
The KTS High School Timetabling System

Jeffrey H. Kingston

School of Information Technologies
The University of Sydney, NSW 2006, Australia

http://www.it.usyd.edu.au/~jeff

jeff@it.usyd.edu.au

Abstract. KTS is a web-based software system for solving high school
timetabling problems, freely accessible on the Internet. This paper de-
scribes KTS, including its data model, user interface, and solver. The
solver uses operations research models in a polynomial-time heuristic
framework to produce high quality solutions in a few seconds. Results
are presented for six instances taken from Australian high schools.

1 Introduction

Research into automated timetabling has had many successes in recent years.
Examination timetabling and university course timetabling have yielded to meta-
heuristic methods, as the proceedings of recent PATAT conferences [1, 2] show.

High school timetabling has had much less success [3], probably because it
is dominated by hard constraints, to which meta-heuristics seem less well suited
[8]. There may also be non-technical reasons, such as fewer researchers in the
field and less ready access to data.

KTS is a web server for high school timetabling created by the author. Its web
interface puts the system on the desk of the timetable planner, and its polynomial
time heuristic solver delivers a very good timetable in a few seconds. Together
these features support non-traditional requirements such as rapid evaluation of
alternative scenarios and incorporation of late changes, as well as the traditional
one of solving a fixed instance to near-optimality. The system is fully operational
and available continuously on the Internet [6].

This paper is a general overview of the KTS system. Section 2 presents a
detailed specification of the high school timetabling problem as defined by KTS.
Section 3 describes the user interface. Section 4 describes the solver, and Section
5 presents results for six instances taken from Australian high schools.

2 Data model

The KTS data model is object-oriented. It is described in this section, with a
few minor omissions.

An account object, or just account, represents one user’s account with the
KTS system. Each account contains any number of institutions, representing

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 181–195. ISBN 80-210-3726-1.



educational institutions for which the user wishes to construct timetables. Each
institution contains any number of instances, each representing that institution’s
timetabling problem for a particular year, or semester, etc.

Each instance contains a time group object, holding all information about
time. KTS has a simple time model in which time is divided into individual times

of equal duration, ordered chronologically, with each time optionally separated
from the next by a break, which could be a meal break or the end of a day, etc.
The full sequence of times is called the cycle.

A sequence of one or more times that follow each other chronologically and
do not span a break is called a time block. Any set of times may be viewed
as a set of time blocks, by grouping the times into blocks of maximal size. The
sizes of these blocks, written as a sequence of integers, form the block structure of
the set of times. For example, the set of times {Mon1, Mon2, Tue5, Tue6, Thu3}
presumably has block structure 2 2 1. The order in which the elements of a block
structure are written does not matter; non-increasing order is used by convention.
Meetings may specify that their times should have a particular block structure.

In addition to the instance’s set of available times, the time group contains
any number of time subgroups, which are subsets of the times, used when defining
workload limits and time conditions. These latter place requirements on the sets
of times assigned to meetings, and are either limit conditions, which limit the
number of times from a given subgroup that a meeting may contain, for example
limiting to 1 the number of undesirable times, or spread conditions, which require
the time blocks assigned to a meeting to be spread evenly over a sequence of
time subgroups, such as the days of the week.

An instance also contains any number of resource group objects, represent-
ing collections of resources (participants in meetings). Although not mandatory,
there would typically be three resource groups, called Student Groups, Teach-

ers, and Rooms. KTS is intended for high school timetabling problems, in which
groups of students are timetabled, not individual students.

A resource group may contain divisions, representing administrative units
such as faculties or departments (for teachers) and forms or years (for students).
If a resource group has divisions, then each of its resources lies in exactly one of
those divisions.

A resource group may also have capabilities, which are subsets of its set of
resources. For example, an English capability would be the subset of teachers
qualified to teach English; a ScienceLab capability would be the subset of rooms
in which Science classes may be held. A resource may lie in any number of
capabilities, and a capability may contain any number of resources. A division
is usable as a capability, as is the resource group as a whole.

Each resource may have a set of times when it is unavailable to attend classes.
It may also have workload limits, which might specify, for example, that the
resource may attend meetings for at most 30 times over the cycle, and at most
7 times on each day. A limit may be placed on the number of occupied times in
any subset of the times of the cycle, defined by a time subgroup. Each limit may

182 J. H. Kingston



have a hard component, a number of times which must not be exceeded, and a
soft component, for which violations are penalized but not prohibited.

One resource may follow another. For example, a room may follow a partic-
ular teacher, meaning that it is considered first when assigning room selections
in meetings to which that teacher is assigned. Such a room is often called the
home room of a teacher.

An instance also contains meetings, which specify that certain resources are
to meet together at certain times.

