we describe the guiding search procedure.

Search Space: For each single exam we define one variable that takes the value
of the period the exam takes place (or its first test). Constraint types 4 and 5
are always satisfied, the others are included in the cost function (with a high
weight) of the search procedure.

Room-related hard constraints (types 2 and 3) are checked and evaluated in
each state, but the actual rooms are assigned only in a post-processing step.

Initial Solution Selection: The initial solution is selected assigning each exam
at the most preferred period. If there are no preferences, the exam is assigned
at random, with constraints types 4 and 5 satisfied.

Neighbourhood Relation: We consider two neighbourhood relations. The first
one, called change, assigns a new period to an exam (or cluster). The second one,
called swap, exchanges the periods assigned to two exams (or cluster). Moves that
violates constraints 5 are not considered.

Search Techniques: Our algorithm interleaves different runners (as defined in
[6]): Runners are invoked sequentially and each one starts from the best state
obtained from the previous one. The overall process stops when a full round
of all of them does not find any improvement. Each single runner stops when
it does not improve the current best solution for a given number of iterations
(called max idle iterations).

We experimented with various solvers that differ from each other on the
number and type of runners they use (see below). The base runners are two
tabu search using the two neighbourhoods proposed above and a hill climbing
using the change neighbourhood; we name them TS(ch), TS(sw) and HC(ch)
respectively.

4 Experimental Results

The available dataset is composed by three real-world instances coming from past
sessions in our university. The main features of the instances are summarised
in Table 1. In details, we show the total number of exams to be scheduled
(considering clusters as single courses), the number of periods and rooms, and
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the percentage of conflicting courses (all types of conflicts), and the percentage
of request of rooms (with respect to rooms × periods). All data will be made
available to the community for comparison through a web page shortly.

Instance Total Exams Periods Rooms % Total Conflicts % Room Occupation

1 293 40 17 8.73% 40.85%
2 434 40 17 12.32% 69.29%
3 332 40 18 8.41% 47.76%

Table 1. Features of the Instances

Table 2 shows a comparison of the results of the most promising solvers. For
each solver, we run 10 trials for each instance and we report the minimum and
the average cost. All trials have been granted 1 minute of computing time.

Instance 1 Instance 2 Instance 3
Solver best avg best avg best avg

1 TS(ch) 3098 3350.0 2806 2873.0 3794 4523.4
2 TS(ch) + TS(sw) 2927 3073.2 2573 2596.8 3737 4340.6
3 HC(ch) + TS(ch) 3225 3481.8 2624 2746.0 4166 4658.8
4 HC(ch) + TS(ch) + TS(sw) 2911 3180.6 2502 2569.2 3858 4201.4

Table 2. Comparison of solvers

Table 2 shows that the best results are obtained by solvers 2 and 4, which
have the composition of the two TS (without and with HC, respectively). The
difference between these two is small, in favour of solver 4.

We conclude showing the results obtained using the restricted search space,
which is composed by allowing for each exam only the three periods preferred
by the teachers (all periods if no preference was expressed). This is the search
space underlying the manual construction of the solution used by the university
before the development of our software.

Instance Best Avg

1 9963 11867.0
2 16045 16613.0
3 19069 20010.6

Table 3. Results using the restricted search space

Table 3 shows the best results obtained using such a search space. It is easy
to see that the results are much worse than those presented in Table 2. The fact
that there would be a loss of quality was obvious, but the numerical difference
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(almost one order of magnitude) highlighted in Table 3 are somewhat surprising.
This result shows that the use of the larger search space is necessary, but this
was beyond the ability of the human scheduler.
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1 Overview 

In the criminal court (Arrondissements rechtbank, sector strafrecht) of Amsterdam the 
assignment of magistrates (judges, officers, etc) to sessions needed to handle the 
cases presented, has become a problem last years mainly caused by the increase of so 
called mega-sessions. One complicating factor is that there are specialisations 
amongst the magistrates for sessions at different levels. Another one is that for some 
(severe) cases a team of three magistrates or judges are required (MK). The 
assignment takes a period of 4 weeks at a time in which each week up to 100 
magistrates and 150 sessions have to be scheduled.  
The objective of this research is to develop an optimal decision support system for 
personnel [1] to work in teams with different functions, organised in different groups. 
With such a system, a scheduler could make assignments in a shorter time period, 
more reliable and at least with the same quality. In order to reach for an optimal mix 
of support and user friendliness against minimal construction time/costs, we used 
EXCEL (with Visual Basic) for the administration-input-report data representation 
orientated parts and FORTRAN for the combinatorial assignment parts. CPLEX was 
used to obtain optimal solutions. 
In general the problem described here can be characterized as a problem with a 
multiple conflicting objective function under overdetermined requirements with  both 
qualitative and quantitative data [2]. 
The overall optimal assignment approach followed in this applied research is based 
on three main steps after the input of the relevant data, which is quite a problem in 
itself. Firstly, a so-called Availability Matrix is developed, which indicates which 
personnel can be assigned to which tasks, on an individual basis. In former 
presentations at PATAT conferences [3] the whole administrative system was 
explained in order to arrive at relevant, robust and reliable data. Database 
management is crucial here. Pre-processing and reduction rules were applied which 
reduced the solution space considerably without deleteting possible assignments. 
Next, in order to take into account the team assignments and the working conditions 
[4], a Combination Matrix is constructed indicating which tasks in the week the 
personnel can be assigned to. This assignment is still individually based. Finally, the 
Overall Schedule for the teams is constructed, giving a minimal difference between 
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the total available working hours and the assigned ones: the objective function. The 
approach is demonstrated with a (small!) example in Tables 1..4, see Appendix. 
The general approach used is to generate a number of possible alternatives and pick 
the optimal one. In order to arrive always at a solution within a restricted time period 
we used a crash approach, a Greedy algorithm, a version of the Marriage Problem and 
an heuristic based on the Branch-And-Bound principle with integer linear 
programming [5]. The paradox here is that approaches easy to apply give in general 
solutions far from the optimal one. The more complex the approach the better the 
solution possibilities will be against a more time consuming character. Another 
question which is dealt with is the use of commercial available Integer-Linear-
Programming packages in parts of the approach. 
The optimization part is still in a development stage, but a lot of experiments were 
executed and the results are promising. The administration part is already in use for 
some years. 

2 Statements  

The problem could be characterized using as keywords assignment, timetabling, 
personnel, magistrates and Decision Support Systems. 
The mathematical model is a multiple-conflicting-subjective objective function under 
overdetermined requirements with both qualitative and quantitative data. 
Always it is basic to separate data – model – solvers. 
The paradox: the more constraints are added, the faster a (better)  solution can be 
found, however, the bigger the chance on infeasibilities.  
You can built in the rules, but you have to check the exceptions. 
Better restrict/reduce the solution space than look for better search techniques: use the 
knowledge on the problem structure. Crash solution? 
Collecting robust, reliable and relevant data is hard: 'You get the data you structure'. 
You should not solve those problems which you can solve in view of theoretical 
limitations, but adept to tackle the real world requirements. 
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Appendix: Overall optimal assignment approach 
 
Table 1. Step 1.  Availability Matrix: Possible assignments (preprocessing/reduction rules), 0: 
no assignment possible, 1: possible assignment,  2: specialization. 
 
     Judges        

     AAA BBB CCC DDD EEE FFF PV1   
     1 2 2 1 2 1 5 Group  
     1.7 3.5 5.0 4.5 5.0 5.0 0 Pt (C) 24.9 
Sessions     0 0 0 0 0 0 2.5 Pt (E) 2.5 
Name         F nr MK Pt Gr 0.7 2.5 4.0 4.5 4.0 5.0 0 Pt (F) 20.7 
madMK4A OR 1 2 2.5  0 2 0 0 1 0 0   
madMK4A JR 2 1 2.5  0 0 2 0 1 0 0   
maoSR1 3  1.3  1 1 1 1 1 0 0   
mamPR1 4  1.6  0 1 1 1 1 1 0   
wodMK7A VZ 5 6,7 3.3  0 0 0 2 0 0 0   
wodMK7A OR 6 5,7 2.5  0 0 0 0 0 2 0   
wodMK7A JR 7 5,6 2.5 1 0 0 0 0 0 0 1   
wooSR1 8  1.3  1 0 1 1 0 1 0   
wooPR1 9  1.6  1 0 1 1 0 1 0   
womPR2 10  1.6  1 0 1 1 0 1 0   
dooPREC 11  1.4 2 2 0 0 0 0 0 0   
domPR1 12  1.6  0 1 0 0 1 0 0   
vrmPR1 13  1.6  1 1 1 1 1 1 0   
  ∑ 25.3           
     0.4 1.5 3.0 3.5 3.0 4.0  Pt min  
     1.7 3.5 5.0 5.5 5.0 6.0  Ptmax  

 
Table 2. Step 2. Combinations per person. Need to know about restrictions in assigning points 
and distance sessions: absmin, absmax, relmax, relmin, ddMK, ddEK (=0.4 6.0 1.0 1.0 2 1). 
 
