
Hierarchical Timetable Construction

Jeffrey H. Kingston

School of Information Technologies
The University of Sydney, NSW 2006, Australia

http://www.it.usyd.edu.au/~jeff

jeff@it.usyd.edu.au

Abstract. A hierarchical timetable is one made by recursively joining
smaller timetables together into larger ones. Hierarchical timetables ex-
hibit a desirable regularity of structure, at the cost of some limitation
of choice in construction. This paper describes a method of specifying
hierarchical timetables using mathematical operators, and introduces a
data structure which supports the efficient and flexible construction of
timetables specified in this way. The approach has been implemented in
KTS, a web-based high school timetabling system created by the author.

1 Introduction

The basic timetable construction problem is to assign times and resources (stu-
dents, teachers, rooms, etc.) to a set of meetings so that the resources have as
few timetable clashes as possible. To this basic problem many other constraints
are typically added, such as that the times allocated to a meeting be spread
evenly through the week, that workload limits placed on some resources not be
exceeded, and so on. Timetable construction is an NP-complete problem with
an extensive literature [3–7].

Informally, a regular timetable is one in which a pattern may be discerned
which makes the timetable easy to understand and remember. Regularity may
take many forms, but this paper will be chiefly concerned with regularity in the
choice of times. For example, North American universities commonly require all
courses to occupy three hours per week, offered in one of the sets of time slots
Mon-Wed-Fri 9-10am, or Mon-Wed-Fri 10-11am, and so on, producing a very
regular timetable.

Even when such a strict rule as this is not possible, still some regularity
might be achievable, perhaps by attempting to minimize the number of pairs of
meetings that share at least one time, in addition to the usual objectives.

Regular timetables are easy to assign resources to. For example, in the North
American university system, each meeting can meet in the same room for all
three of its times. This point is particularly significant in high school timetabling,
where teachers are assigned as well as rooms. Teacher assignment is the main area
where the author’s previous work in high school timetabling [8, 10] is deficient.
Thus, regularity is more than just an aesthetic consideration.

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 196–208. ISBN 80-210-3726-1.



This paper introduces a method of specifying regular timetables hierarchi-
cally, using timetable expressions analogous to algebraic expressions, and a data
structure, the layer tree, which represents these expressions and efficiently sup-
ports the basic assignment and deassignment operations on which most timetable
construction algorithms are built. This author’s KTS timetabling system [11, 12],
a free, public web site for high school timetabling, uses layer trees. They are par-
ticularly effective when sets of meetings can be identified that must be disjoint
in time. In high school timetabling, each set of meetings attended by a given
student group satisfies this condition.

Our focus is on the efficient implementation of the basic assignment and
deassignment operations, rather than their use with any particular timetable
construction algorithm. If these operations are efficient, many algorithms, in-
cluding construction heuristics, tree searches, and local searches, become avail-
able. Although efficiency is a key goal, it has not been considered useful to report
running times, since the operations to be presented are all polynomial time, and
running times say more about the algorithms built on these operations than the
operations themselves. KTS typically produces a good timetable in about ten
seconds [12], showing that layer trees can support practical timetabling.

Much of this paper is concerned with constraint propagation, but the empha-
sis here is on the efficient implementation of a particular set of constraints rele-
vant to timetabling, rather than the use of a general-purpose constraint program-
ming system to solve timetabling problems. Some of the algorithms used here, for
example weighted bipartite matching, do not seem to be available in any exist-
ing constraint programming system [2, 9], although some recent research into the
all different constraint [13], which implements unweighted bipartite matching, is
a step in that direction.

The algorithms used here have appeared in previous timetabling work by
the author and others [8, 10, 14]. This paper’s contribution is to show how these
algorithms can be incorporated into a flexible, efficient, hierarchical constraint
framework. Section 2 introduces timetable expressions, and Section 3 introduces
the layer tree data structure. Section 4 analyses the problem of efficiently prop-
agating constraints related to time through this data structure as assignments
and deassignments occur, and Section 5 does the same for resource constraints.
Section 6 surveys some other, less fundamental features implemented in KTS.

