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Abstract. As demand for Education increases and diversifiesjoes the
difficulty of designing workable timetables for sais and academic
institutions. Besides the intractability of the lwagiroblem, there is an
increasing variety of constraints that come intayplin this paper we
present a hybrid of two metaheuristics (genetiorlgm and tabu search)
to tackle the problem in its most general settiPigmising experimental
results are shown.
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1 Introduction

In academic institutions, nested groups of studéumprising streams, sections ...
are concerned by a set of subjects. A subject reay lecture of some specific cours
or a tutoring or a lab, or any other meeting inuadvthe group on a regular basis. Fc
example, the lecture of the course entitlATH3802A is a subject. Tutoring
associated with the same course is another suBjach subject takes a certain lengt
of time whose unit is referred to asperiod’. Each subject may be broken down inti
a number of meetings to be scheduled.

To solve the timetabling problem (TTP) is to assiggualified teacher to each
subject and a time-slot together with a classrodimaosuitable capacity and
characteristics to each meeting. The assignmentinods-slots, classrooms anc
teachers is subject to constraints that depench@mature of the institution and its
priorities. These constraints fall into three catégs: physical constraints, which
provide among others that no student can attenddifferent meetings at the same
time; preference constraints and specification taimgs bearing on some particula
meetings, which, for example, must be held in sospecified time window
[3][4][5][8][10].
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2 Application of genetic algorithmsto timetabling problem

A Genetic Algorithm (GA) makes a population of midual solutions evolve under
the control of two operators: ‘mutation’ and ‘crogsr’. Mutation operates on one o
possibly many genes (attributes) of a solution higriag their values. Crossover
consists in mating the parental genes pairwisddipig offspring with new properties.
Only the best-fit individuals are likely to survigd®wn the generations. We encode
our timetables as vectors associating 3 genes e@atth meeting, referring to the
period, the classroom and the teacher assigndtetmeeting. In a bid to promote ¢
well-spread search of the space of solutions, \avel our initial generation to be
constructed randomly by assigning a random timedaleng with a teacher to eact
meeting in a “greedy” fashion. We then defined objective function to be the
weighted sum of all the violated constraints, eaghstraint being associated with :
penalty (a weight) in proportion to the importarvee ascribe to the constraint. The
individuals (timetables) are ranked in the ordede$cending fithess conditions (a
measured by the objective function), the bestHdividual being ranked 0. The
probability of replacing an individualis then defined to be the ratio i&nk; to the
sum of all the ranks. In other words, the poorer fimess condition, the greater the
probability of an individual being replaced.

2.1 Mutation

The simplest way to define a mutation operator isdlect randomly both the gene
and the gene value to which mutation is to be agplFor large sized instances
however, this may lead to unacceptable runninggibecause of the poor choice @
the genes. In contrast, our mutation operator ¢gem@n the most problematic gene:
With each meeting m of M, an integer-valued vasgaisl associated representing
violation record. The evaluation process consist€amputing the penalty record
incurred by the timetable: It adds all the violati®cords of meetings involved in any
constraint of the timetable.

Thus, the violation record of a meeting is highestew the meeting is most
problematic. The mutation operator then selectgére to be muted as a function c
the violation record. Likewise, a violation recosddomputed for each possible allel
(gene value). The new value to be assigned to thatimg gene is deduced similarly
as the sum of the penalties of all the constrdhms will be violated if the change is
accepted.

2.2 Dedicated mutations

We have designed a mutation operator for eacheofhree types of constraint. Eacl
mutation operator of a given type maintains a wiotarecord for that type for each
meeting inM. This proved useful in many respects. First, thot flaat only one class
of constraint is handled in a mutation results sigmificant gain in computing time.
Secondly, in keeping separate records on diffetgmes of constraints we gain &
better insight into which of the types is most ated, and by the same token, a mea



Hybridizing Genetic Algorithms and Tabu Search |...] 469

is provided by which the sources of the problemlpamccessed direct and dealt witt
Thirdly, we now have another means (other than peralue) to distinguish certain
types of constraints and single them out as momgoitant than others: it merely
suffices to call their corresponding mutation oparmore frequently.

2.3 Crossover

The role of crossover is to enable the combinatfah®good properties borne by the
so-called parent-individuals. Our crossover opera® based on Abramson’s
encoding scheme [1][2], where a timetable is regree] as a vector of lists, one fo
each time-slot. Each list brings together the seh@étings assigned to that time-slo
The crossover operator consists then in swappingpgrof the two parents.

3 Hybridizing genetic algorithm with tabu search

Violation-driven Mutation (VDM) provides an effeeé means (time-wise) by which
to intensify search [6][7]. However, the resultitegdencies to explore vs. exploit the
search space often conflict with each other. Thesaor is that VDM may lead to
premature convergence, wherein the search proassstuck in a local optimum.
Moreover, GAs are oblivious to the history of thearch process, since only the
population of individuals may be regarded as atsieom memory. On the other
hand, we feel that Tabu Search (TS), with its nueebilt-in strategies and feature:
is better equipped to offset both shortcomings. ¢fa thing, TS distinguishes itsell
by a greater ability to jump out from local optitfenks to its diversification strategy
[6][7]. Furthermore, it makes use of both a shartd a long-term built-in memory to
investigate the search space. Tabu Search procgestegwise improvement. Thus,
at each step of the algorithm, we move from onetsm to another through an
operation referred to as a ‘move’. Attributes midifduring a move become ‘tabu’
for a certain space of time in terms of the nundfaterations. A list called Tabu list
contains all tabu-attributes. Several hybridizichesmes are possible [9][12]. For oni
thing, two mutations on two identical individualeanost likely to perform the same
selections of their genes. On the other hand, tiation of an individual may bring it
back to an already known state. Our solution reguthat we keep two tabu-lists: ¢
long-term list (‘Long_list”) and a short-term one $hort-list”). “Long_list” is
dedicated to storing the new values assigned tog#rees so as to prevent nev
mutations from performing the same selection ag&hort_list” stores former gene
values to prevent future mutations from restoriment.