Fortran output 

  8 UITVOEREN ALTERNATIEVEN                  
 AAA 0.70 1 1.40 dooPREC VZ + 
 BBB 2.50 1 2.50 madMK4A OR + 
 CCC 4.00 3 3.80 madMK4A JR + wooSR1  VZ + 
            4.10 madMK4A JR + wooPR1  VZ + 
            4.10 madMK4A JR + womPR2  VZ + 
 DDD 4.50 3 4.60 wodMK7A VZ + maoSR1  VZ + 
            4.90 wodMK7A VZ + mamPR1  VZ + 
            4.90 wodMK7A VZ + vrmPR1  VZ + 
 EEE 4.00 3 4.10 madMK4A OR + domPR1  VZ + 
            4.10 madMK4A OR + vrmPR1  VZ + 
            4.10 madMK4A JR + domPR1  VZ + 
 FFF 5.00 3 4.10 wodMK7A OR + mamPR1  VZ + 
            4.10 wodMK7A OR + vrmPR1  VZ + 
            5.70 wodMK7A OR + mamPR1  VZ + vrmPR1  VZ + 
 PV1 0.00 1 2.50 wodMK7A JR + 
 XXX 0.00 0 0.00 + 
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Table 3. Combination matrix: possible assignment for magistrates. Pt: points available against 
points required 
 
  judges AAA BBB CCC DDD EEE FFF PV1 
sessions   Pt 0.7 2.5  4.0   4.5   4.0   5.0  0 

madMK4A OR 1 2 2.5  2       1 1      
madMK4A JR 2 1 2.5   2 2 2      1     
maoSR1 3  1.3      1      1    
mamPR1 4  1.6       1       1  
wodMK7A VZ 5 6,7 3.3      2 2 2        
wodMK7A OR 6 5,7 2.5            2 2 2  
wodMK7A JR 7 5,6 2.5               1 
wooSR1 8  1.3   1             
wooPR1 9  1.6    1            
womPR2 10  1.6     1           
dooPREC 11  1.4 2               
domPR1 12  1.6         1  1     
vrmPR1 13  1.6        1  1   1 1  

    0.7 2.5 3.8 4.1 4.1 4.6 4.9 4.9 4.1 4.1 4.1 4.1 4.1 5.7 0 

 
Table 4. Step 3  Construction Overall Schedule 

Crash: only special: first still available 
Greedy: use combinations, see Table 2 
Marriage Problem: ordering assignments, see Table 1, forbidden combinations are needed 
Optimisation: as much as possible combinations (ILP) 
Always assign just one of the alternative combinations or a part of one combination. 
 

    Crash Greedy Marriage  Optimize 
    2  1  
madMK4A OR 1 2 2.5 BBB BBB BBB BBB 
madMK4A JR 2 1 2.5 CCC CCC CCC CCC 
maoSR1 3  1.3  DDD DDD EEE 
mamPR1 4  1.6  FFF FFF FFF 
wodMK7A VZ 5 6,7 3.3 DDD DDD DDD DDD 
wodMK7A OR 6 5,7 2.5 FFF FFF FFF FFF 
wodMK7A JR 7 5,6 2.5 PV1 PV1 PV1 PV1 
wooSR1 8  1.3  CCC  EEE 
wooPR1 9  1.6   CCC CCC 
womPR2 10  1.6     
dooPREC 11  1.4 AAA AAA AAA AAA 
domPR1 12  1.6  EEE EEE DDD 
vrmPR1 13  1.6  FFF FFF FFF 
points assigned  ∑PtG 20.7 12.2 19.6 19.9 21.2 
 % from optimal  ObjF 100 41 5 4 1 
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1 Introduction

This article outlines CaTTS, a language for expressing and solving multi-calendar
appointment scheduling problems such as planning a phone conference of persons
in different time zones and using different calendars. This article complements
[1], which is focused on calendar modeling, with a presentation of the approach’s
constraint reasoning.

CaTTS is motivated by the fact that practical scheduling systems should
preferably use everyone’s calendars, i.e. cultural calendars such as the Gregorian
or Hebrew calendars and the plethora of professional calendars, instead of the
more abstract temporal specifications commonly used in research.

The ‘Calendar and Time Type System’ CaTTS consists of a type definition
language CaTTS-DL and a constraint language CaTTS-CL. CaTTS is based on
a time model after the set-theoretic ‘time granularity’ approach [9,10,2,11]. How-
ever, in contrast to most time granularity formalisms, CaTTS has no duration-
less time points. Instead, CaTTS is purely interval-based reflecting a common-
sense notion of time: a time point such as “Tuesday, January 3 2006, 9 a.m.”,
expressed in the time granularity “hour” (“second”, resp.) is internally repre-
sented in CaTTS by a time interval with a duration of 1 hour (“second”, resp.).

2 Multi-Calendar CSPs in CaTTS

In [2] an approach to point-based metric temporal reasoning with time granu-
larities is described. It allows for modeling and reasoning with simple temporal
constraints on points and distances between points in a Disjunctive Linear Re-
lations (DLR) Horn framework.1 In this framework, one can express constraints
like “at time t (in time granularity g), person A is in London”, but neither “an
event e (in time granularity g) happens during a task t (in time granularity h)”
nor “an event e (in time granularity g) happens 5 time units (in granularity h)
before an event e′ (in time granularity k)”. Indeed, expressing temporal con-
straints like the last two mentioned above require not only time points but also
time intervals.
1 DLR [3] represents temporal constraints by disjunctions of linear inequalities and

inequations.
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A common approach, followed e.g. by [2], represents a time interval by an
ordered pair of time points. Expressing that two such intervals meet without
overlapping requires to consider both (half or both sides) open and closed inter-
vals. Such intervals, however, are rather counter-intuitive for most users. Fur-
thermore, such a ‘time point-based approach’ makes the modeling of temporal
applications significantly more complicated because both, time points and time
intervals, have to be considered. Consider an event e taking place sometimes
during an interval i which in turn is during an interval i′: e also takes place
during i′. This example shows that relations on intervals and events must be
propagated so as to keep reasoning local. It is much more complicated to main-
tain locality when time intervals are defined by endpoints than when only time
intervals (and no time points) are considered.

The approach reported about in this article avoids the problems mentioned
above by considering only time intervals and no duration-less time points. In
most practical applications, time points, if needed, are conveniently simulated
by small intervals (e.g. in scheduling a meeting, intervals with a duration of 1
second may conveniently simulate time points). This makes it easy to represent

1. finite time intervals using finite domains,
2. quantifications such as “an event e (in time granularity g) happens 5 time

units (in granularity h) before an event e′ (in time granularity k)”, and
3. generalized (i.e. finite and non-convex) as well as (infinite) periodic time

intervals

as needed for many applications.

Example 1. A person plans a meeting lasting 3 working days after 20th April
2005 and before May 2005. A colleague’s visit of 1 week must overlap with the
planned meeting.

month

week

working day

day

4 (April 2005) 5

17 18 19 20

↑
20.4.2005 (Wednesday)

21 22 23 24 25 26 27 28 29 30 31 32

↑
1.5.2005 (Sunday)

13 14 15 16 17 18 19 20 21 22 23

4 5

Fig. 1. The calendric types of Example 1.

The activities “meeting” and “visit” are represented as finite and convex time
intervals that are isomorphic to sets of integers. Activities may refer to different
calendric types such as “day”, “working day”, “week”, or “working week”. In
Example 1, “meeting” refers to “working days”, “visit” to “weeks”, cf. Figure 1.
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Using the Description Language CaTTS-DL, the calendar of Example 1 can be
expressed as follows:2

calendar CalendarExample : S ig =
cal

type day ;
type week = aggregate 7 day @ day (−3);
type month = aggregate

31 day named January ,
alternate month( i )
| ( i div 12) mod 4 == 0 && ( i div 12) mod 400 != 100 &&
( i div 12) mod 400 != 200 && ( i div 12) mod 400 != 300
−> 29 day

| otherwise −> 28 day
end named February ,
31 day named March ,
. . .
31 day named December

@ day (−90);
type working day = select day ( i ) where

relative i in week >= 1 && relative i in week <= 5 ;
end

Using the Constraint Language CaTTS-CL, the scheduling problem of Example
1 can be expressed as follows:

program SchedulingExample =
prog

use calendar unqualified CalendarExample ;
use format unqualified CatalogExample ;
Meeting i s 3 working day && V i s i t i s 1 week &&
Meeting after "20.04.2005" && Meeting before "05.2005" &&
Vi s i t overlaps Meeting

end

An answer to such a CaTTS-CL program is defined as a consistent Multi-
Calendar CSP which cannot be further reduced. The answer to the CaTTS-CL
program above is as follows:

Meeting i s 3 working day &&
( begin of Meeting ) within [ "21.04.2005" . . "22.04.2005" ] &&
V i s i t i s 1 week &&
( begin of Vi s i t ) within [ "Week04.2005" . . "Week04.2005" ]

The programmer might ask for one or all solutions to this answer. They are
computed from the answer by exhaustive search. The solutions to the CaTTS-
CL program above are as follows:

( Meeting=["21.04.2005" . . "25.04.2005" ] && V i s i t="Week04.2005" ) | |
( Meeting=["22.04.2005" . . "26.04.2005" ] && V i s i t="Week04.2005" )

2 ’@ day(-3)’ expresses that week 1 begins with day -3.
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3 Solving of Multi-Calendar CSPs expressed in CaTTS

Meeting :: 1..∞ + 3..3, working day

“20.04.2005” :: 20..20 + 1..1, day “05.2005” :: 5..5 + 1..1, month

Visit :: 1..∞ + 1..1, week

6

overlaps

@
@

@
@R

before

�
�

�
�	

after

Fig. 2. The scheduling problem of Example 1 as a constraint network.

Multi-Calendar CSPs are seen as constraint networks, cf. Figure 2. Since
CaTTS makes it possible to use different types expressing temporal granular-
ities such as “days”, “weeks” and “months”, conversions are needed. CaTTS
conversions are formalized by a coercion semantics for subtyping. They are ex-
pressed by calendar conversion constraints. These conversions follow CaTTs’
novel subtyping relations, i.e. aggregation (e.g. a week is an aggregation of days)
and selection (e.g. working days are a selection of days).

In Example 1, the temporal constraint “overlaps” on the variables “Visit” (of
type “week”) and “Meeting” (of type “working day”)”, require type conversions,
e.g. to the closest type in the subtyping hierarchy, i.e. “day”. Indeed, a week is
a set of 7 consecutive days and working days are selected among all days.

Conversion constraint defines equivalences between calendar domains and
make it possible to solve Multi-Calendar CSPs by reducing them to CSPs over
finite domains. For example:

X :: 1..8 + 7..7, day ' Y :: 1..2 + 1..1, week

week

day1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2

The time interval [8, 14] of days represented by X corresponds to the time interval
[2, 2] of weeks represented by Y .