A meeting’s times are specified by a single time selection, which requests that
a particular number of times be assigned. It may request that the times conform
to a given block structure, and include preassigned times. All time conditions
defined in the time group apply to all time selections, as far as the time selection’s
block structure and preassigned times allow.

A meeting’s resources are specified by any number of resource selections.
For example, a meeting in which class 7A studies Science might contain a Stu-

dent Groups resource selection requesting student group 7A, a Teachers resource
selection requesting one teacher with the Science capability, and a Rooms selec-
tion requesting one ScienceLab. A resource selection may include preassigned
resources.

An instance may contain any number of solve profiles, which are named col-
lections of options for controlling the solver. The solver may be invoked with this
set of options by a single click on the appropriate link. An instance may also
contain any number of display profiles, which are named collections of options de-
scribing a timetable display or print: whether to use HTML, PDF, or PostScript;
whether to display large planning timetables or individual resources’ timetables;
whether to display the whole timetable, or just one division or resource; and so
on. Again, one click produces a display using these options.

An instance may also contain a current solution. This consists of assignments
of particular times and resources to some (hopefully all) of its time and resource
selections. A resource assignment may be a split assignment, in which one quali-
fied resource is assigned for some of the times of the meeting and a different one
to the remaining times; or it may be a partial assignment, in which a particular
resource is assigned for some of the times of a meeting but there is no assignment
for the remaining times.

KTS objects are persistent: they exist permanently on disk, but can be up-
dated in memory while the system is running. They are stored externally in
UTF-8 text files, updated by a two-phase algorithm which protects against acci-
dental corruption. Each account and its institutions occupies one file, and each
instance occupies one file, including all the instance’s objects (typically 10 to
20 kilobytes of data). Most operations concern a single instance, and they be-
gin by reading this file and end by writing it. Instances are represented using
a simple specification language, also called KTS, which is a descendant of the
well-known TTL language [4]. The user may upload and download KTS instance
files, although there is no strong motive for doing so.

The KTS High School Timetabling System 183



Fig. 1. Screen shot of the user interface to one small meeting. A page header and
navigation links precede this box and are not shown here. After the header line, the
first inner box holds the time selection, here requesting 5 times including block struc-
ture 2 1. The next box holds a Student Groups resource selection, requesting student
group resource 07A. This box accepts preassignments only, in accordance with an op-
tion set on the Student Groups resource group page. The following boxes request one
ScienceYr7-10 teacher and one ScienceLab room. Split assignments are usually allowed;
the Splittable boxes let the user disallow them for individual resource selections. Teach-
ers have workload limits, so the Teachers selection offers a Special Workload box which
allows the workload associated with this selection to be reduced (e.g. to 0 for staff
meetings).

3 User interface

The KTS system is not distributed to users for installation on their own systems.
Instead, there is a unique copy running on a server at the author’s institution,
publicly accessible via the web, using HTML and CGI for its user interface.
This has several advantages: it makes KTS available instantly on any computer
connected to the Internet; the software may be upgraded centrally at any time;
and the data is held on the server where it may be captured for research purposes,
in accordance with an agreement that users enter into when they create their
accounts.

The user interface has one page for each object, beginning with a header and
some navigation links, and continuing with updatable displays of the object’s
attributes. Most pages contain paragraphs of text describing their fields, so are
self-documenting. The exception is the page which displays a meeting (Figure
1), where there is too much detail to document on the spot. Instead, a set of
examples of meetings of increasing complexity is offered, which shows step-by-
step how each meeting is built up. There is also an overview document explaining
the capabilities of the system, and a glossary.

184 J. H. Kingston



Fig. 2. Screen shot of the summary table from the evaluation page. Each underlined
number is a link leading to a detailed list of defects. Below this table are other tables
giving an intermediate level of detail, such as the number of time conditions defects
affecting each student form, the number of soft workload overloads per teacher, etc.

When there is a solution, KTS offers an evaluation page summarizing its
defects (Figure 2), with links to more detailed evaluations. The most interesting
of these detects sets of resource slots that cannot all be assigned to, owing to a
shortage of resources (Figure 3).

Entry of a complete instance takes some hours. Short-cut operations for cre-
ating a time group and the usual three resource groups help somewhat, as do
operations for copying resources and meetings. There is also an operation for
copying a complete instance, which saves time when moving to a new year or
semester.

4 The solver

The KTS solver aims to produce a very good and comprehensible timetable
in ten seconds or less. It has five stages: column layout, tile construction, time

assignment, time adjustment, and resource assignment. The basic approach ap-
peared in an earlier paper by the author [5], but the present work describes a
completely rewritten solver, with more and better results.

The following five subsections describe the five stages. Some details have been
omitted, since a full description would be too lengthy for this paper, which aims
to present a balanced view of the whole system.