2 Timetable expressions

The idea of using an expression to specify a problem is well known in logic.
Consider a Boolean expression such as

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)

The expression defines an instance of the satisfiability problem, for which a so-
lution consists of an assignment of values to the variables which satisfies the ex-
pression. In the same way, timetable expressions will be used to specify timetable
construction problems.

Hierarchical Timetable Construction 197



The simplest kind of timetable expression is the time variable, a variable v
whose domain is some subset of the set of available times T . This domain may
change as solving proceeds; its value at some moment will be denoted tdom(v),
and its initial value, specified when the variable is created, will be denoted
tdom0(v). For example, if v may be assigned any time, then tdom0(v) = T ;
if v is preassigned to a specific time t, tdom0(v) = {t}. Other initial domains
may constrain times to be during the mornings, or on Mondays, and so on.

The ultimate aim is to assign an element of T to every time variable, just as
the aim is to assign a Boolean value to every variable when solving satisfiability
problems. However, it turns out that in hierarchical timetabling a more useful
basic operation is the unification of one time variable, v, to another, w, with the
meaning that v’s value is constrained to be equal to w’s. Unifying two variables
expresses the idea that two meetings are to occur simultaneously, without having
to say when.

Thus, our system offers two basic operations: unifying a variable v to one
other variable w, and removing the unification of v to w. A variable may be
unified to at most one other variable at any moment; but that other variable is
free to be unified to a third variable (or not), and many variables may be unified
simultaneously to one variable.

Two timetable expressions e1 and e2 may be joined using the concatenation
operator, written e1e2, meaning that the times assigned to the variables of e1

must be disjoint from those assigned to the variables of e2. For example, a
meeting requesting four times may be expressed by the timetable expression
v1v2v3v4, where v1, v2, v3, and v4 are time variables. Concatenation specifies
that the times assigned to these four variables must be distinct, as required.

If two meetings request the same resource, and it is a hard constraint that
that resource may have no clashes in its timetable, then the expressions rep-
resenting those two meetings may be concatenated. This is fundamental in the
high school timetabling work which motivates this paper: each student group is
such a resource, and the meetings it appears in must be disjoint in time.

Two timetable expressions e1 and e2 may be joined using the alternation
operator, written e1 + e2, meaning that e1 and e2 are to appear in the same
timetable, but there are no time constraints between their variables. In the high
school timetabling application, e1 might represent the meetings attended by one
student group, and e2 might represent the meetings attended by some other
student group. These two sets of meetings have no time interdependencies, so
joining them with + is appropriate. If there is a meeting that both student groups
attend, then its expression (v1v2v3v4 or whatever) will appear in both subex-
pressions, and its variables must be assigned times disjoint from those assigned
to the variables its expression is concatenated with in both subexpressions.

These operations are named by analogy with the corresponding operators of
regular expressions: e1+e2 signifies that e1 and e2 are alternative activities, while
e1e2 signifies that one activity must follow after the other. In timetable expres-
sions, however, both operators are associative and commutative. A distributive
law, (a + b)c = (ac + bc), also holds.

198 J. H. Kingston



Finally, there is the restriction operator, written

w1w2 . . . wk : e

where w1w2 . . . wk is a concatenation of time variables called restriction variables,
and e is a timetable expression. This specifies that each variable in e must not
appear outside e, and must be unified to one of the wi (which themselves must
be assigned disjoint times), restricting e to a timetable using at most k times.

Restriction introduces abstraction into a timetable expression. The expres-
sion e may be timetabled into w1w2 . . . wk independently of the rest of the prob-
lem, after which these variables are indistinguishable from an ordinary concate-
nation of variables describing a meeting.

Typically, the outermost level of a timetable expression is a restriction expres-
sion which limits the timetable to the available times. Letting T = {t1, t2, . . . , tn}
be the set of available times, this expression would have the form

w1w2 . . . wn : e

where tdom0(wi) = {ti} for all i. Although the operation of assigning a particular
time ti to a variable v is not offered, unifying v to wi is effectively the same thing.