CaTTS’ solver for Multi-Calendar CSPs is complete in the sense that if it
terminates returning a consistent problem, then the original problem is (globally)
consistent. Testing for (global) consistency of a Multi-Calendar CSPs is linear
in both the number of constraints and the number of variables with respect to
the size of the calendar domains. This follows from the facts that

1. testing consistency of classical CSPs over finite domain variables where the
domains are represented by intervals is linear [8,6], and
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2. the access to a CaTTS-DL conversion function in the conversion constraint
can be done in constant time.

The search for one or all solutions to a bound consistent Multi-Calendar
CSPs is however NP-hard.

4 Conclusion

The language CaTTS describes in this article makes it possible to express tem-
poral constraints referring to different calendars. Temporal constraints referring
to different calendars are needed in practice.

Novel aspects of the approach are as follows:

1. Only time intervals but no (duration-less) time points are considered,
2. two subtype relations, aggregation and selection, and
3. the conversion constraints reducing Multi-Calendar CSPs to CSPs over finite

domains.

The approach provides with a solution to the problem of “time granularity con-
version” mentioned in [12].

Further investigations of the issue would be desirable. Indeed, the approach
described in this article cannot solve complex optimization problems like the
scheduling of working shifts that require

1. constraints over infinite periodic time intervals and
2. soft constraints [15] and/or preferences [16].

While periodic time intervals can be specified in CaTTS, CaTTS’ solver cannot
process them. Soft constraints or preferences cannot yet be expressed in CaTTS.
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1 Introduction

Problems involving resource allocation such as appointment taking or timetable
creation have usually been tackled as constraint satisfaction problems. For the
two aforementioned applications, this forces the users to reveal their agenda in
order to give their constraints. But one doesn’t always want to reveal his private
events. Thus a solution is for the users to keep their agenda private and to use
negotiation to take appointments or courses.

In this article, we present a negotiation based approach for timetable creation.
Our aim here is not to present an approach that gives the best results but an
original one that is more flexible than others which must restart from scratch
at each change in the environment. Using agent based negotiation enables us to
dynamically add or remove constraints or agents. We show how to transform the
timetabling problem into a negotiation problem between agents. Note that an
agent can represent a person as well as a thing such as a room.

To illustrate our purpose, we use a university timetable creation application.
A benchmark has been proposed by the group Asa GDR-I3 [1]. This problem
needs, in order to provide a solution, to be able to adapt itself in response to
dynamic changes in the environment. This problem needs a collective search of
the solution, and isn’t a simulation problem: the aim isn’t to recreate virtually
the behaviour of an existing organism, but to furnish an expertise.

In order to develop this application, we use a generic negotiation API: GeNCA
[2]. This API provides the whole management of negotiation processes and only
needs communication configuration and strategy definition. For the application
we want to develop, there’ll be no work for communication configuration as
we’ll use the provided MAS communication (either Magique or Madkit). De-
fault strategies are also provided with GeNCA which are well-suited for our
application.

In this paper, we first present the negotiation approach for resource allocation
problems and the university timetabling creation application that serves our
purpose. Then, we present the negotiation toolkit used to build this application,
the way to develop it and the results of this approach.

? This work has received a grant from European Community – FEDER – and “Region
Nord-Pas de Calais” – CPER TAC –.
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2 How negotiation is helpful

2.1 The University timetable creation problem

The problem here is to create the timetables of students and teachers in a Uni-
versity. We present here the benchmark that has been proposed by the group
Asa GDR-I3. Actors (in a UML sense) involved are teachers, student groups and
rooms. Each one of these actors (individually) has constraints to be satisfied (at
best). A teacher has constraints over his availabilities (day of week, time slot),
his skills (particular teaching), and his need of particular teaching equipment
such as an overhead projector.

A group of students has to follow a particular teaching composed of a set of
several courses of several teaching subjects. For example, x courses of subject 1,
y courses of subject 2, and so on.

A room is equipped or not of particular equipments (overhead projector, . . . )
and can be occupied or not during a time slot of a day.

We assume that for each actor, constraints are given in a list. The order
in the list gives the importance of the constraint comparing to the others (the
first one can be relaxed easier than the last one). The problem to solve consists
of conciliating these constraints in order to propose a timetable for a specified
duration.

2.2 Which negotiation system are we using?

Many kinds of negotiation systems exist, such as the Contract-Net Protocol
(CNP) [3], auctions, multi-step negotiations or else combined negotiations. The
negotiation protocol we use here is an extension of the CNP which adds rounds
of counter proposals from the contractors and the manager.

The negotiation system we use allows different actors to negotiate contracts
over resources. One actor (the initiator) proposes a contract over several re-
sources to a set of actors (the participants). Each participant answers either
by accepting the contract or by rejecting it. If the contract has been accepted
by a sufficient number of participants, the initiator confirms it. Otherwise, the
initiator asks participants which resources they prefer for the contract. He then
chooses another set of resources according to participants preferences and pro-
poses a new contract to the participants. This cycle is done until a solution is
found or a predefined number of rounds is reached.

2.3 How to transform a scheduling problem in a negotiation

problem

The first thing to do is to determine which are the resources to be negotiated and
who are the actors in the negotiation. In the application we use here, resources
are naturally time slots. Actors are the teachers, the student groups and the
rooms.
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Then, you have to define the negotiation protocol that best fits your appli-
cation. For the timetabling problem, the extension of the CNP presented above
is the best one. Initiators are the teachers while student groups and rooms are
participants. You also specify some features of the negotiation as the possibil-
ity to retract yourself from a contract previously taken and to renegotiate this
contract. These features are typically needed for timetabling problems.

2.4 Advantages of this approach

The advantages of this approach are twofold. On the one hand, the use of ne-
gotiation allows users to find a timetable that respect their constraints without
having to reveal them to the others. It also enables them to manage themselves
their constraints and so they choose which one to relax if needed. On the other
hand, the multi-agent approach facilitates dynamic changes such as the arrival
(or removal) of an actor (agent) and negotiation facilitates the changes of con-
straints. These dynamic changes are taken into account in real time and don’t
affect the whole process of finding a solution. That is to say that the process
has not to be restarted from the beginning but adapts itself to the changes.
The resulting system is thus more flexible facing dynamic changes during the
resolution process.

3 Coding the problem with GeNCA

To solve this timetable problem, we propose to use negotiating agents in a multi-
agent system. We use the MAS platform Madkit and the GeNCA API which
provides a framework for building a negotiation application.

The resources that will be negotiated are the time slots. To solve this problem,
we decide to assign an agent to each actor. Assume there are 3 teachers and 3
student groups. Thus, 6 agents are defined: t1,t2, t3, g1,g2 and g3. Agents work
on an asynchronous mode. Each teacher inputs his timetable in real time (they
use GeNCA as a negotiation help tool), student groups are in an automatic
mode, that is to say the agents work as background tasks. Users give priority to
resources and to the other actors.

As GeNCA doesn’t force to take the contract, it is possible that the whole
courses are not scheduled. So with no other features in the agent, if it doesn’t
succeed in its negotiation, it won’t try to move another contract in order to be
able to take the one he failed to take. The teacher has to monitor its agent to
check that all courses have been taken and otherwise he must cancel courses and
move them in order to take the missing ones.

We introduce in the system 3 new agents r1, r2 and r3 that represent the
rooms. Now, teachers have to choose the group and the room when they create
their contracts. A teacher can select all rooms when he creates the contract so
that he can see if there’s a place for his course, choose the room he wants if
several are free and search another time slot if no room is free. Selecting all
rooms isn’t a problem as you can choose to confirm the contract for some of the
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participants and cancel it for the others. To do so, initiator strategy might be
slightly modified in order to keep only one room participant.

Relaxing constraints and adding new ones are already provided in GeNCA,
as you can cancel previous contracts and add new ones. If a contract for a course
is cancelled, it will be automatically renegotiated.

Having a multi-agent system enables us to add or remove agent in real time,
without perturbing the whole application and having to restart from scratch.

3.1 Concrete results

In our experiments, we have used agents that negotiate contracts that have
been created by the user. We haven’t added to the agent skills to store a list
of courses that must be scheduled and to check that they have been scheduled.
As GeNCA doesn’t specify that the contract must be taken at the end, it is
possible that all courses the user wanted aren’t scheduled. The strategy used
looks at each possibility of free resources (or resources taken by a less prior
initiator) before cancelling the contract but it doesn’t cancel another contract
in order to take the new one. Each teacher must then check that he has all his
courses. To face this problem, we should use an agent having those skills. On
the contrary, GeNCA is adapted to dynamic changes: if a course is cancelled, it
is automatically renegotiated.

4 Conclusion

In this paper we have presented a novel approach to solve a timetable creation
problem. Using negotiation to establish timetables is a new and promising re-
search field. It enables teachers to find a timetable taking into account their
constraints without giving them to the others. Moreover, it is a flexible ap-
proach that facilitates the integration of dynamic changes such as modification
of constraints or arrival of an actor. It is important to keep in mind that this
approach is interesting because of its flexibility and not for the results it gives.
For the moment, we don’t try to give the best results for timetabling problems
but we want to show that negotiation is an approach that is worth to be ex-
plored. More experiments are needed for the timetable creation problem in order
automate the whole process. We are at the moment designing more specialised
agents that will have the list of courses they must schedule in order to make
experiments without human intervention for contract creation.
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1   Introduction

1.1   Iterated Local Search

Iterated Local Search (Lourenço et al., 2003), henceforth to be referred to as ILS, is a
metaheuristic that has been used successfully to solve many combinatorial
optimisation problems, producing competitive results.  The technique essentially
consists of two phases: a local improvement phase which leads monotonically to a
local optimum and another very short phase which may take one of a number of
forms, often involving a small number of moves chosen partly or wholly at random.
The technique then iterates between these phases until some stopping criterion is
satisfied.