The KTS High School Timetabling System 185



Fig. 3. Screen shot of a detailed evaluation, showing that a set of three simultaneous
Art classes cannot all be assigned teachers, because there are only two Art teachers.
The analysis is based on finding the Hall sets of a bipartite matching between all the
tixels demanded by the instance and all the tixels supplied (a tixel is one resource at
one time). Two versions of this analysis are carried out, one before time assignment
and one after. Hall sets can be much more complex than this very simple example;
they might reveal that the supply of English and History teachers, taken together, is
insufficient to cover all the English and History classes even before time assignment,
and so on. KTS merely prints the Hall sets; the user must find the explanations.

4.1 Column layout

As far as possible, the meetings in a high school timetable should overlap exactly
in time, or not at all. This makes the timetable comprehensible, and simplifies
resource assignment.

KTS’s method of achieving such regularity begins by dividing the cycle into
columns: sets of times which make good choices for assigning to meetings, and
which meetings are encouraged to use wherever possible. The reader may be fa-
miliar with this approach from its use in North American universities, where the
columns Mon-Wed-Fri 9-10am, Mon-Wed-Fri 10-11am, and so on, are frequently
used. A traditional column plan in Australian high schools divides a cycle of 40
times into six columns each with six times, and one column with four times pre-
assigned those times when the whole school attends Sport and optional religious
instruction.

There is no requirement that meetings fit exactly into columns. In the se-
nior years they usually do, but in the junior years the school offers many small
subjects, often with little resemblance to any column plan.

186 J. H. Kingston



Day 1 Day 2 Day 3 Day 4 Day 5

Time 1 Column 1 Column 6 Column 2 Column 2 Column 5

Time 2 Column 1 Column 6 Column 2 Column 2 Column 5

Time 3 Column 6 Column 3 Column 4 Column 3 Column 3

Time 4 Column 6 Column 3 Column 4 Column 3 Column 6

Time 5 Column 5 Column 2 Column 1 Column 4 Column 4

Time 6 Column 5 Column 5 Column 1 Column 4 Column 7

Time 7 Column 4 Column 1 Column 5 Column 6 Column 7

Time 8 Column 2 Column 7 Column 3 Column 1 Column 7

Fig. 4. A typical layout of a week of 40 times into six columns of width 6 plus one of
width 4. Breaks are not shown, but occur after the fourth and sixth times each day
except Friday, when they occur after the third and fifth. This diagram was generated
in PostScript by KTS.

Although a column plan could easily be inferred from the time selections of
the meetings, it is such a basic part of the timetable planner’s thinking that
it seems better to have the user enter it, including a number of times, block
structure, and optional preassigned times for each column. Given this plan, the
solver’s first task is to assign specific times to each column, aiming to ensure that
each column satisfies the time conditions, so that meetings assigned to them will
do so. An example of such a column layout appears in Figure 4. Producing it is
quite easy in practice. The solver does it in two steps.

First, the time blocks naturally present in the cycle (between one break
and the next) are partitioned into smaller blocks whose sizes exactly match the
complete set of block sizes of the columns. KTS does this heuristically, checking
after each break that the columns’ block sizes can be packed into the current
cycle breakdown, and with an eye to the time conditions defined by the user: if
meetings should be spread evenly over five days, then the solver aims to have
the same number of time blocks on each day, and so on. Blocks of preassigned
times already present in meetings are used wherever possible.

Second, the time blocks created by breaking down the cycle’s blocks are as-
signed to columns. After an initial round-robin assignment, a simple hill climber
swaps pairs of equal-width time blocks between columns until no swap exists that
reduces the badness of the columns as measured against the time conditions.

4.2 Tile construction

KTS continues its efforts to build a regular timetable by first timetabling small
sets of meetings together into larger entities called tiles.

Figure 5 contains two examples of tiles. The students are grouped by abil-
ity for Mathematics, so the five Mathematics classes must run simultaneously

The KTS High School Timetabling System 187



Time 0 Time 1 Time 2 Time 3 Time 4 Time 5
8CKOAS-Maths 8C-History

8K-History
8O-History
8A-History
8S-History

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5
8C-English
8K-English 8K-English
8O-English 8O-English
8A-English 8A-English
8S-English 8S-English

8C-Music
8K-Music

8O-Music
8A-Music

8S-Music

Fig. 5. Two examples of tiles from the bghs98 instance. Each row is the timetable of one
student group resource; each column is one time. The wedges indicate block structure.

and are combined into one large meeting in the input data. The adjacent His-
tory meetings do not have to run simultaneously, but fitting them neatly along-
side Mathematics forces them to. The second tile illustrates a construction, well
known to manual timetablers, called the runaround. There are only two Music
teachers and two Music rooms, so the five Music classes cannot run simultane-
ously. By interleaving them among other meetings as shown, the tile demands
only one of each at any one time.