Variants of the timetabling problem exist in which the exact number of avail-
able times is not given; instead, a timetable with as few times as possible is
sought, consistent with other requirements. The restriction notation could easily
be extended to cover such problems. However, the algorithms appearing later in
this paper assume a fixed number of variables, so any such ‘extensible restriction’
would have to be solved (or at least, its number of variables determined) before
incorporation into a larger timetable, forcing a bottom-up solution order.

An example of a small timetable expression appears in Figure 1.

3 The layer tree data structure

A timetable expression such as

(e1 + e2)(e3 + e4)

is difficult to handle, since it is not clear how many of the available times should
be allocated to e1 + e2, and how many to e3 + e4. While cases of this kind do
occur, they are beyond the scope of this paper, and we will now exclude them.

A simple timetable expression is one in which each alternation expression
e1 + · · ·+ em is immediately enclosed in a restriction expression. In such expres-
sions it is easy to determine how many times to allocate to each subexpression.
Furthermore, a simple timetable expression can be analysed into a tree (or forest
if the root is a concatenation expression) of expressions of the form

w1w2 . . . wn : (e11e12 . . . e1k1 + · · ·+ em1em2 . . . emkm
)

called a restricted sum of products. Here m may be 0, in which case the expression
just denotes a sequence of variables w1w2 . . . wn. Each eij is a restricted sum of

Hierarchical Timetable Construction 199



t1 t2 t3 t4 t5

7A 7A-Hist 7A-English

7B

7AB-Mathematics

7B-English 7B-Hist

(a) A small timetable, or tile, occupying two student groups (7A and 7B) for five times
t1, t2, t3, t4, and t5.

w1w2w3w4w5 : m1m2ha1ea1ea2 + m1m2eb1eb2hb1

(b) A timetable expression for which (a) is a solution. Here w1w2w3w4w5 represent the
five available times, ha1 represents 7A-Hist, ea1ea2 represents 7A-English, and so on;
m1m2, representing 7AB-Mathematics, lies in two subexpressions.

w

w1

w

w2

w

w3

w

w4

w

w5

× ×

h

ha1

e

ea1

e

ea2

m

m1

m

m2

e

eb1

e

eb2

h

hb1

(c) A layer tree corresponding to (b). Variables are shown as labelled boxes; + nodes
are shown as concatenations of their variables.

w

w1

w

w2

w

w3

w

w4

w

w5

h

ha1

e

ea1

e

ea2

m

m1

m

m2

e

eb1

e

eb2

h

hb1

(d) The layer tree of (c), showing unifications representing the timetable of (a). The ×
nodes have been omitted for clarity.

Fig. 1. Timetables, timetable expressions, layer trees, and unification.

products. Some of the eij may be shared, i.e. some epq and ers may be the
same subexpression. To solve a restricted sum of products is to unify each of the
restriction variables in each eij to one of the wi.

One way to solve a timetabling problem represented by a simple timetable
expression is to solve its restricted sums of products in bottom-up order. This pa-
per aims for more flexibility, however, in allowing unifications and de-unifications
within each restricted sum of products at any moment. For example, this would
permit the timetable of a small component to be adjusted (by local search, per-
haps) after that component is incorporated into a larger timetable. To achieve
this we need a data structure which represents the entire tree of restricted sums
of products, with the current state of the unifications of each.

The data structure we will use, which we call a layer tree, is essentially just
the expression tree corresponding to a simple timetable expression. A layer tree

200 J. H. Kingston



has two types of nodes: + nodes representing restricted sums of products and
containing their restriction variables, and × nodes representing concatenations.
Nodes of both types may have any number of children. Figure 1 gives an example
of converting a restricted sum of products into a layer tree.