1.2   Problems with many objectives

Problems involving several distinct objectives are often formulated so that there is a
single objective function formed by a linear combination of subcosts, each subcost
relating to one of the many objectives.  However, good metaheuristic methods for the
solution of such problems can prove very difficult to achieve, partly because of the
often highly complex nature of the solution space.  Some metaheuristic techniques
aim to address this issue by modifying the weights of the objectives at various times
during the search, thus reshaping the new solution space.  Such methods include
Noising (Charon and Hudry, 1993) and SAWing (Eiben and van Hemert, 1999),
which have achieved some successes.

1.3 This paper

This paper reports the results of experiments of a new technique which combines both
of the ideas outlined above.  The problem addressed is a sports rostering problem.
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2   A cricket umpire rostering problem

The problem addressed by this work is that of rostering cricket umpires for the Devon
Cricket League in England.  This has been solved for several years using a form of
Simulated Annealing (SA).  However, the problem is a useful test bed for new ideas,
since it is sufficiently large and complex (with 14 separate objectives) to be an
interesting challenge, yet not so large as to make experimentation excessively time-
consuming.  A full description of the problem has already been published (Wright,
2006).

3 The double ILS technique

Using intuitive methods for forming an initial solution and defining
neighbourhoods, the solution method  continues using a form of Double ILS, since
there are two loops which use ILS in different ways and for different purposes.  It
proceeds according to the following pseudo-code.

repeat
  set counter = 0
  repeat
    undertake Local Improvement (LI) to a local optimum
    set counter = counter + 1
    if counter < N then make X perturbations
  until counter = N
  change subcost weights
until total number of iterations during LI phases > Z
return to best solution found, reset weights to
original values and carry out final LI

The inner loop is a simple form of ILS, while the outer loop is a very different
form of ILS (suitable only for problems with many objectives).  This is why the
technique has been named "Double ILS".

An iteration is defined as the process of calculating the change in cost of a
perturbation, whether or not that perturbation is accepted as a result.

The "best" solution means the best using the original weights.
Specifying Z ensures that fair comparisons between experimental runs can be

made, since the value of Z effectively indicates the computational effort.

3.1   The Local Improvement phase

The LI technique systematically searches through all possible perturbations,
accepting any solution found that has lower cost than the current solution.  A device is
used to identify perturbations that could not possibly improve the solution; such
perturbations are not made, hence reducing the time taken.
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3.2 Changing weights

There are two input parameters (H and L).  Initially the weights used are the "real"
weights and the "control parameter" C is set equal to H.  When it is required to change
weights, first C is set equal to H – ( ( H – L ) * I ) / Z, where I is the number of
iterations to that point, and then the weights are changed as follows:

Method 1: for each subobjective separately, if its cost is greater than or equal to its
value the previous time weights were changed, multiply its weight by R (a random
number between 1 and C); otherwise divide its weight by R.

Method 2: decide at random (probability 0.5) whether to multiply or divide the
weight by R.

3.3 Experimental results

Experiments to date have N = 1 (and thus X is immaterial) and Z = 500,000 or
2,000,000.  They show that Method 1 outperforms Method 2 to a small but
statistically significant extent; that values of H between 4 and 8, and L between 2 and
4, appear to work best; that the method is already fairly close to being competitive
with SA; and that it is considerably better than repeated LI.

Full results will be presented at the conference for various values of N and X, and
for different ways of choosing the X perturbations, including totally at random.  The
overall aim is to find robust values for H, L, N and X which obviate the need for
tuning parameters anew for every application.
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1 Introduction

EventMAP Limited was formed in 2002 to exploit the commercial potential of
scheduling research carried out by the Automated Scheduling, Optimisation and
Planning (ASAP) group at the University of Nottingham.  The focus of the company
is to develop, market and sell examination and course scheduling software into the
worldwide Higher and Further Education Sector. We have implemented our systems
in Europe, Australia and America.  The decision to form a company followed the
identification of the obvious market need for a high quality software solution to the
scheduling difficulties experienced within the educational sector.
In January 2006 the Company released version 2.5 of the company’s flagship
examination product, Optime.  An earlier version of the software has been presented
at an earlier PATAT conference in Konstanz, 2000 [1].  In this paper we discuss the
additional functionality made available through version 2.5.  The company is in a
unique position to integrate leading edge research techniques with the requirements of
the user base in the provision of examination timetabling solutions. In the recent
international review of Operational Research in the UK (commissioned by the
Engineering and Physical Sciences Research Council) [2], a major identified
weakness in the current approach to Operational Research is described as follows, “a
gap still remains between the output of a successful research project and what is
needed for direct use by industry” [2]. One of the primary aims of the current efforts
by EventMAP Limited is to reduce this gap in relation to examination and course
timetabling software.  The strategy for achieving this is to highlight the important
aspects of the institutional requirements to researchers in the field while continually
updating algorithmic techniques within the software, thus enabling solutions to be
produced which are both workable and of a high quality.
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In general, the aim of improving Optime is to make the system as intelligent and
intuitive as possible, providing maximum information to the institutional
administrator, allowing him/her to make informed strategic and managerial decisions.
The following details the additional functionality available in Optime version 2.5.

2 The Algorithm

The new version of Optime enables the algorithm to be varied depending on the
characteristics of the dataset.  From observing the relationship between solutions
actually used and the characteristics of underlying datasets, it has been concluded that
this functionality allows greater institutional control over flexibility within the
solution.  These observations are the result of a close working relationship with five
principal users in the UK and is currently the basis of further research [3].  Currently
the combinations of algorithmic structures available are Saturation degree (Heuristic
Method) [4], Adaptive [5] and Great Deluge [6] during an additional improvement
cycle.

Fig. 1. Construction and Improvement Settings

Figure 1 shows how these algorithms may be varied in the construction of a solution.
In essence this means that, in addition to allowing multiple criteria to be set relative to
each other during the solution modeling process, the user is now able to adjust or
‘direct’ the search technique in finding a potential solution.
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3 Diagnostic report tool

A report tool has been added to provide information on the current data and solution.
This allows each dataset to be analysed for the purposes of provision of information
which may be useful in setting up the scheduling model.  This is shown under the
heading ‘Basic Information’ in Figure 2.  This represents a starting point with plans to
include in subsequent versions, information on subjects such as projected utilisation
of space based on particular chosen formats of the timetabling session.  This will help
answer common institutional questions such as ‘What is the least amount of time and
space that we need to set up a schedule’.  Of course, this only serves as an indication
as the incorporation of soft constraints adds to the final relevance of the overall
solution.
Once a solution is obtained, various items of information are provided as an overview.
This is shown under the heading ‘Current Solution Quality” in Figure 2. More
detailed information is provided through the reporting mechanism of the software
which will be demonstrated as part of the talk at the conference.  An important
additional report added in version 2.5 is worthy of note here.  This provides the
number of students x who have y exams in z days, allowing the user to further
understand important student centered characteristics of the solution.  An example of
the reporting set up interface is shown in Figure 3.

Fig. 2. Dialog Information
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Fig. 3. Reporting

4 Searching for “wider distribution”

Normally, the optimisation function used in the construction of a solution tries to give
students the ‘best’ spread or distribution of their exams throughout the examination
period.  Until now, this has been achieved by a combination of avoiding two exams in
a row or in a day.  Optime v2.5 allows the user to specify longer periods of time e.g. it
attempts to optimise the solution based on examinations being x periods apart, where
x is user specified.  This will apply a penalty for proximity over the usual two in a day
constraint and up to ten periods apart. Nights or days in-between events are not
considered solely (as in earlier version) and the closer that two exams are, the higher
the penalty will be. Of course, enabling this may degrade other areas of the timetable
and consideration to the entire pre-solution modeling must be given serious
consideration.  The implementation of this functionality can be seen at the bottom of
Figure 4. The addition of the wider distribution constraint provides the user with
increased control over how a solution is generated.  This in effect allows the user to
set parameters within the evaluation function in a user centered multi-criteria
approach [7].
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Fig. 4. Optimisation Constraints

5 Special Needs

Students with special needs (e.g. those requiring extra time due to a disability) need to
be catered for within the examination timetable.  At our leading implementation site,
9% of the students have special needs.  These students can now be imported as an
extra column on the students and/or enrollments table. These are done via alphabetical
codes which must be defined within the system. This is currently used for reporting
purposes only though the availability of full functionality for the purpose of
timetabling students with special needs (based on a categorization and application of
associated constraints) will be available in version 3.0. Those implemented currently
are shown in Table 1.  These represent further soft constraints which must be
considered as part of the provision of a solution.

Special Needs Description Specified Parameters
Additional Time Required Minutes
In Separate Room (from) Room List
Must be Seated in Room Room List
Avoid Periods Period List
Students should have no Consecutive Exams
Students should have a clear Day between Exams
General Note Free Text

Tab. 1. Special Needs
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6 Future Functionality

The question remaining unanswered in version 2.5 is what happens when a feasible
solution is not possible i.e. the specified hard constraints can not be satisfied?
Although it is envisaged that the tool should provide a range of reports on how
various scenarios would be possible by relaxing hard constraints to soft constraints
there is a need for a mechanism of splitting exams into alternatives which may take
place at different times.  The specification of this functionality is currently at an early
stage.
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The mission of ORTEC, and specifically of HARMONY, is to provide planners
and managers access to the benefits of mathematics, and operations research in
particular. The basic philosophy of HARMONY is to integrate workforce man-
agement with administrative and (other) logistic processes of an organisation and
to enrich decision-making within workforce management by OR/MS techniques.
The integral approach of workforce management distinguishes HARMONY from
most of the studies in the OR/MS literature. Furthermore, HARMONY offers
an environment to embed algorithms that add value to planners in the real world.