4 Experimental tests

To analyze the performance of our algorithms, whvelne developed in C, we carriec
out an array of tests on instances of our own dhgpsn benchmarks from literature
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[2][11] as well as on a real case instance. Weoperd the tests using a micro
computer of type Pentium 4 (2.4 GHz, 512 Mo de RAddgrating on Linux 2.0.

The purpose of the first set of tests was to sepdrameters of the algorithms. Ir
the absence of relevant theoretical results orsdibect, we had to resort to empirica
tests to set our parameters. To determine each ptaralue, we ran 10 tests pe
instance. Each such set of tests determined the appsbpriate value of a given
parameter, all else being unchanged. Crossovemanation probabilities were set a
0,75 and 0,3 respectively. The number of iteratioras set at 20000 and the
population size at 300 individuals. As for the siz&f the tabu lists, the sizes o
Long_list andShort_list were 7 and 5 respectively.

4.1. Theoretical instances

The tests were performed on 4 types of problemshblpno 1 is constituted of 64
subjects with 12 teachers and 16 classrooms. Frnobleas 100 subjects, 21 teache
and 25 classrooms. Problem 3 is made of 150 sgbj@@tteachers and 31 classroom
Problem 4 has 200 subjects, 33 teachers and 33ratess. For each problem, we
allowed the number of periods to vary between B0arid 12 to test the efficiency ol
the algorithm for increasing period sizes. Run Srage given in seconds.

The tests show that the use of a violation-drivertaten speeds up search while
compromising the stability of search and the rdtsuzcess. The genetic algorithn
hybridized with tabu search provides much bettsulte in terms both of the quality
of the solution and of the convergence rate, thankthe tabu component of the
algorithm which provides a better spread of thedearhis is illustrated in the two
charts above featuring a comparison between a dwyBA and a classic GA; a
comparison between a GA that uses plain mutatiohaa@A that uses a VDM; and &
comparison between a GA using a period-based owas-and one using plain
crossover.

Time

Ombv
M Classic mutation [ Hybrid
I Classic GA

20 15 12 20 15 12 20 15 12 20 15 12

20 12 15 20 12 15

Probleml  Problem2 Problem3 obiRem4 Problem1 Problem2 Problem3 Prob

Fig. 1. Comparison between a classic GA Fig. 2. Comparison between a hybrid
and a GA with MDV and a classic G#
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4.2. Instancesfrom literature

In our set of tests on instances from literatuj§l[d, we ran our algorithms on the
challenging benchmarks HdttHigh difficult time-tabling). These are difficult
instances, because all the capacities are strettttied every teacher and every
classroom must be assigned, and there must béenpddod at the optimum.

Using an IBM SP2, Abramson and Dang [2] have tettiede instances with two
metaheuristics: simulated annealing and tabu se#vehperformed 20 runs for eact
instance. There is a similarity between the redaliad in literature [2][11] and those
provided by our algorithms. For larger instanceslt{H and Hdtt8), more iterations
are required in order for the quality of the sauos to be conclusive. A parallel
version of the hybrid algorithm would be of mucHphas it will make it possible to
deal with larger populations and more iterations.

4.3. Concrete Example

We have applied the hybrid algorithm to the TTP instaof the University of

Science and Technology Houari Boumediene USTHB lgfiefs, which has 500

groups, 1000 courses, 3000 teachers, about 508j@ctsi to be scheduled on si
consecutive periods a day for six days. We hadttwes of rooms to hold lectures
and labs: 24 amphitheatres and 181 classroomsréB#fe algorithm was applied to
the ten faculties of the university, the departn@€omputer Science had tried it or
its own Faculty. The manual designing of timetabiteshat Faculty used to take &
tremendous amount of time (three to four weeksthWur algorithm, that time was
reduced to just one hour in average.

Conclusions

Genetic Algorithms and Tabu Search provide a gteaibility of use when it comes
to solving combinatorial problems. We exploitedstfiexibility to design algorithms
capable of generating timetables for any type afdemic institution, a problem
intractable for approximation. Our algorithms pregenore than 11 constraints fron
among the most common ones, with the possible sixterno others.

The idea of hybridizing of GA and TS stems from oesitke to reap the benefits of
both methods: the simplicity of use of GAs on tine thand, and such ability to jumg
out from local optima through a more diversifiedldalanced search as provided b
TS, on the other hand. This hybridizing is enhanpgd host of ingredients of our
own choosing and implementing. One of these is ghealled Violation Driven
Mutation, which provides us with an intelligent og@r capable of detecting anc
solving sources of conflicts. The idle time that hidpe generated in the process i
eliminated via tabu-search.

The efficiency of this method makes itself felt osttb counts of the convergence
rate (running time) and the rate of success, asuatrof a good compromise betwee
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expansion and intensification, in terms of explgritew regions of the search spac
(through tabu-list) versus exploiting the solutidoand (through crossover). In view
of the variety of settings in which our algorithfiased well in comparison with other
algorithms from literature, we conclude that ourttme together with its ingredients
is pertinent to the timetabling problem.

As an extension to this work, we contemplate pelialhg some of the algorithms
proposed to enhance the quality of solutions argkawe on their running time as
well. We also contemplate using a constraint-pnognéng approach that would, in
our view, best fit the constrained character of ttyipe of problem. Finally, we
consider implementing a metaheuristic cooperatiotieu a Mozart-Oz environment
(http://www.mozart-oz.org/) to deal with our profvle
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