Tiles are built in three steps. First, the meetings of each student form are
grouped into buckets. Any meeting containing all the form’s student group re-
sources goes into a bucket by itself; meetings which are identical except for their
student group resources share a bucket; any meetings which cannot be analysed
in a similar manner go into a leftovers bucket.

Second, a series of decisions is taken to merge certain sets of buckets. These
decisions are made by a sequential heuristic which produces one merged bucket
per iteration. Buckets that cannot be timetabled effectively because of a lack of
resources are merged with other buckets. For example, the bucket holding the
Music classes from Figure 5 is not viable alone and must be merged. Other rel-
evant factors include preassigned times, the presence of student group resources
from several forms, and a preference for tiles whose width (number of times) is
a multiple of the usual column width, for regularity.

Finally, the meetings within each bucket are timetabled with respect to each
other, producing tiles. This is a general time assignment problem, on a small
scale, and the time assignment algorithm described in the next subsection is
used to solve it. This step is interleaved with the previous one: if the bucket’s
timetable turns out to be more defective than its meetings individually, the
bucket merging heuristic tries alternative bucket mergings.

188 J. H. Kingston



4.3 Time assignment

After tiles are built, the next stage is to timetable them into the times of the
cycle, producing a complete time assignment for all meetings.

The time assignment software module is called from three places within the
KTS solver: to timetable submeetings into their meetings, meetings into their
tiles, and tiles into the cycle. These problems are all essentially the same, differing
only in scale. This description will speak of timetabling meetings into the cycle,
rather than introducing unilluminating general terminology.

The meetings to be timetabled are first grouped into layers: sets of meetings
required to be disjoint in time, typically because they contain the same preas-
signed student resources. The layers are sorted so that the most difficult ones
(those requiring the most resources) come first, and timetabled one by one with
no backtracking. A meeting may lie in more than one layer, in which case it is
timetabled along with its first layer. In the time assignment stage of the solver
there is one layer per student form, plus one layer for each staff meeting.

Within each layer, each meeting is timetabled in turn, widest first, if possible
into a single column. A few assignments are tried for each meeting, but without
backtracking; instead, forward checks, involving two kinds of bipartite matchings
that monitor the availability of resources, keep the solver on track. These checks
are described in detail in a companion paper [7]. A timetable created by this
algorithm, plus time adjustment, appears in Figure 6.

4.4 Time adjustment

After a complete time assignment is obtained, time adjustment attempts to im-
prove it by hill climbing: swapping time blocks around while this produces an
improvement. Hill climbing is very effective here, since it corrects simple prob-
lems resulting from the lack of backtracking during time assignment, in time
proportional to the number of improvements it makes.

Although no resources have yet been assigned to meetings, there are never-
theless two useful evaluations that can be made at this point: checking the sets of
times assigned to meetings for their conformance to time conditions, and check-
ing that resources are sufficient at each time to cover the resource demands made
by meetings assigned that time (using a bipartite matching at each time between
resource demands and resources). A neighbour is accepted if it reduces problems
with resources, or improves time conditions without increasing problems with
resources.

There are several promising neighbourhoods that could be tried. The current
implementation explores two, repeating until neither gives any improvement.

The first neighbourhood takes each pair of time blocks of equal size assigned
to columns, such that none of the times involved is preassigned to any meeting
or column, and tries swapping these time blocks globally through every meeting.
This might reduce resource problems as well as time condition problems, because
resources’ unavailable times stay fixed, and a swap might move resource demands
away from the unavailable times of the resources they need.