HARMONY provides an advanced planning environment for shift schedul-
ing and rostering. It offers the user a complete spectrum of support varying
from fully manual planning to fully automatic planning. In HARMONY one can
for example design cyclic rosters, construct calendar-related rosters based upon
these cyclic rosters, make a holiday planning, etcetera.

The planning process starts with the definition of shifts and ends with the
realisation of these shifts. In this process one can identify three phases, that are
all supported by the mathematical engines in HARMONY. Although none of
our clients face the problems of all of these three phases, they all face at least
one of them (which is most often the second phase).

The first phase is the definition of the shifts: given a demand for resources
per time interval and some constraints for the shifts, one has to construct a
minimum set of shifts that satisfies all constraints and fulfils the demand. The
engine in HARMONY that supports this phase solves the problem with a set
covering algorithm.

The second phase consists of assigning these shifts to the available employees
(i.e., create a roster). Here, the user can specify many different types of soft
and hard constraints on four different levels (organisation, department, group or
individual). For this part of the planning process, HARMONY contains two en-
gines. The first engine uses an insertion technique. It allows for fast construction
of good rosters and is ideal for simulation analysis and for completing exist-
ing (partial) rosters. The second engine is more powerful and is useful for the
construction of complete rosters. It uses a genetic algorithm, local search, and
variable neighbourhood search to iteratively improve existing rosters.
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In the third phase of the planning process the planner has to specify where
the employees have to work. The input of this phase is the output of the previous
phase, i.e. a roster with the specifications of when the employees have to work.
The planning in this phase is usually made shortly before it is actually carried
out (for example one day or one week). The engine in HARMONY defines this
problem as a min cost max flow problem.

In our demonstration, we will briefly go through several aspects of HAR-
MONY, and after that focus on the engines in HARMONY that solve the three
problems described above.

References

1. S.L. van de Velde, ORTEC HARMONY. Innovative advanced planning software
for an integrated approach to workforce management optimization, OR/MS Today,
April 2002.

Personnel Scheduling in HARMONY 517



SWOPS (Shift Work Optimized Planning and Scheduling)

Dagan Gilat, Ariel Landau, Amnon Ribak, Yossi Shiloach, Segev Wasserkrug

IBM Haifa Research Lab
Haifa University Campus, Haifa 31905, Israel

shiloach@il.ibm.com

1 The Challenges of Modern Shift Work Scheduling
Assigning workers to shifts is one of the most challenging operational problems in
workforce management. The problem is complex, versatile and rich in mathematical,
algorithmic and performance challenges. Listed down are some of the major chal-
lenges:

1.1 Demand Forecast and Analysis

Demand forecast must take a lot of variables into account – the day of week, the hour
of day, the date in the month, special events like holidays and so on. Then there is the
analytic part of converting the load volumes into number of agents needed to handle
them. The problem get more and more complex when each agent have several skills
and the traditional demand graph approach breaks down. Some of the service center,
e.g. delivery centers work in a way that is not supported by any clear mathematical
model.

1.2 Complex Business Rules

The set of possible business rules is extremely versatile and almost endless. It almost
rules out any heuristic approach because of the complex coding effort.

Here is a small sample of rules:
– Pregnant women should not work after 22:00
– Agents that are less than 6 month in the job, should not do night shifts.
– Mr. X should work every day on the 07:30 shift.
– All senior employess should start every day in the same hour, not including week-

end days.
– Group X should not do more than two evening shifts per week. (An evening shift

is a shift that starts between 14:30 and 20:00).
– Mr. A has a special schedule of 3 hours and 25 minutes, starting at 13:00 every

day.
– The night, early morning and weekend shifts should be distributed evenly among

all the agents in Group X.
– Nobody should work two nights in a row.
– No more (or no less or exactly) than 10 sales agents should start working between

09:00 and 10:00.
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– No more than (or no less than or exactly) 10 agents of group X should be at work
at any moment between 20:00 and 22:00.

– The schedule of an agent and his team leader should overlap in at least 80%.
– The 7.5-hour shift should be effective only on Mondays and start only in 08:00

10:00 and 10:30. Only mothers to small children are allowed to do it.
– The first break in the 10 hours shift should start between 120 to 150 minutes from

shift start and last 30 minutes. The second break should start between 120 to 140
minutes from the end of the first break.

– Lunch break should be of one hour always between 11:30 and 13:30 and equaly
spaced among the other breaks.

– There should be at least 2 Russian speakers and 3 Italian speakers between 10:00
and 17:00.

– There should be at least 5% of the marketing agents on-site who speak Spannish at
every moment Mon-Fri between 08:00 and 21:00.

– An agent can do 2 shifts in one day only if the first is in the morning (until 08:00)
and the second is after 21:00. In any case, he\she should be free for the next day.

– An agent should work between 4 to 5 days a week, with total of at least 38 hours
where weekend duties are not included. Weekend limits are open to the user to de-
fine.

– If an agent works in weekend they should work in both Saturday and Sunday.
They will be compensated in the next week at Thusrday and Friday.

– No more than two agents can stay in a break at the same time in Team A, between
hours 08:00 and 11:00.

– The sum of all overtime hours per day should not exceed 20, from Monday to
Friday, and 10 on weekends and holidays.

1.3 Intra-day Schedule

The traditional schedule requirement was to assign an agent to a shift and tell him
what will be their activity during that shift. Now there is a growing request for intra-
day scheduling drilled down to one hour resolution. Many centers have a lot of off-
line activity that has to be addressed during the shift. Requirements for off-line
activity are in terms of total number of hours per week or month. In intra-day
planning an agent can do on-line and off-line work in the same shift. Another type of
intra-day scheduling is breaks scheduling with the rules that accompany break
assignments. Obviously, intra-day scheduling  increases the problems size very much
and poses performance challenges.

1.4 Workforce Management Analytic Tool

Service centers are not just interested in scheduling. They would also like to regard
scheduling tools as decision support systems in more long-term aspects. They would
like to be aided in deciding on their shift length and start hours, the combination of
skills they need, whether they can save in headcount, how to solve their
transportation problems etc.
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There is also a growing demand to the ability to run different ‘what if’ scenarios and
get some machine generated explanations on questionable results.

1.5 On-Line Crisis Management

Users would like the tool to advice them in case of no-show, sudden rise in demand
and other on-line crisis situations. They would like to run a corrective program that
solves the problem with minimal changes.

1.6 Complex Working Environment

Large service centers has many independent teams to schedule. They would like the
tool to handle several users concurrently and also provide access to the agents
themselves to enter their personal preferences. Some of the centers are world wide
dispersed and time difference issues must be taken into account. Some of them have
huge transportation problems. These problems connect several teams that otherwise
can be solved independently.

2 SWOPS as a Workforce Management Solution

2.1 Background

SWOPS is being developed at IBM Haifa Research Lab (HRL) as an on demand
service-based system for the shift work optimized planning and scheduling. SWOPS
is a work force management tool, specifically designed for shift work, supporting
multi-service queue, multi-skill environments. It is currently deployed in two very
large IBM service centers in Germany and India and going to be deployed in two
delivery centers in India as well. SWOPS is a follow on to CCS (Call Center Sched-
uler) which is in production in several directory assistance and banking call centers
for more than 10 years.

2.2 SWOPS Technology Aspects

2.2.1 MIP Modeling with Flexibility and Calibration features

The scheduling problem is modeled into a 0-1 assignment problem of agents to
scheduling slots. Penalty variables (variables that appear in the objective function)
relax the business rules equations and enable the implementation of rule preference
and system calibration. In some coverage equations there is also a need to model a
non linear behavior of rule violation. It is done by the introduction of several layers of
penalty variables to the same equation with increasing penalty values. In fact SWOPS
uses two calibration mechanisms. The first is controlled by system administrator and
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the second is user controlled. The first calibration is among different business rules
and the second is between different records of the same business rule.

2.2.2 Business Rules Modeling

Scheduling problems are notorious for their rich diversity and complexity of business
rules, varying considerably from one user to another. SWOPS offers an extensive
‘library’ of implemented business rules that cover all our current customers’ needs. A
lot of experience has been accumulated in modeling business rules and internal mod-
eling tools have been developed. The result is that the implementation of new rules,
even the most bizarre ones, becomes quite a simple task.

2.2.3 Flexible Scheduling Environment

A schedule run is characterized by the scheduling time range, a set of active business
rules (called ‘profile’), group of agents to be scheduled and solver parameters (max.
running time, search parameters, node selection etc.). In many cases the full schedule
is done by running a sequence of several individual runs, each of them with its unique
profile. This is called a ‘phased run’ which is a powerful tool for achieving high
quality schedules and fast performance.

2.2.4 Advanced Demand Graphs Coverage and Intra-day Scheduling

Usual service queue demand graph coverage assumes that an agent is assigned to a
single service queue during the entire shift. SWOPS advanced coverage scheme mod-
els a business environment in which an agent can handle different service queues at
the same shift and even at the same time interval. The new approach to service queue
coverage addresses three very interesting problems:

1. The set of skills is large and each agent has a ‘random’ subset of skills (which
often occurs in language skills).

2. Each queue has a very small number of incoming calls and requires a small num-
ber of agents. If they are devoted to that queue only, they are idle for most of the
time.

3. The model enables the breakup of a shift into basic (30 minutes or so) time inter-
vals. An agent may be assigned into several on-line and off-line assignments
within the same shift. In fact there is a special assignment variable to each time
interval.

This new coverage approach and off-line intra-day scheduling increases the prob-
lem size significantly. A considerable reduction in the solving time is achieved by
integer variable prioritization that exploits the semantics of the variables.
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2.2.5 Delivery Center Modeling

Delivery center deals with off line customer problems rather than phone calls. Han-
dling time is measured in hours or days rather than seconds. The same customer
problem can be handled by several people and not continuously and therefore
switching times have to be taken into account. There are deadlines and periods of
time where the problem is transferred to external bodies and then returns back and so
on. The model is too complex for mathematical analysis and therefore there is no
form of demand graph to follow. SWOPS applies simulation techniques to handle
such cases.