Without loss of generality, we may assume that in every layer tree the root is
a + node, its children are × nodes, their children are + nodes, and so on, with
the node type alternating between + and × at each level. To bring an arbitrary
layer tree into this form, first use the associativity of concatenation to replace
every × node whose parent is a × node by its children. Then insert a × node
immediately above every + node whose parent is a + node. Finally, if the root
is a × node, remove it and solve each of its children independently.

Each variable v within each + node other than the root node requires unifi-
cation with a variable w in the + node two levels above it. Each such unification
is represented by a pointer in v to w (Figure 1d). Eventually, when all these vari-
ables are unified in this way, every variable may be said to have been assigned a
time, obtainable by following the chain of pointers to its end.

Any set of variables requiring distinct times is called a layer. The variables
lying in any + node form a layer; the variables lying in all the children of any
× node also form a layer.

For example, the author’s KTS system builds a layer tree with several levels.
Each meeting may contain submeetings which have to be timetabled into the
times of the meeting; each such meeting becomes a restricted sum of products.
Then small groups of compatible meetings are timetabled together, producing
tiles such as the one in Figure 1a; each tile is the solution of a restricted sum
of products whose child layers contain meetings. Finally, the times of the week
form a restricted sum of products whose child layers contain tiles.

4 Time constraints

This section explains how constraints on time assignment are propagated through
the layer tree, so that at any moment it is clear for each variable exactly which
variables it may be unified to without violating any time constraints.

Since each variable is unified to at most one other variable at any moment,
the unifications form a directed forest with edges pointing towards the roots.
The current unification of a variable v will be denoted p(v) (‘parent of v’) when
present, and the variable at the root of the tree of unifications containing v
(possibly v itself) will be denoted r(v). A root variable is a variable w such that
r(w) = w. Every variable in the root node of a layer tree must be a root variable,
but other variables may also be root variables: root variables are just variables
that are currently not unified to other variables.

Recall that each time variable v has its initial domain tdom0(v) of times that
it may be assigned initially, and its current domain tdom(v) of times that it may
be assigned to at the current moment. We require

tdom(v) ⊆ tdom0(v)

Hierarchical Timetable Construction 201



since otherwise the original constraint has been lost.
Each time variable v has a second kind of domain, its variable domain

vdom(v), which is the set of variables that v may be unified to. Again, vdom0(v)
will denote the initial value of vdom(v), and we require vdom(v) ⊆ vdom0(v).
For each variable vij in the restricted sum of products

w1w2 . . . wm : (v11v12 . . . v1k1 + · · ·+ vm1vm2 . . . vmkm
)

we have vdom0(vij) ⊆ {w1, w2, . . . , wm}.
The two domains are related by the condition

w ∈ vdom(v) ⇒ tdom(w) ⊆ tdom(v)

(⇒ is implication). For example, this prohibits a preassigned variable from being
unified to an unpreassigned one; in general, it prevents w from being assigned a
time not acceptable to v.

The following formulas show how tdom(v) and vdom(v) may be kept up to
date as variables are unified and deunified:

tdom(v) = tdom0(r(v))

and
vdom(v) = {w ∈ vdom0(v) | tdom(w) ⊆ tdom(v)}

These follow easily from the discussion so far. Note that vdom(v) is only needed
at moments when v is not unified.

When a variable v is unified to another variable w, the variable domains of all
variables concatenated with v need to be reduced by removing w, since unifying
any of them with w would violate the constraint that concatenated variables
must be assigned distinct times. An efficient method of doing this is as follows.

Let the set of variables lying in the children of one × node be v1, . . . , vm;
these variables form a layer which we call L. The variables in the parent of that ×
node form another layer, which we call p(L). The variables of L must be unified
to the variables of p(L).

For each vj , define the child layer set, cl(vj), to be the set of × nodes which
are the parents of the + node containing vj . (As explained earlier, a + node may
have several parents, typically because the meeting it represents contains several
preassigned resources.) For each wi, define the parent layer set, pl(wi), to be the
union of the child layer sets of all variables unified directly to wi. Parent layer
sets must be maintained dynamically as unifications are done and undone.

