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Abstract. As demand for Education increases and diversifies, so does the 
difficulty of designing workable timetables for schools and academic 
institutions. Besides the intractability of the basic problem, there is an 
increasing variety of constraints that come into play. In this paper we 
present a hybrid of two metaheuristics (genetic algorithm and tabu search) 
to tackle the problem in its most general setting. Promising experimental 
results are shown. 
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1 Introduction 

In academic institutions, nested groups of students (comprising streams, sections …) 
are concerned by a set of subjects. A subject may be a lecture of some specific course 
or a tutoring or a lab, or any other meeting involving the group on a regular basis. For 
example, the lecture of the course entitled MATH3802A is a subject. Tutoring 
associated with the same course is another subject. Each subject takes a certain length 
of time whose unit is referred to as a ‘period’. Each subject may be broken down into 
a number of meetings to be scheduled.  

To solve the timetabling problem (TTP) is to assign a qualified teacher to each 
subject and a time-slot together with a classroom of a suitable capacity and 
characteristics to each meeting. The assignment of times-slots, classrooms and 
teachers is subject to constraints that depend on the nature of the institution and its 
priorities. These constraints fall into three categories: physical constraints, which 
provide among others that no student can attend two different meetings at the same 
time; preference constraints and specification constraints bearing on some particular 
meetings, which, for example, must be held in some specified time window 
[3][4][5][8][10].  
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2 Application of genetic algorithms to timetabling problem  

A Genetic Algorithm (GA) makes a population of individual solutions evolve under 
the control of two operators: ‘mutation’ and ‘crossover’. Mutation operates on one or 
possibly many genes (attributes) of a solution by altering their values. Crossover 
consists in mating the parental genes pairwise, yielding offspring with new properties. 
Only the best-fit individuals are likely to survive down the generations. We encoded 
our timetables as vectors associating 3 genes with each meeting, referring to the 
period, the classroom and the teacher assigned to the meeting. In a bid to promote a 
well-spread search of the space of solutions, we allowed our initial generation to be 
constructed randomly by assigning a random time-slot along with a teacher to each 
meeting in a “greedy” fashion. We then defined our objective function to be the 
weighted sum of all the violated constraints, each constraint being associated with a 
penalty (a weight) in proportion to the importance we ascribe to the constraint. The 
individuals (timetables) are ranked in the order of descending fitness conditions (as 
measured by the objective function), the best-fit individual being ranked 0. The 
probability of replacing an individual i is then defined to be the ratio of ranki to the 
sum of all the ranks. In other words, the poorer the fitness condition, the greater the 
probability of an individual being replaced.  

2.1 Mutation 

The simplest way to define a mutation operator is to select randomly both the gene 
and the gene value to which mutation is to be applied. For large sized instances, 
however, this may lead to unacceptable running times because of the poor choice of 
the genes. In contrast, our mutation operator operates on the most problematic genes. 
With each meeting m of M, an integer-valued variable is associated representing a 
violation record. The evaluation process consists in computing the penalty record 
incurred by the timetable: It adds all the violation records of meetings involved in any 
constraint of the timetable.  

Thus, the violation record of a meeting is highest when the meeting is most 
problematic. The mutation operator then selects the gene to be muted as a function of 
the violation record. Likewise, a violation record is computed for each possible allele 
(gene value). The new value to be assigned to the mutating gene is deduced similarly 
as the sum of the penalties of all the constraints that will be violated if the change is 
accepted. 

2.2 Dedicated mutations 

We have designed a mutation operator for each of the three types of constraint. Each 
mutation operator of a given type maintains a violation record for that type for each 
meeting in M. This proved useful in many respects. First, the fact that only one class 
of constraint is handled in a mutation results in a significant gain in computing time. 
Secondly, in keeping separate records on different types of constraints we gain a 
better insight into which of the types is most violated, and by the same token, a means 
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is provided by which the sources of the problem can be accessed direct and dealt with. 
Thirdly, we now have another means (other than penalty value) to distinguish certain 
types of constraints and single them out as more important than others: it merely 
suffices to call their corresponding mutation operators more frequently. 

2.3 Crossover 

The role of crossover is to enable the combination of the good properties borne by the 
so-called parent-individuals. Our crossover operator is based on Abramson’s 
encoding scheme [1][2], where a timetable is represented as a vector of lists, one for 
each time-slot. Each list brings together the set of meetings assigned to that time-slot. 
The crossover operator consists then in swapping groups of the two parents. 

3 Hybridizing genetic algorithm with tabu search 

Violation-driven Mutation (VDM) provides an effective means (time-wise) by which 
to intensify search [6][7]. However, the resulting tendencies to explore vs. exploit the 
search space often conflict with each other. The reason is that VDM may lead to 
premature convergence, wherein the search process gets stuck in a local optimum. 
Moreover, GAs are oblivious to the history of the search process, since only the 
population of individuals may be regarded as a short-term memory. On the other 
hand, we feel that Tabu Search (TS), with its numerous built-in strategies and features 
is better equipped to offset both shortcomings. For one thing, TS distinguishes itself 
by a greater ability to jump out from local optima thanks to its diversification strategy 
[6][7]. Furthermore, it makes use of both a short- and a long-term built-in memory to 
investigate the search space. Tabu Search proceeds by stepwise improvement. Thus, 
at each step of the algorithm, we move from one solution to another through an 
operation referred to as a ‘move’. Attributes modified during a move become ‘tabu’ 
for a certain space of time in terms of the number of iterations. A list called Tabu list 
contains all tabu-attributes. Several hybridizing schemes are possible [9][12]. For one 
thing, two mutations on two identical individuals are most likely to perform the same 
selections of their genes. On the other hand, the mutation of an individual may bring it 
back to an already known state. Our solution requires that we keep two tabu-lists: a 
long-term list (“Long_list”) and a short-term one (“Short-list”). “ Long_list” is 
dedicated to storing the new values assigned to the genes so as to prevent new 
mutations from performing the same selection again. “Short_list” stores former gene 
values to prevent future mutations from restoring them.  