2.2.6 Optimized Break Assignment

SWOPS  handles timed breaks (that are limited by absolute time end-points such as
lunch) as well as ordinary breaks with various spacing rules within each shift. Breaks
computations must also take the coverage requirements into account. Since there are
quite complicated breaks rules, the implementation uses column generation.

2.2.7 Performance Issues

Performance is a great issue in scheduling. As demands grow, the processing time
increases accordingly. Our main accelerators are problem phasing, variable prioriti-
zation, and an efficient local improvement phase called ‘cleanup’.

2.2.8 Explainer

The explainer is a tool to answer user questions like: Why such a schedule was com-
puted when they can easily point out a local improvement. The explainer enforces the
user proposal and compares it to the computed schedule. If it is cheaper then a bug
was found, otherwise (most of the cases) the difference in penalties is displayed to the
user in a way they that can immediately recognize. Another use is to find out why a
certain business rule has been violated while there seems to be some work around that
does violate it.

2.3 Other Tool Features

2.3.1 Demand Forecast and Demand Graph Generation

The demand forecast takes all the day, hour, week month parameters into account +
calendar special dates. The demand graph generation uses Erlang C queues model.
When there are several activities, a demand graph each generated for each one.
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2.3.2 Input of Personal Availability Constraints

Call center agents have their own short and long term availability constraints. They
can be inserted via web interface by the agents themselves. The scheduler just has to
review and approve or decline them but the input time is saved, (quite significant
when you have several hundreds of agents).

2.3.3 Multi-User Environment

Current call centers consist of several independent scheduling units. Each schedule
unit (or ‘team’) has its own agents. SWOPS is designed as a multi-user system. Just
one installation is required for the whole call center. Different teams can work con-
currently. The GUI is web based.

2.3.4 Security and Roles

SWOPS provide security facilities according to predefined roles. The typical roles
are: Developer, system administrator (one for whole call center), scheduler (one per
each schedule unit, in charge of producing weekly or monthly schedules) and agent.

2.4 Future Developments

– Delivery Center Full Solution
– Intra-day Planning - Full solution
– Transportation Solutions.
– Crisis Management.
– Shift Structure Planning
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1 Introduction

Medical treatments planning and surgical operations scheduling are substantial
elements of hospital management. Operations theatre scheduling deals with as-
signment of limited hospital resources (rooms, doctors, nurses, etc.) to jobs (pa-
tient treatments, surgery, etc.) over the time in order to perform tasks according
to their needs and priorities, and to optimize usage of hospital resources [7]. The
whole process is restricted by lots of constraints, limitations and preferences [2].
It is characterized by high complexity, which is caused by the uncertainty be-
tween the offered capacity and the true demand. As emergency cases occur the
planning requirements will change. Existing industrial schedulers usually assume
a predefined workflow. Furthermore, they do not take actors’ preferences into
account and are therefore suffer from levels of non-acceptance of their resulting
schedules [2]. State of the art in this domain are the following methods: no plan-
ning, pen and paper, non-intelligent tool-based. Therefore, typically scheduling
is done manually and involves specialized persons to facilitate the process. An
example of an optimization that can be achieved using process automization for
nurses rostering1 is discussed in [4]. In the considered hospital one person spends
3-5 full-time working days on producing a nurses’ schedule for the period of one
month (only shift assignment). A use of a dialog-based semi-automated system
is preferred against fully manual or fully automated systems. This is because of
the inability of the later to recognize the changes in a high dynamic environment
and to take the responsibility for decisions made. As it has to be possible to add
new tasks in the planning process “on the fly” and to adequately plan new situ-
ations, we involve a human planner in the scheduling activity. The planner acts
as a “sensor” to identify changes as they occur and integrates his knowledge as
well as decision-making competence into the planning process.

The proposals for the schedules are made with the help of heuristics. Actual
problem solving mechanisms of the system and their evaluation are presented

⋆ This work was supported by the German Research Foundation in the research prior-
ity programme SPP 1083 – Intelligent Agents in Real-World Business Applications.

1 rostering and scheduling are used as synonyms here
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Fig. 1. System Overview

in [5]. Here we shortly describe a scheduling development framework and the con-
structed prototype for preference-based operation theatre scheduling [6]. Beside
that, the paper covers tools used to develop the scheduling system. The frame-
work is integrated in the framework for multi-agent systems Agent.Hospital [3].

2 Framework and Prototype Description

We divide the scheduling problem into four sub-problems (shift assignment, team
building, job scheduling and room assignment) [6, 5]. For each of the identified
subproblems a heuristic was developed that satisfies all constraints and takes
into account preferences (like prefered working time, prefered collegue, etc.) of
all actors (ward personnel as well as patients). The analyzed application scenario
is modeled with Protégé2. The outcome is the task ontology [6] (see Figure 1, step
1). Ontology is an explicit specification of conceptualization. It formally defines
objects in the scenario and relations among them. Domain ontology OntHoS [1]
was used as a reference to develop the own task ontology. The concepts (T-Box)
together with its instances (A-Box) were exported into the rule-based expert
system JESS3 as facts and rules (step 2). Rule-based expert system is used as
an environment where the Problems Solving Methods (PSM) are implemented.
These are scheduling heuristics and conflict solving mechanisms (step 3). It is
then embedded into the multi-agent system JADE. JADE4 is a FIPA-compliant
multi agent system (MAS) that is used as a middleware. The outcome is the Jes-

2 Protégé Home Page. http://protege.stanford.edu/ .
3 Java Expert System Shell. http://herzberg.ca.sandia.gov/jess/ .
4 Java Agent Development Environment, http://jade.cselt.it/ .
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Fig. 2. Diagram of the JessAgent

sAgent5 - a JADE-agent that has an embedded Jess engine (step 4). The ability
to reason and act rationally is programmed in a rule-based expert system. Com-
munications is facilitated by using a MAS. Further, all the agents (Scheduling
Agent and Ward Agents) are started and the scheduling process initiated by the
Scheduler Agent. The user interface for interaction with the planner as well as
the generated subplans (based on ontological constraints) are provided by this
agent. New scheduling tasks are added to the system by a wards’ representatives
with the help of Ward Agents (step 5).

The deployed Scheduling Agent is based on the JessAgents (see Figure 2),
chosen for its suitable integration in the optimized development process. This
means that the problem solving methods and the behavior of a JessAgent are
written at a higher programming language, which does not require source code
compilation. Task ontologies and problem solving methods are loaded at runtime
as well as the new fact base, describing a possible change in the considered
scenario. Inside of the JessAgent all the received messages (which are in FIPA-
SL format6) are translated by the SL2JESS adaptor to JESS functions, evaluated
in JESS and the answer is automatically generated by the MessageFactory object
with respect to the used interaction protocol, speech act, content language and
the agent’s fact base. All the rules, facts, and functions of the agent can be
accessed by the developer through the agents GUI.

5 JessAgent Home Page. http://www-i4.informatik.rwth-aachen.de/agentcities/ .
6 http://www.fipa.org/ .
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3 Summary and Outline

This paper gives a short overview of the scheduling framework and tools, used to
create a dialog-based semi-automated operation theatre scheduler. Staff timeta-
bles in medical departments are subject to lots of constraints, restrictions, and
preferences. Scheduling of hospital personnel is particularly challenging because
of different stuffing needs on different days and shifts, uncertainty between the
offered capacity and the true demand, impossibility to predefine treatments’
workflow.

We have divided the original problem into four sub-problems and provided a
preference-based adaptive heuristics for each of them as described in [6, 5]. The
system makes a schedule proposal and it is up to the responsible human actor
either to accept, accept parts of the proposition, or to reject the schedule. The
prototype was used for the comparison of different heuristic approaches. This al-
lowed to conclude that the proposed algorithms bring a substantial improvement
regarding the number of fulfilled wishes of the actors while selecting shift staff
and team building, and helps to save expensive human resources that are cur-
rently used in hospitals for the manual scheduling. However, the preferences of
the involved actors were randomly generated. Evaluations in a real-world setting
would be of a great interest and will be made in cooperation with the university
hospital.
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In this paper we present our ongoing research project GAPO (Genetic Algorithm
Process Optimization) that focuses on the development of an optimization mod-
ule for process plans.

GAPO is part of a 4D-Toolbox that conflates different modules for the 4D
planning of construction projects. Among other modules, the 4D-Toolbox con-
sists of a DES (Discrete Event Simulator) that automatically sequences activi-
ties into a network plan 3 taking structural and process constraints into account.
Thereafter, GAPO is used to optimize the generated network plan in terms of
time, cost and resource management forming a multiple criteria optimized pro-
cess plan 4 This process plan can then be joined with the 3D-Model of the con-
struction project - forming a 4D Model - and visualized through the 4D-Player,
another module of our 4D-Toolbox.

GAPO is based on a Genetic Algorithm (GA) approach to perform its opti-
mization. GA’s are a class of heuristic search methods based on the Darwinian
principle of evolution. They mimic and exploit the genetic dynamics underly-
ing natural evolution to search for optimal solutions of general combinatorial
optimization problems [1].

Our Evolution Model starts with an initial population of randomly generated
process plans. A subsequent population will then be assembled using five strate-
gies which can be weighted by the user. A fraction q of the best individuals will
be directly passed to the next population. This guarantees that the quality of
the most suited candidates will monotonically increase from generation to gen-
eration. A second fraction r of individuals will be passed to the next population
after a mutation. On one side, this process opposes early convergence in a local
optimum and thereby helps to open new search regions. On the other side, it also
allows a fine tuning of suitable solutions by applying small chances on them. A
third fraction s of the new population is created by recombining individuals from
the old generation. This process forces convergence into an optimum. A fourth
fraction t is created by recombining individuals but instead of passing them di-

3 Sequenced activities with predecessor relationships.
4 Network plan with time and resource allocations.
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rectly into the new population the new individual is mutated beforehand. Last,
a fraction u of the new population is created randomly. This process also helps
to open new search regions and prevents early convergence in a local optimum
[2].