Now modify the definition of vdom(v) given above to

vdom(v) = {w ∈ vdom0(v) | (tdom(w) ⊆ tdom(v)) ∧ (cl(v) ∩ pl(w) = ∅)}

This excludes w from vdom(v) when some other variable that shares a layer with
v is currently unified to w. The set operations may be implemented efficiently
using bit vectors.

202 J. H. Kingston



p(L)
w

w1

w

w2

w

w3

w

w4

w

w5

L
v

v1

v

v2

v

v3

v

v4

Fig. 2. An example of an unweighted bipartite matching graph between the variables
of a child layer L and its parent layer p(L), shown as dashed edges. One unification is
already present, from v4 to w5, ensuring that L ∈ pl(w5) and thus excluding w5 from
vdom(v) for all other v ∈ L. This particular matching could arise when v3 and w4 are
preassigned to the same time (tdom(v3) = tdom(w4) = {ti} for some ti ∈ T ), and
the other variables are free to be assigned any time. Note that w4 ∈ vdom(v1) but no
maximal matching would unify v1 to w4.

Given current values of vdom(v) for all variables v in some layer L, the next
question is whether it is possible to unify all the currently un-unified variables of
L to variables in p(L). Since the unifications must be to distinct variables, this
is an unweighted bipartite matching problem between the currently un-unified
variables of L and the variables of p(L), with edges defined by the current values
of the domains vdom(v) of the currently un-unified variables of L (Figure 2). We
will see in the next section that there are reasons for preferring some unifications
to others, converting the unweighted bipartite matching into a weighted one.

5 Resource constraints

In addition to requests for times, meetings contain requests for resources. These
may be for particular resources, called preassigned resources, or for any resource
of a certain type, such as a Science laboratory.

A typical meeting requests one preassigned student group resource, one teacher
which may or may not be preassigned, and one room, usually not preassigned.
However, it is very common for a whole collection of meetings to be required to
run simultaneously, to give the students a choice of activities. Such a collection
is modelled as a single large meeting with many resource requests.

A basic question which can be asked of any set of meetings is whether the
institution has sufficient resources to allow those meetings to run simultaneously.
For example, if the school has only two Music teachers and two Music rooms,
then at most two Music meetings may run simultaneously. As is well known, this
question can be answered using an unweighted bipartite matching model, called
a resource sufficiency matching [8], as follows.

For each request for a resource in each of the meetings involved, create one
node called a demand node. For each resource in the instance of the timetabling
problem being solved, create one node called a supply node. Connect each de-
mand node to those supply nodes capable of satisfying that demand. For exam-

Hierarchical Timetable Construction 203



ple, a demand node for a particular student group resource would be connected
to just the supply node representing that resource; a demand node for a Sci-
ence laboratory would be connected to every supply node representing a Science
laboratory. The meetings may run simultaneously if a maximum matching in
this graph touches every demand node. The matching defines an assignment of
resources to requests which satisfies as many requests as possible.

This model allows supply nodes which are capable of satisfying several kinds
of demands: teachers who teach both English and History, rooms which are Sci-
ence laboratories but are usable as ordinary classrooms, and so on. The obvious
simpler method, of comparing the total number of demands of each type with
the total supply of resources of that type, fails to handle such cases.

We turn now to the implementation of these ideas within the layer tree.
Associated with each time variable is a set of demand nodes, which we call a
demand chunk. For example, a Music meeting might request student group 7C,
one Music teacher, and one Music room for four times, and then there will be
four variables, each with an associated chunk containing three demand nodes.
These chunks happen to be identical, but they are copies, not shared.

Any time variable may have a demand chunk, whether or not it derives from a
meeting. The variables of the root layer, for example, have chunks that express
resource unavailability: if resource r is unavailable at time ti, then the chunk
associated with root layer variable wi will contain a demand for r.