The KTS High School Timetabling System 189



M1 M2 W5 W6 T7 R8 W1 W2 R1 R2 M8 T5 T3 T4 R3 R4 W8 F3 W3 W4 R5 R6 M7 F5 M5 M6 F1 F2 T6 W7 M3 M4 T1 T2 R7 F4 F6 F7 F8 T8
07A 7A-HPP-Sport 7A-Sci 7A-La 7AS-D&T123 7A-Ma 7A-Mu 7A-Sci 7AS-A 7AS-D&T12-A 7A-Ge 7A-Mu 7A-Ge 7A-La 7A-History 7A-HPP-Sport 7A-Ge 7A-His 7A-English 7A-Maths 7A-Sci 7A-Ma 7A-Science 7AS-A 7-Opti
07S 7S-HPP-Sport 7S-Languages 7S-Sci 7S-His 7S-Science 7S-Mu 7S-His 7S-Mu 7S-Ge 7S-His 7S-HPP-Sport 7S-Ge 7S-Mat 7S-English 7S-Maths 7S-Ge 7S-Science
07C 7C-English 7C-Ge 7C-En 7C-HPP-Sport 7C-Sci 7C-En 7C-Maths 7CKO-D&T12- 7CKO-Art12-D 7C-Science 7C-Geography 7C-La 7C-HP 7CKO-D&T12- 7C-His 7C-Mu 7C-Ma 7C-La 7C-Sci 7C-Mu 7C-History 7C-Sci 7C-HP 7C-Maths
07K 7K-HPP-Sport 7K-English 7K-Science 7K-HPP-Sport 7K-Sci 7K-Ge 7K-HPP-Sport 7K-Maths 7K-Science 7K-Ma 7K-Ge 7K-La 7K-Mu 7K-History 7K-English 7K-La 7K-Mu 7K-His 7K-Ge 7K-Maths
07O 7O-English 7O-Science 7O-HPP-Sport 7O-Sci 7O-Ge 7O-HPP-Sport 7O-HPP-Sport 7O-Maths 7O-Ge 7O-Mu 7O-La 7O-History 7O-Science 7O-His 7O-La 7O-Mu 7O-Ge 7O-Maths
08A 8A-English 8A-His 8A-En 8CKOAS-Math 8A-Science 8CKO 8A-Sci 8-LPD-1234 8A-Mu 8A-Ge 8AS-Art12-D& 8A-Sport 8CKOAS-Math 8-LPD-5678 8AS-D&T12-A 8A-Ge 8A-His 8-LPD-5678 8A-Science 8A-Ge 8A-Mu 8AS-D&T123 8A-His 8-Opti
08S 8S-English 8S-Mu 8S-Eng 8S-Science 8S-Sci 8S-Mu 8S-Ge 8S-Sport 8S-History 8S-Science 8S-Geography 8S-His
08C 8C-Science 8C-En 8C-Sci 8C-English 8C-Mu 8C-His 8C-Mu 8C-English 8CKO-D&T12- 8C-Sport 8C-Geography 8CKO-D&T12- 8C-History 8CKO-Art12-D 8C-Ge
08K 8K-Science 8K-En 8K-Sci 8K-English 8K-Mu 8K-His 8K-Mu 8K-English 8K-Sport 8K-Geography 8K-History 8K-Ge
08O 8O-Science 8O-Music 8O-English 8O-Sci 8O-His 8O-English 8O-Sport 8O-Geography 8O-History 8O-Ge
09-1 E9-7 9-PD-1 E9-4 E9-6 E9-4 E9-6 9-English-1 E9-5 E9-7 E9-5 9-Science-1 9-Musi 9-Scie 9-Maths 9-Sport 9-Opti
09-2 9-PD-2 9-English-2 9-Science-2 9-Musi 9-Scie
09-3 9-Science-3 9-English-3 9-PD-3 9-Science-3 9-Musi
09-4 9-PD-4 9-English-4 9-Science-4 9-Musi
09-5 9-PD-5 9-English-5 9-Musi 9-Science-5
10-1 E10-6 E10-7 E10-4 E10-5 E10-4 E10-5 10-Science 10-English 10-Maths E10-7 10-PD E10-5 E10-4 10-Sport 10-Opt
10-2
10-3
10-4
10-5
Year11 11-3-Maths/12-3 11-1 11-4/12-4-Maths 11-5/12-5 11-2/12-1 11-6 11-Sport 11-Opt
Year11-2-OAS
Year11-3-OAS 11-3/1 11-3/12-3-OAS
Year11-4-OAS 11-3-Maths/12-3 11-4/1 11-4/12-4-OAS-B 11-4/12-4-OAS
Year11-5-OAS 11-4/12-4-Maths 11-5/1 11-5/12-5-OAS-A 11-5/12-5-OAS
Year12 12-2 11-5/12-5 12-6 12-7 12-Opt
Year12-2-OAS 12-2-O 12-2-OAS-B 12-2-OAS-A
Year12-3-OAS 11-3/1 11-3/12-3-OAS-A 11-3/12-3-OAS 12-2
Year12-4-OAS 11-3-Maths/12-3 11-4/1 11-4/12-4-OAS-B 11-4/12-4-OAS
Year12-5-OAS 11-4/12-4-Maths 11-5/1 11-5/12-5-OAS-A 11-5/12-5-OAS
Other Mathe Studen Histor Englis PDFac Sport StaffM
Other ExecutiveMeeting

Fig. 6. A planning timetable for the bghs98 instance. Each row except the last two
represents the timetable of one student group resource. The columns represent times,
permuted to bring the times of the columns (in the column layout sense: six of width 6
and one of width 4) together, making them and the tiles within them clearly visible. An
example of a time adjustment, swapping Science with Personal Development, appears
in the row of student group 09-3. This diagram was generated in PostScript by KTS.

The second neighbourhood takes pairs of meetings that contain the same
preassigned resources (typically student group resources) and swaps blocks of
their times of equal width. Since this can disrupt the regularity of a timetable,
these swaps are only accepted if they reduce problems with resources, and indeed
are only tried at times where there are such problems.

4.5 Resource assignment

Resource assignment is the assignment of particular resources to the resource
slots of meetings. The solver does this after times are all assigned.