Fig. 1. GAPO Evolution Model

The data structure of a process plan genotype is kept very simple. At the
moment, it consists of three arrays. The first array represents the sequence of
how the scheduling algorithm should schedule the activities. The second array
defines the position where the scheduling algorithm starts to search for a location
where the activity can be performed without violating a resource constraint.
By definition, this position is between the end of the latest predecessor of the
handled activity and the end of the latest scheduled activity. If it is not possible to
schedule the activity within this range, it will be added at the end of the schedule
as the latest activity. The third array defines the amount of the resources that are
assigned to the activity. This representation allows us to use standard mutation
and recombination operators [3]. Furthermore, a recombination can also be done
by recombining arrays of different individuals.

In the presentation we will show how GAPO is used to optimize construction
process plans. This will be done by using our first feasibility study which is based
on a real construction project.

Process Plan Optimization Using a Genetic Algorithm 529



Fig. 2. Screenshot of GAPO’s user interface

To further push research on process plan optimization, collaboration between
the CIFE5 and the i4Ds6 has been established. One of the goals addressed is the
development of a GAPO module allowing the optimization of arbitrary process
plans. Furthermore, we will also introduce more mechanisms that enable the user
to give the optimization a desired direction and consequently have more control
over the outcome of the optimization.

Beside the optimization itself, we also work on the integration of a variation
study that will take place during the optimization process. The idea of this
variation study is to enable GAPO to take decision possibilities into account and
give the user a feedback about which decisions would be favourable in terms of
process planning [4]. In the current development cycle, we consider the following
variations:

– A change in the quantities of the resources used within a resource group
– A change in the resource group assigned to an activity

Candidates for further variations are:

– A change in the process method used to perform a task

5 Center for Integrated Facility Engineering, Stanford University
6 Institute 4D-Technologies and Data Spaces, University of Applied Sciences North-

western Switzerland
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– A change in the design of the construction project

Our long term goal is to provide a GAPO module that can be handled by the
user as a black box, not requiring any knowledge about optimization, Genetic
Algorithms and the like. This would simplify its usage and would also allow
using it in other project planning applications.
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Abstract. This system is the result of our previous work on the subject of 
school timetabling. It was designed to respond mainly to Portuguese schools 
from various educational levels. It consists of three main blocks; a graphical 
user interface; an automatic scheduler and a relational database. This system is 
now in use by more than 100 schools in Portugal with significant success 
(http://www.fmaismais.pt). 

1   Implementation Framework 

School timetabling is a classical combinatorial optimization problem which is associ-
ated with a set of constraints. It consists of assigning a set of lessons to time slots 
within a time period (typically a week), satisfying a set of constraints of various kinds 
3. The constraints that we have used are related to Portuguese schools and are the 
result of multiple discussions we had previously with people from several Portuguese 
schools. In Table 1 it can be seen a summary of the constraints we have considered in 
solving this problem. 

The main issue regarding the constraints is that each user can weigh each con-
straint with a particular value and in this way different schools may have different 
values to each constraint. 

A lesson is the teaching unit. It is characterized by the triple * * *, ,T C S . Where 

*T  is a subset of the teachers set, *C  is a subset of the classes set and *S  is a subset 
of the subjects set. Each lesson has a duration measured in time slots. 

There are two types of lessons: 

1. Simple lesson. Where * 1C =  and * 1S = . 

2. Compound lesson. Where * 1C ≥  and/or * 1S ≥ . 

                                                           
1 In Portuguese THOR stands for Tabelas Horárias which can be roughly translated by time-

tabling charts. 
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Con-
straint 

Description 

0
C  

Number of time slots of lessons that aren’t yet sched-
uled 

1,2
C  

Number of time slots of overlapped lessons  
 (1-classes; 2-teachers) 

3,4
C  

Number of time slots exceeding the maximum allowed 
per day (3-classes; 4-teachers) 

5,6
C  

Number of time slots exceeding the maximum consecu-
tive time slots allowed (5-classes; 6-teachers). 

7,8,9
C  

Number of preferable time slots filled   
(7-classes; 8-teachers; 9-subjects). 

10,11
C  Number of idle time slots (10-classes; 11-teachers) 

12
C  

Number of time slots of lessons without a room as-
signed. 

13,14,15
C
 

Number of time slots that are forbidden and are filled 
with lessons (13-classes; 14-teachers; 15-subjects) 

16
C  Total number of teaching days for teachers 

17
C  

Number of repetitions of lessons of the same subject in 
the same class per day 

18
C  

Number of time slots that doesn’t satisfy the predefined 
space between lessons. 

Table 1.  Constraint set 

In general, a compound lesson means that we have several classes joined together 
to attend a certain subject or it means that a class can be subdivided into subgroups to 
attend special subjects, like laboratories, etc. 

It is associated with each subject the kind of room it must have, i.e., the resources 
that there must exist in the room for a lesson of that subject should happen. 

This software tool was designed to respond mainly to Portuguese schools from 
various educational levels. It is based on a modular implementation, and consists of 
three main blocks; a graphical user interface; an automatic scheduler and a relational 
database (Fig. 1). 

It was developed in C++ using an object oriented technique. It runs on Microsoft 
Windows  and the database is implemented in Microsoft Access. 

There were two main objectives with the development of this system: 
1. It should be fairly easy to interact with it. 
2. It would generate good timetables in an automatic way. 

The graphical user interface (GUI) consists of several forms where it is possible to 
enter the school data (i.e., teachers, rooms, classes, subjects), and also change the 
individual schedules. 
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Fig. 1. Block diagram of the implemented system. 

An individual schedule looks like an Excel sheet where there is always one or more 
time slots (cells) selected and we can do all the basic editing operations like delete, 
insert, undo, etc. 

 

Fig. 2.Graphical user interface. 

An interesting feature in this editor is that if you change the class schedules all the 
others are updated accordingly (teacher, room, etc.). 

The Automatic scheduler contains two different and complementary algorithms: 
1. An iterative algorithm based on a Fast Simulated Annealing implementation 5. 
2. A heuristic constructive algorithm 4. 

Graphical User 
Interface 

Relational 
Database 

Automatic 
 Scheduler 
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The Fast Simulated Annealing implementation is basically a typical Simulated  
Annealing algorithm 1 initiated at a lower temperature depending on the quality of 
the initial solution.  

Also another important aspect of this particular implementation is the fast evalua-
tion of a new solution as it is only evaluated the difference between the two solutions. 
It can be shown that this is most effective when a new solution only differs a small 
portion from the original solution 6. 

There is also a deterministic algorithm for lessons that aren’t scheduled. Its main 
objective is to schedule these lessons in any time slot available that satisfies the hard 
constraints. 

2   Conclusion 

As it is well recognized people in general are not interested in solving their optimiza-
tion problems to optimality or even close to optimality. As Burke et. al. 2 stated peo-
ple are more often interested in “good enough – soon enough – cheap enough” solu-
tions to their problems. 

We also think that good choices of specific parts of each problem are fundamental 
for the success of any search algorithm. As it is well known this specific problem is 
one with a large search space so it is very important to devise efficient techniques to 
search a good solution in it. 

With this tool we intend to solve this problem if not to optimality at least to a very 
good stage with scarce resources. 
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1 Introduction

Although university course timetabling is a widely studied topic, the use of
automated timetabling systems is not widespread among large universities. This
is particularly true in the United States, where the state of the art is typically
to roll forward the last like semester’s timetable and make adjustments to room
assignments. University timetabling is a hard problem because of its size and
the complexity of constraints needed to satisfy the demands of students and
instructors. The problem is made harder yet by the need to develop a system
that is easy for everyone involved in the process to use and understand, and for
them to be satisfied with the results.

The system described here, and currently being implementation by Purdue
University, successfully deals both with the issue of solving a large-scale problem
and with addressing many of the human factors required in real applications.

The size of the problem (9,000 classes, 570 rooms, and 39,000 students with
259,000 class requests) has been made more manageable by decomposing it into
a large lecture problem, consisting of centrally scheduled classes serving students
in many disciplines, and multiple departmental problems. This partitioning also
addresses the need to give departmental timetablers ownership of the process,
which is important in a complex organization. Departmental timetablers have
invaluable knowledge about what is and is not important in a solution that would
be extremely difficult to incorporate into a black box solver. It is important to
be able to leverage this knowledge with tools that can help sort through all of
the constraints and costs to find solutions that satisfy user needs. The primary
design goal was therefore to assist academic timetablers with the problem of
building a good timetable, not necessarily finding a true optimal solution.

2 System Architecture

The system has been designed with a completely web-based interface (see Fig. 1)
using the Enterprise Edition of Java 2 (J2EE), Hibernate, and Oracle Database.

The solver is based on an iterative forward search algorithm [3, 5]. This
algorithm is similar to local search methods; however, in contrast to classical
local search techniques, it operates over feasible though not necessarily complete
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Fig. 1. Screen displaying timetable generated by solver.

solutions. In such a solution, some classes may be left unassigned. Still, all hard
constraints on assigned classes must be satisfied. Such solutions are also easier
to visualize and more meaningful to human users than complete but infeasible
solutions. Because of the iterative character of the algorithm, the solver can
easily start, stop, or continue from any feasible solution, either complete or
incomplete. Moreover, the algorithm is able to cover dynamic aspects of the
minimal perturbation problem [1, 5], allowing the number of changes to the
solution (perturbations) to be kept as small as possible.

3 Critical Aspects of Application

In the course of developing a system that is useable in practice, it was necessary
to confront a number of issues that are not typically addressed in the literature on
timetabling, but which are critical to successful implementation. These included
issues of the “fairness” of the solution across all departments with classes being
timetabled, ability to check and resolve inconsistencies in input data, ease of
introducing changes after a solution has been generated, creating and managing
constraints and other data, and dealing with incomplete demand information for
classes.