The layer tree treats time constraints as hard constraints, in that it is not
designed to track the number of violations of these constraints, merely to prohibit
them. For resource constraints however we have a free choice of whether to treat
them as hard or soft constraints, and we will follow the KTS implementation in
treating them as soft constraints. The aim is therefore not to fail when resources
are insufficient, but rather to report the number of unmatchable demand nodes.
This is calculated by having one bipartite graph for each root variable, in which
all the demand chunks of all the variables unified to that root variable directly
or indirectly are accumulated (since the unifications have caused these demands
to be simultaneous), and supply nodes for all the resources of the instance as
usual, and finding a maximum matching in each of these graphs.

The standard algorithm for unweighted bipartite matching has some useful
properties which permit matchings to be calculated in an incremental manner.
Briefly, one can push and pop demand chunks onto and off a matching graph in
stack order (last-in-first-out) without recalculating the matching from scratch.
The supply nodes remain constant throughout. Thus, when a unification of v to
w is made, one can simply push the demand chunks from v’s subtree (that is,
the chunks associated with v and every variable currently unified to v, directly
or indirectly) onto r(w)’s matching graph; when a de-unification of v to w is
made, one must pop chunks off r(w)’s graph until all v’s subtree’s chunks are
popped, then push back onto r(w)’s graph all chunks that were popped off
during this process that were not from v’s subtree. The KTS implementation
uses lazy evaluation, merely recording requests for pushes and pops, and not
doing anything until a request for the number of unmatchable nodes is received,

204 J. H. Kingston



at which point one sequence of pops followed by one sequence of pushes brings
the matching up to date.

We return now to the unweighted bipartite matching problem mentioned at
the end of the preceding section, between the un-unified variables of a layer L and
the variables of its parent layer p(L). For each un-unified variable v of L, we saw
that the current domain vdom(v) determines which edges to place in the bipartite
graph. Now with each such edge, from v to w say, we can associate a cost: the
number of additional unmatched nodes that would occur if v was unified to w,
calculated by matching the chunks of v’s subtree and r(w)’s subtree together
without actually making the unification. A maximum matching between L and
p(L) of minimum total cost will give a lower bound on the number of additional
unmatched demand nodes that will occur when the un-unified variables of L are
unified to variables of p(L). This model has been called weighted meta-matching
in [10], where it provides a valuable forward check.

The KTS implementation recalculates edge costs only when changes to the
demands at either end make that necessary. It calculates weighted matchings
lazily on demand, but not incrementally. Although a well-known algorithm exists
which can do this, by finding negative-cost cycles in the residual graph, it is
slow since it requires the use of the Bellman-Ford shortest path algorithm rather
than Dijkstra’s [1]. Fortunately the graphs are small, since the number of nodes
per layer is at most the number of times in the week (typically about 40), so
calculating these weighted matchings from scratch is not time consuming.

6 Other features

In this section we briefly survey some other features of the KTS layer tree. They
serve as examples of how the basic ideas can be extended.

Time blocks. A sequence of times that follow each other chronologically with-
out a break is called a time block. For example, the first four times on Monday
might form a time block. Then after a lunch break there might be four more
times followed by an end-of-day break. In KTS, meetings may request that their
times have a particular block structure. For example, a meeting with 6 times
might request two doubles (blocks of two times) and two singles.

The KTS layer tree allows time variables to be grouped into blocks. The time
variables of a layer of meetings are grouped into blocks defined by the meetings’
block structure requests; the time variables of the root layer (representing the
times of the week) are grouped into blocks representing the sets of times between
the naturally occurring breaks.

An initial problem is to determine whether the time blocks of some layer
can be packed into the time blocks of the week, allowing for the fact that (for
example) a block of four times on Monday morning can be split into two doubles,
or one double and two singles, or whatever is required. This is an NP-complete
bin packing problem, but real instances are small and easily solved.

Once such a packing has been found, and the large blocks of the week bro-
ken down into smaller blocks that exactly match the meetings’ block structure

Hierarchical Timetable Construction 205



requests, the layer tree implements a weighted meta-matching between blocks
rather than individual variables. Two blocks are connected by an edge if they
have the same number of variables and corresponding variables within the blocks
would be connected by an edge in the unblocked matching. The cost of a block-
to-block edge is the sum of the costs of the variable-to-variable edges it replaces.