4 Experimental tests  

To analyze the performance of our algorithms, which were developed in C, we carried 
out an array of tests on instances of our own choosing, on benchmarks from literature 
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[2][11] as well as on a real case instance. We performed the tests using a micro-
computer of type Pentium 4 (2.4 GHz, 512 Mo de RAM) operating on Linux 2.0. 

The purpose of the first set of tests was to set the parameters of the algorithms. In 
the absence of relevant theoretical results on the subject, we had to resort to empirical 
tests to set our parameters. To determine each parameter value, we ran 10 tests per 
instance. Each such set of tests determined the most appropriate value of a given 
parameter, all else being unchanged. Crossover and mutation probabilities were set at 
0,75 and 0,3 respectively. The number of iterations was set at 20000 and the 
population size at 300 individuals. As for the sizes of the tabu lists, the sizes of 
Long_list and Short_list were 7 and 5 respectively. 

4.1. Theoretical instances 

The tests were performed on 4 types of problems: problem 1 is constituted of 64 
subjects with 12 teachers and 16 classrooms. Problem 2 has 100 subjects, 21 teachers 
and 25 classrooms. Problem 3 is made of 150 subjects, 26 teachers and 31 classrooms. 
Problem 4 has 200 subjects, 33 teachers and 37 classrooms. For each problem, we 
allowed the number of periods to vary between 20, 15 and 12 to test the efficiency of 
the algorithm for increasing period sizes. Run times are given in seconds.  

The tests show that the use of a violation-driven mutation speeds up search while 
compromising the stability of search and the rate of success. The genetic algorithm 
hybridized with tabu search provides much better results in terms both of the quality 
of the solution and of the convergence rate, thanks to the tabu component of the 
algorithm which provides a better spread of the search. This is illustrated in the two 
charts above featuring a comparison between a hybrid GA and a classic GA; a 
comparison between a GA that uses plain mutation and a GA that uses a VDM; and a 
comparison between a GA using a period-based cross-over and one using plain 
crossover.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Comparison between a classic GA 
 and a GA with MDV. 

Problem1      Problem2         Problem3          Problem4 

Fig. 2.  Comparison between a hybrid GA 
and a classic GA.  
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4.2. Instances from literature 

In our set of tests on instances from literature [2][11], we ran our algorithms on the 
challenging benchmarks Hdtt (High difficult time-tabling). These are difficult 
instances, because all the capacities are stretched thin: every teacher and every 
classroom must be assigned, and there must be no idle period at the optimum. 

Using an IBM SP2, Abramson and Dang [2] have tested these instances with two 
metaheuristics: simulated annealing and tabu search. We performed 20 runs for each 
instance. There is a similarity between the results found in literature [2][11] and those 
provided by our algorithms. For larger instances (Hdtt7 and Hdtt8), more iterations 
are required in order for the quality of the solutions to be conclusive. A parallel 
version of the hybrid algorithm would be of much help as it will make it possible to 
deal with larger populations and more iterations. 

4.3. Concrete Example 

We have applied the hybrid algorithm to the TTP instance of the University of 
Science and Technology Houari Boumediene USTHB of Algiers, which has 500 
groups, 1000 courses, 3000 teachers,  about 5000 subjects to be scheduled on six 
consecutive periods a day for six days. We had two types of rooms to hold lectures 
and labs: 24 amphitheatres and 181 classrooms. Before the algorithm was applied to 
the ten faculties of the university, the department of Computer Science had tried it on 
its own Faculty. The manual designing of timetables in that Faculty used to take a 
tremendous amount of time (three to four weeks). With our algorithm, that time was 
reduced to just one hour in average. 

Conclusions 

Genetic Algorithms and Tabu Search provide a great flexibility of use when it comes 
to solving combinatorial problems. We exploited this flexibility to design algorithms 
capable of generating timetables for any type of academic institution, a problem 
intractable for approximation. Our algorithms process more than 11 constraints from 
among the most common ones, with the possible extension to others. 

The idea of hybridizing of GA and TS stems from our desire to reap the benefits of 
both methods: the simplicity of use of GAs on the one hand, and such ability to jump 
out from local optima through a more diversified and balanced search as provided by 
TS, on the other hand. This hybridizing is enhanced by a host of ingredients of our 
own choosing and implementing. One of these is the so-called Violation Driven 
Mutation, which provides us with an intelligent operator capable of detecting and 
solving sources of conflicts. The idle time that might be generated in the process is 
eliminated via tabu-search. 

The efficiency of this method makes itself felt on both counts of the convergence 
rate (running time) and the rate of success, as a result of a good compromise between 
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expansion and intensification, in terms of exploring new regions of the search space 
(through tabu-list) versus exploiting the solutions found (through crossover). In view 
of the variety of settings in which our algorithms fared well in comparison with other 
algorithms from literature, we conclude that our method together with its ingredients 
is pertinent to the timetabling problem. 

As an extension to this work, we contemplate parallelizing some of the algorithms 
proposed to enhance the quality of solutions and improve on their running time as 
well. We also contemplate using a constraint-programming approach that would, in 
our view, best fit the constrained character of this type of problem. Finally, we 
consider implementing a metaheuristic cooperation under a Mozart-Oz environment 
(http://www.mozart-oz.org/) to deal with our problem.  
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