3.1 Competitive Behavior

A complicating aspect of real problems in educational timetabling is that there
is competition for preferred times and rooms. Hard and soft constraints placed
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on the problem are often reflective of this competitive behavior (e.g., limited
instructor time availability, restrictive room requirements).

Hard constraints limit the solution space of the problem to reflect the needs
or desires of those who place them. Soft constraints introduce costs into the
objective function when violated. In either case, the more constraints placed on
the problem by a particular class, instructor, or class offering department, the
greater influence they will have on the solution. The general effect is to weight
the solution in the favor of those who most heavily constrain the problem. This
can create both harder problems to solve and solutions that are perceived as
unfair by other affected groups or individuals. Inequity in the quality of time
and room assignments received by different departments and faculty members
doomed a previous attempt at automating the timetabling process at Purdue [2].

To counteract the tendency of the solution to favor those who place the
most restrictions, a number of market leveling techniques were employed while
modeling and solving the problem. The first was to weight the value of time
preferences inversely proportional to the amount of time affected. A class with
few restrictions on the times it may be taught has those restrictions more heavily
weighted than a class with many restrictions. The intent is to make the total
weight of all time restrictions on any class roughly equal. A second technique
used in the solver was to introduce a balancing constraint. This is a semi-hard
constraint in that it initially requires the classes offered by each department to
be spread equitably across all times available for the class, but is automatically
relaxed to become a cost penalty for poorly distributing time assignments if the
desired distribution is overly constraining. Addressing this aspect of the real
world problem was a key component of gaining user acceptance.

3.2 Interactive Changes

While it was known early that it would be necessary to deal with changes after
an initial solution was found, it became clear the first time the system was used
in practice that an interactive mode for exploring the possibility of changes, and
easily making them, would be necessary. Following the original design philosophy
of wanting to minimize the number of changes needed to a solution [1, 5], an
approach was developed to present all feasible solutions and their costs that can
be reached via a backtracking process of limited depth. The user is allowed to
make the determination of the best tradeoff between accommodating a desired
change and the costs imposed on the rest of the solution with a knowledge of
what those costs will be. A further refinement was to allow some of the hard
constraints to be relaxed in this mode. This means, for instance, that the user
can put a class into a room different from the ones that were initially required.

Figure 2 shows a list of suggestions (nearby feasible solutions) provided to
the user for a given class. The user may either pick one of these alternative so-
lutions, ask the solver to provide additional suggestions by increasing the search
depth (only two changes are allowed by default), or assign the class manually
by selecting one of its possible placements. In this last case, a list of conflicting
classes is shown together with a list of suggestions for resolving these conflicts.
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Fig. 2. Window displaying current assignment and suggested alternative assignments.

The user may either apply the selected assignment (which will cause all the con-
flicting classes to be unassigned), pick one of the suggestions, or start resolving
the conflicts manually by selecting a new placement for one of the conflicting
classes. This process can continue until all conflicts are resolved manually or a
suggestion resolving all the remaining conflicts is found.

3.3 Data Consistency

Very often, especially during an early stage of the timetabling process, the in-
put data provided by timetablers are inconsistent. This means that the problem
is over-constrained, without any complete feasible solution. A very important
aspect of the timetabling system is therefore an ability to provide enough infor-
mation back to the timetablers describing why the solver is not able to find a
complete solution.

In prior work on this problem [4, 5], a learning technique, called conflict-based
statistics, was developed that helps the solver to escape from a local optimum.
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This helps to avoid repetitive, unsuitable assignments to a class. In particular,
conflicts caused by a past assignment, along with the assignment that caused
them, are stored in memory. This learned information gathered during the search
is also highly useful in providing the user with relevant data about inconsistencies
and for highlighting difficult situations occurring in the problem.

3.4 Data Management

A major requirement for making the system usable across campus was ease of
managing data on the classes to be timetabled and using that data for other
existing processes. This led to a redesign of the timetabling database from one
focused on a set of classes needing time and room assignments to one that
better reflected the structure of various instructional offerings, with relationships
between lectures, labs, etc. This was particularly valuable for departments with
many offerings of the same class. The course structure could then be used to set
constraints on large numbers of related classes (see Fig. 3).

Fig. 3. Instructional offerings contain component classes in a logical structure reflecting
the relationship among these classes. Constraints may be set on individual classes or
on sets of classes of the same instructional type.

3.5 Student Demand and Sectioning

The primary optimization criterion in this problem is minimizing the number
of conflicts between classes that are selected by students. Other preferences are
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weighted against the number of student conflicts they may cause. Since demand
data is not available for all students at the time the timetable must be created
(e.g., specific course selections of incoming first year students are not know at
the time the fall timetable is built), it is also necessary to incorporate projected
information on student course selections into the joint demand matrix for classes.
This complicates the initial sectioning process and requires additional algorithms
for sectioning new students consistent with the best solution that has been found.

4 Conclusions

The system demonstrated here provides a complete solution to the course time-
tabling problem at Purdue University. It contains an attractive, intuitive user
interface along with a solver that can be used in a variety of modes, ranging from
a fully automated solution to assisting with manual assignments. Currently, the
system is used by the central scheduling office for the large lecture timetabling
problem. Initial use by departmental timetablers will begin for the spring 2007
term, with full distribution in time for planning the fall 2007 term.

From testing done on the large lecture problem (800 classes, 50 rooms, 86,000
class requests), the solver was proved to be able to stably provide better solu-
tions than the previous manual solutions. For fall 2005 (last semester for which
a manual solution to the large lecture problem was constructed), the solver was
able to provide complete feasible solutions with approximately 1.2% more sat-
isfied class requests (i.e., about 1000 class requests), leaving fewer than 0.6%
class requests violated. It was also able to satisfy more preferences on time and
space. Finally, it takes approximately 10 minutes for the solver to come up with
a complete high quality solution, which is a significant improvement over a week
of manual work.
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1 The Approach

We have been experimenting with software solutions for time tabling problems.
This led to a requirements list for the perfect1 framework:

– support of all available algorithms,
– optimal parameter settings for the algorithms,
– fast computation,
– easy to use GUI.

While the last two issues are fairly obvious the first two are worth a closer
look.

– Support of all available algorithms requires that the algorithms have to be
encapsulated and share a common interface, otherwise all other components
of the framework would have to be implemented more than once.

– Setting the parameters right is the heart and soul of all optimisation algo-
rithms. The ideal frame work would do the job just by itself or with as little
user interaction as possible.

Our approach is based on the following observations:

– timetabling algorithms are optimisation algorithms,
– finding the right parameters is an optimisation problem.

Consequently we constructed our framework around a very general approach:

– the solution of a timetabling problem is found by executing an experiment.
– An experiment consists of several, independent sequences of computation

steps.
– Each step applies an algorithms to its input and produces an output.
– Each input is a description of some data, this could be a timetable, a rooster,

or a set of parameters of some other step in the sequence.
– Each output is a description of some data, this could be an optimised

timetable, rooster or a set of parameters.
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Fig. 1. Different ways an optimising algorithm can interact with the steps of his se-
quence.

The key idea is that the sequences can modify themselves, i.e. the output of
a computational step can add new steps and branching points to the sequence
(fig. 1), to avoid problems no steps can be deleted once they are created.

As a result complex control structures can be created. Very common are
conditional loops (fig. 2). The optimising algorithm (OA) decides whether or
not to append new steps to the sequences and puts a copy of itself as new last
step in the sequence.

This mechanisms allows to specify scenarios like the following:

1. generate a random timetable,
2. apply a timetable-problem-solving-algorithm using its default parameters

and compute a solution,
3. stop, if the solution is good enough, continue, otherwise, and append two new

steps: a parameter-optimising-algorithms and a timetable-problem-solving-
algorithm to the end of the sequence,

4. apply a parameter-optimising-algorithm and compute an optimised set of
parameters,

5. continue with step 3.

2 The Algorithms

Currently the following timetabling-problem-solving algorithms are available:
Genetic / Evolutionary algorithms, Branch-and-Bound, Tabu Search, Simulated
1 It hasn’t escaped our attention that this is a highly subjective definition. But we do

believe that most readers will share our opinion.
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Fig. 2. Expansion of a loop in a sequence of steps.

Annealing. The following algorithms will be available in the near future: Graph
Colouring, Soft Computing, Ant Colony Methods, Hybrid Methods.

The optimising algortihms are quite simple: basically they evaluate a condi-
tion and compute new parameter settings.

3 The Implementation

The software is available for Windows and Linux based systems. The software
is implemented in Java 5. The core consists of an application server (JBoss),
a middle-ware persistence-layer (Hibernate) and a SQL-database. Distributed
computing is provided by an RMI based mechanism to distribute the computa-
tion steps on a cluster of interconnected (TCP/IP) computers.

4 The Experiments

Tabu search (TS), simulated annealing (SA) and the genetic algorithm (GA)
have been applied to three real world problems. All runs were timed on a 1.7
GHz P4 PC with 512 MB RAM. Average rounded times are given.

A monthly rooster for a hospital ward with 21 nurses and 4 shifts per day
was planned.

A timetable for a school with 113 teacher, 100 rooms and 43 classes was
generated.
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Fig. 3. The basic components of the software architecture

Our university organises a girl-and-technology week each year to attract more
female students to technical subjects. In 2002 303 girls participated in 199 half-
day projects. Each girl listed up to 4 first-preference projects she would like to
attend, 4 substitute projects, and a list of best-friends she would like to attend
the same projects.

For this problem the results are as follows:

Algorithm time [s] fitness
TS 300 450
GA 3500 750
SA 3500 430

5 Summary

We described a new framework to solve timetabling problems. The key features
are:

– a set of ready-to-use off-the-shelf algorithms,
– experiments for automated generation of solutions,
– optimising algorithms can influence the sequence of computation steps,
– algorithm can be applied to problems or to other algorithms.

The framework has been successfully tested with several real world problems.
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