The layer tree offers a heuristic algorithm which simultaneously carries out
the bin packing and builds the blocked matching. Initially the matching contains
all the parent layer blocks as supply nodes, and no child layer demand blocks.
The child blocks are introduced into the matching one by one in decreasing width
order. If a child block fails to match, a series of repair operations is tried on the
parent blocks: larger blocks are split, variables not yet in any block are merged
into blocks, and so on. For each type of repair, all possible repairs of that type
are tried, and the one which produces a blocked matching of minimum cost is
accepted; or if none of them succeed in producing a matching which touches
every demand block, the algorithm proceeds to the next, less desirable, kind of
repair. As a last resort, one demand block (usually the one just introduced) is
dropped and replaced by its variables.

The decisions about how to split parent blocks made by this algorithm depend
on the state of resource sufficiency in those blocks’ variables. Consequently it is
not useful to build a blocked matching for every child layer of a restricted sum
initially. Rather, the usual unblocked matchings are built for each child layer,
then a child layer’s unblocked matching is replaced by a blocked matching as the
first step in assigning that layer. The blocked matching is a temporary structure,
only in existence while its layer is being assigned.

Blocked matchings suffer from an awkward problem. Suppose a meeting re-
quires one double and one single block. The matching unifies the double to the
first two times on Monday; it unifies the single to the third time on Monday. The
result is a triple, not a double plus a single. Finding a minimum-cost matching
which avoids this problem appears to be NP-complete. KTS’s weighted meta-
matching algorithm discourages such unifications by artificially increasing the
cost of augmenting paths that would produce them. The implementation has
been done with care, and runs in time which is often a small constant, and at
worst is proportional to the length of the augmenting path being considered.
The idea is purely heuristic, to be sure, but it seems to work well.

Many other conditions besides time blocks may be imposed on sets of times.
A meeting’s times may be required to be spread evenly through the week, the
times of the meetings attended by a student group may be required to be compact
(contain no gaps within any day), and so on. The author has not yet attempted
to support such conditions within the layer tree.

Regularity. The layer tree supports regularity by supporting hierarchical
timetable construction, but this does not of itself encourage regularity between
the child layers of each + node. We mentioned earlier a straightforward way to
do this, by partitioning the variables of the parent layer into sets, called columns,
whose size is a typical meeting size, and assigning meetings to entire columns
wherever possible. This was the North American universities’ approach.

206 J. H. Kingston



Columns are supported by the layer tree by allowing temporary reductions in
vdom(v). An algorithm might restrict the domains of the variables of a meeting
to one column, then check the total resource sufficiency badness of the entire
layer tree; if it has not increased, assigning that meeting to that column may be
good. The layer tree also maintains, for each set of variables representing one
meeting, a count of the number of distinct columns that that meeting’s variables
are assigned to. The total of all these counts measures the current irregularity.

Evenness. It is desirable for demand for a particular type of resource to be
spread evenly across the week, not concentrated at particular times. This is be-
cause resource assignment struggles at times when every resource of a particular
type is required: there are enough resources, perhaps, but there is little freedom
of choice. This property we call evenness.

Evenness, like resource sufficiency, depends on the resource demands made
at each time, so the layer tree’s support for it is very similar to its support for
resource sufficiency. (There does not seem to be any efficient way to extract
evenness information from the resource sufficiency matchings themselves.) The
total demand for each type of resource is maintained in root variables. The sum
of the squares of these totals is an effective and easily updated overall measure
of unevenness. For example, two root variables each demanding a quantity a
of some type of resource contribute 2a2 to total unevenness. If the timetable is
changed so that one demands quantity a− 1 and the other demands a+1, these
less even demands contribute 2a2 + 2 to unevenness. Demands from the same
faculty (e.g. Junior English and Senior English) are considered to be the same
type of demand, since they typically have many resources in common.