Each resource group may be assigned independently of the others, apart
from a slight connection caused by ‘follows’ requirements. For each resource
group in turn, in an order influenced by the presence of ‘follows’ requirements,
preassignments are first converted to assignments, then assignments arising from
‘follows’ requirements are made, then all remaining unassigned slots are assigned.
Some preassignments may fail to convert owing to resource unavailabilities and
workload limits; their slots remain unassigned and become defects in the solution.

The resource assignment problem comes in two versions, depending on how
acceptable split assignments are. Typically, split assignments are undesirable
when assigning teachers, but acceptable when assigning rooms, provided classes
do not have to change rooms part-way through a time block.

190 J. H. Kingston



Avail M1 M2 W5 W6 T7 R8 W1 W2 R1 R2 M8 T5 T3 T4 R3 R4 W8 F3 W3 W4 R5 R6 M7 F5

Gibbons 0 8C-Science 7A-Scie 8C-Scie 7K-Science 8A-Science 7A-Scie 8A-Scie Student 12-5-Chemistry
Kassab 0 7O-Science 8S-Science 7O-Scie 8S-Scie 10-Science2 11-5-Biology
Kidd 0 12-3-Physics 7C-Scie 10-Science1 7C-Science
Prasad 0 8K-Science 8K-Scie 12-2-GeneralScience-1 10-Science3
Saule 0 8O-Science 12-2-Biology 10-Science5 12-5-Biology
Smith 1 9-Science-3 7S-Scie 7S-Science 8O-Scie 10-Science4 11-5-Physics
Unassigned 7K-Scie 7K-Science

M5 M6 F1 F2 T6 W7 M3 M4 T1 T2 R7 F4 F6 F7 F8 T8

Gibbons 9-Science-1 9-Scienc 8A-Science 7A-Scie Sport StaffMe
Kassab 11-2-GeneralScience 7O-Science 8S-Science
Kidd 9-Science-5 7C-Scie 7C-Scie ExecutiveMeeting
Prasad 9-Science-4 11-6-Chemistry-1 Sport
Saule 11-6-Chemistry-2
Smith 9-Science-3 11-6-Biology 7S-Science
Unassigned

Fig. 7. Planning timetable showing the teacher assignment for the Science faculty of
the bghs98 instance. (The resource assignment algorithm assigns all faculties simultane-
ously, but it is convenient to analyse its results faculty by faculty.) The second column
gives the remaining unused workload of each teacher. Split and partial assignments are
shown in italic font. There are three unassigned tixels. This diagram was generated in
PostScript by KTS.

Room assignment is not difficult. The solver assigns each time block of each
meeting, largest blocks first, choosing a qualified resource whose use does not
increase the number of resource problems at any of the block’s times (the usual
bipartite matching checks this condition), and preferring a resource which has
already been assigned to another block of the meeting. If a block of two or more
times is encountered for which this is not possible, it is split into blocks of width
1; if a block of width 1 cannot be assigned, it is passed over and becomes a defect
in the solution.

The teacher assignment algorithm tries much harder to avoid split assign-
ments (Figure 7). It is based on the alternating path method familiar from bi-
partite matching and similar problems, used as a heuristic, since the optimality
guarantees that usually accompany it are absent.

Choose a currently unassigned teacher slot of maximum width. If there is a
qualified teacher able to fill this slot (i.e. without causing clashes or exceeding
workload limits), assign that teacher and move to the next widest slot. Oth-
erwise, see if there is a teacher who could fill the slot if only some one of the
assignments currently given to that teacher were deassigned and given to some
other teacher able to fill it. If so, make the indicated chain of two assignments
and one deassignment, and move on. If not, look for a longer chain, and so on.
At each moment when there are no workload overloads or clashes, compare the
whole set of assignments with the best so far, and replace it if it is better.

The KTS High School Timetabling System 191



Table 1. The six instances tested, showing the number of times, resources, and meet-
ings in each.

Instance Times Student Groups Teachers Rooms Meetings

bghs93 40 23 53 46 155
bghs95 40 27 52 48 147
bghs98 40 30 56 45 152
tes98 30 11 33 20 95
tes99 30 13 37 26 86
sahs96 60 20 43 36 131

Two methods of controlling the size of the search are used. One is the tradi-
tional one of marking each possible assignment and deassignment visited when
it is first considered, and refusing to reconsider it during the course of the search
(it becomes available again when we move to the next slot). The other method is
to allow revisiting but to strictly limit the depth of the search, to the empirically
determined value of 5 (three assignments and two deassignments). The searches
are repeated until there is no improvement.

At each slot, in addition to searching for ordinary assignments, the solver
finds a qualified resource which is available for as many times as possible, and
generates all split assignments which have that resource and those times as the
first branch, and one other qualified resource with the remaining times as the
second branch. The alternating path search continues down the second branch.
A single partial assignment is also generated, holding the first branch as before
but omitting the second.