Overall badness. For the convenience of algorithms that use the layer tree,
the KTS implementation offers access to the current total badness of the tree,
as a triple whose first component is the number of resource sufficiency defects
implied by the current state (the total number of unmatched nodes in resource
sufficiency matchings, plus the total cost of all meta-matchings), and whose
second and third components are the irregularity and unevenness, measured as
just described. Each data structure responsible for calculating any badness value
at any point in the tree also takes responsibility for reporting any change to this
global badness object, or at least reporting itself as out of date and needing
recalculation the next time a badness value is requested.

7 Conclusion

This paper has defined a form of hierarchical timetable specification and shown
how support for it can be implemented efficiently using the layer tree data struc-
ture. Time assignments and deassignments may be carried out at any point in
the tree, and an efficient constraint propagation algorithm updates the domains
of the variables and reports the consequences for resource sufficiency at each
time. Extensions to the basic framework, supporting block structure, regularity,
and evennness, have been implemented in the author’s KTS system.

Hierarchical Timetable Construction 207



Future work will try to add more features to the layer tree without com-
promising its efficiency. It may be possible to incorporate information about
workload limits into the resource sufficiency matchings, for example. A second
goal is to design new timetabling algorithms that fully exploit the flexibility of
this innovative data structure.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin: Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993

2. Krzysztof R. Apt: Principles of Constraint Programming. Cambridge University
Press, 2003

3. Edmund Burke and Peter Ross (eds.): Practice and Theory of Automated
Timetabling (First International Conference, PATAT’95, Edinburgh, August
1995). Springer Lecture Notes in Computer Science 1153, 1995

4. Edmund Burke and Michael Carter (eds.): Practice and Theory of Auto-
mated Timetabling II (Second International Conference, PATAT’97, University
of Toronto, August 1997, Selected Papers. Springer Lecture Notes in Computer
Science 1408, 1998

5. Edmund Burke and Wilhelm Erben (eds.): Practice and Theory of Automated
Timetabling III (Third International Conference, PATAT2000, Konstanz, Ger-
many, August 2000, Selected Papers). Springer Lecture Notes in Computer Science
2079, 2001

6. Edmund Burke and Patrick de Causmaecker (eds.): Practice and Theory of Au-
tomated Timetabling IV (Fourth International Conference, PATAT2002, Gent,
Belgium, August 2002, Selected Papers). Springer Lecture Notes in Computer
Science 2740, 2003

7. Edmund Burke and Michael Trick (eds.): Practice and Theory of Automated
Timetabling V (Fifth International Conference, PATAT2004, Pittsburgh, PA, Au-
gust 2004, Selected Papers). Springer Lecture Notes in Computer Science 3616,
2005

8. Tim B. Cooper and Jeffrey H. Kingston: The solution of real instances of the
timetabling problem. The Computer Journal 36, pages 645–653, 1993

9. Pascal Van Hentenryck: The OPL Optimization Programming Language. MIT
Press, 1999

10. Jeffrey H. Kingston: A tiling algorithm for high school timetabling. In Proceedings
of the 5th International Conference on the Practice and Theory of Automated
Timetabling, Pittsburgh, PA, pages 233-249, August 2004

11. Jeffrey H. Kingston: The KTS high school timetabling web site (Version 1.3),
October 2005. http://www.it.usyd.edu.au/˜jeff

12. Jeffrey H. Kingston: The KTS high school timetabling system. Submitted to 6th
International Conference on the Practice and Theory of Automated Timetabling,
Brno, Czech Republic, August 2006

13. W. J. van Hoeve: A hyper-arc consistency algorithm for the soft alldifferent con-
straint. Tenth International Conference on Principles and Practice of Constraint
Programming (CP 2004), Springer-Verlag Lecture Notes in Computer Science
3258, pages 679-689, 2004

14. D. de Werra: An introduction to timetabling. European Journal of Operational
Research 19, pages 151-162, 1985

208 J. H. Kingston