5 Results

This section analyses the performance of the solver on six instances taken from
three high schools in Sydney, Australia. Statistical descriptions of these instances
appear in Table 1, run times are given in Table 2, and the quality of the solutions
is summarized in Tables 3, 4, and 5. The solver always assigns the correct number
of times to each meeting, never introduces student group clashes, and prefers
to leave teacher and room slots unassigned rather than introducing teacher and
room clashes and workload overloads. So the possible defects are time assignment
problems (wrong block structure, meeting spread over too few days, etc.) and
unsatisfactory room and teacher assignments (split, partial, and missing).

The sahs96 instance has a two-week cycle, and all its teacher slots are pre-
assigned. These two factors make time assignment very slow. It is encouraging
that only 3.1% of these preassigned teacher tixels could not be assigned (Table
5), given that the solver is not optimized to handle instances that are highly
constrained in this way. However, the solver’s desperate attempt to satisfy all
these preassignments leads to a quite irregular timetable.

The other instances are more typical of the solver’s intended domain of appli-
cation. Run times are under ten seconds. Block structure defects are somewhat

192 J. H. Kingston



Table 2. Run times in seconds for the major stages and in total. The tests used a
3.2GHz Pentium machine running Linux. Run times are as reported by the Linux time
command, which is accurate to one second. Column layout time was always 0.0 seconds
so has been omitted. Time assignment includes time adjustment by hill climbing, never
more than one second. The times given for resource assignment essentially measure
teacher assignment only, since room assignment is very fast. Total times were checked
against wristwatch time.

Instance Tile construction Time assignment Resource assignment Total

bghs93 0.0 3.0 3.0 6.0
bghs95 0.0 1.0 7.0 8.0
bghs98 0.0 1.0 6.0 7.0
tes98 1.0 1.0 0.0 2.0
tes99 0.0 1.0 0.0 1.0
sahs96 1.0 31.0 0.0 32.0

Table 3. Evaluation of time assignments, showing the absolute number of meetings
with defective block structure, uneven spread through the cycle, and more than one
undesirable time, plus this number as a percentage of the total number of meetings.

Instance Block structure Spread Undesirable times

bghs93 48 (31.0%) 51 (31.2%) -
bghs95 20 (13.6%) 44 (29.9%) 7 (4.8%)
bghs98 5 (3.3%) 31 (21.1%) 0 (0.0%)
tes98 36 (37.9%) 22 (23.2%) 2 (2.1%)
tes99 37 (43.0%) 27 (31.4%) -
sahs96 2 (1.5%) 74 (56.5%) 18 (13.7%)

high (Table 3). This problem awaits analysis but should be correctable. Time
conditions defects are probably acceptable now, given their relative unimpor-
tance, although there is room for improvement.

Resource assignment can be evaluated either in terms of the number of de-
fective assignments (split, partial, or missing), or the number of unassigned in-
dividual tixels (a tixel is one resource at one time, either supplied or demanded).
Some tixels are inevitably unassignable given a particular time assignment – for
example, if the time assignment requires five Science laboratories to be avail-
able at some time, but the school has only four. These are shown in the fourth
column of Tables 4 and 5, while the number of unassigned tixels after resource
assignment is shown in the fifth column.

Room assignment (Table 4) is virtually perfect. The room assignment algo-
rithm always assigns every room tixel that time assignment permits, because it
breaks time blocks up into individual times if necessary, and, using a bipartite
matching between room demands and rooms at each time, it never allows the
number of unassignable rooms at any time to increase. This is why the fourth
and fifth columns of Table 4 are equal. The fact that only two split assignments
were ever introduced shows how easy this problem is in practice.

The KTS High School Timetabling System 193



Table 4. Evaluation of room assignments, showing the absolute number of split assign-
ments, partial and missing assignments, unassignable tixels after time assignment (1),
and unassigned tixels after resource assignment (2), plus this number as a percentage
of the number of room assignments or tixels demanded. In this table, a split assignment
is one in which a class has to change rooms part-way through a time block.

Instance Split Partial/missing Tixels (1) Tixels (2)

bghs93 0 (0.0%) 7 (3.1%) 15 (1.2%) 15 (1.2%)
bghs95 0 (0.0%) 6 (2.9%) 9 (0.7%) 9 (0.7%)
bghs98 0 (0.0%) 5 (2.1%) 7 (0.5%) 7 (0.5%)
tes98 2 (2.2%) 5 (5.5%) 7 (1.5%) 7 (1.5%)
tes99 0 (0.0%) 5 (3.7%) 7 (1.3%) 7 (1.3%)
sahs96 0 (0.0%) 27 (11.2%) 15 (1.0%) 15 (1.0%)

Table 5. Evaluation of teacher assignments, showing the absolute number of split as-
signments, partial and missing assignments, unassignable tixels after time assignment
(1), and unassigned tixels after resource assignment (2), plus this number as a percent-
age of the number of teacher assignments or tixels demanded, as appropriate. In this
table, a split assignment is one in which a class is taught by two teachers.

Instance Split Partial/missing Tixels (1) Tixels (2)

bghs93 3 (0.7%) 7 (1.5%) 5 (0.3%) 9 (0.6%)
bghs95 17 (3.7%) 15 (3.3%) 7 (0.5%) 27 (2.0%)
bghs98 24 (5.4%) 10 (2.3%) 8 (0.5%) 17 (1.2%)
tes98 7 (3.8%) 13 (7.1%) 14 (3.0%) 14 (3.0%)
tes99 2 (1.1%) 9 (5.1%) 9 (1.7%) 9 (1.7%)
sahs96 0 (0.0%) 27 (11.2%) 47 (3.1%) 47 (3.1%)

Unassigned room tixels typically request specialized laboratories whose de-
mand is very tight. This problem is quite common in high schools and is not of
major concern, since, given its low relative frequency, it is not difficult to ensure
that no class meets in an inappropriate room for more than one of its times,
and the teacher would organize the classroom material accordingly. An option
to assign inappropriate rooms where necessary, spreading them fairly among the
classes affected, could easily be added.

Split teacher assignments and unassigned teacher tixels (Table 5) are the
main areas of concern. How acceptable these results are it is hard to say. Hand-
generated timetables also have these problems. Split assignments are quite rou-
tine. Unassigned tixels are handled in various ways: by excusing a teacher from
a faculty meeting, having an available but unqualified teacher supervise a class,
and so on. Unlike other defects, every unassigned teacher tixel is a real problem
requiring the attention of the timetable planner.

One unassignable tixel in a teacher slot spoils the assignment of the entire
slot. This suggests that finding time assignments with fewer unassignable teacher
tixels would be more helpful than improving the teacher assignment algorithm.

194 J. H. Kingston



6 Conclusion

This paper has presented KTS, a freely accessible web-based system for high
school timetabling which produces good timetables in a few seconds.

The fast response time makes KTS well suited to exploring alternative sce-
narios and incorporating late changes to requirements. However, KTS does not
yet address the problem of making minimal changes to a published solution in
response to changes in requirements.

The data model is mature, except perhaps in its treatment of time, and the
overall structure of the solver is quite successful. It seems likely that future work
will focus on improving the existing solver components, rather than radically
redesigning the solver. The time assignment stage is the obvious next target
for improvement. In fact, since this paper was written, the author has designed
and implemented a more flexible approach to time assignment and adjustment
which should allow the algorithms described here to be varied and generalized
in several interesting ways [7].

In parallel with these efforts, the KTS system will be promoted to Australian
high schools. At the time of writing, 60 accounts have been created, but only
a few are active. More users will bring a larger and more diverse set of test
instances, which should lead to further progress.

References

1. Edmund Burke and Wilhelm Erben (eds.): Practice and Theory of Automated
Timetabling III (PATAT2000, Konstanz, Germany, August 2000, Selected Papers).
Springer Lecture Notes in Computer Science 2079, 2001

2. Edmund Burke and Patrick de Causmaecker (eds.): Practice and Theory of Au-
tomated Timetabling IV (PATAT2002, Gent, Belgium, August 2002, Selected Pa-
pers). Springer Lecture Notes in Computer Science 2740, 2003

3. M. W. Carter and Gilbert Laporte: Recent developments in practical course
timetabling. Practice and Theory of Automated Timetabling II (Second Inter-
national Conference, PATAT’97, University of Toronto, August 1997, Selected
Papers), Springer Lecture Notes in Computer Science 1408, pages 3-19, 1008

4. Tim B. Cooper and Jeffrey H. Kingston: The solution of real instances of the
timetabling problem. The Computer Journal 36, pages 645–653, 1993

5. Jeffrey H. Kingston: A tiling algorithm for high school timetabling. In Proceedings
of the 5th International Conference on the Practice and Theory of Automated
Timetabling, Pittsburgh, PA, pages 233-249, August 2004

6. Jeffrey H. Kingston: The KTS high school timetabling web site (Version 1.3),
October 2005. http://www.it.usyd.edu.au/˜jeff

7. Jeffrey H. Kingston: Hierarchical timetable construction. To appear in Proceedings
of the 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, Czech Republic, August 2006

8. Peter Ross, Emma Hart, and Dave Corne: Some observations about GA-based
exam timetabling. Practice and Theory of Automated Timetabling II (Second
International Conference, PATAT’97, University of Toronto, August 1997, Selected
Papers), pages 115-129, 1998

The KTS High School Timetabling System 195


