
Generating Personnel Schedules in an Industrial
Setting Using a Tabu Search Algorithm

Pascal Tellier1 and George White2

1 PrairieFyre Software Inc.,
555 Legget Dr., Kanata K2K 2X3, Canada

pascal@prairiefyre.com
2 School of Information Technology and Engineering,

University of Ottawa, Ottawa K1N 6N5, Canada
white@site.uottawa.ca

Abstract. We describe a system designed to be used in an industrial
setting for the scheduling of employees in a Contact Centre. The de-
mand for the employees’ services is driven by an estimated forecast for
each period of operation, currently set with a duration of 15 minutes.
The employees are drawn preferentially from a homogeneous pool. The
constraints are set by the conditions of employment and must satisfy
the requirements both of the company and the desires of individual em-
ployees who may have vary diverse interests. The system uses an initial
scheduling module that constructs a feasible schedule followed by an op-
timizing tabu search based heuristic optimizer to cast the final schedule.
This system is evaluated both with artificially constructed data and real
industrial data.

1 Introduction

One of the most important problems that arises in organizations composed of
more than a few workers is the management of personnel. Issues that arise in this
arena can be very complex and failure to observe the rules of play can result in
a wide range of outcomes ranging from isolated grumbling, reduction in general
staff morale, work stoppages, strikes, mass resignations and expensive lawsuits.
The financial impact of these factors can be enormous.

The issues involved in this area are such things as:

– who does what jobs
– when do they do it
– where do they do it
– who do they do it with
– how much are they paid

These issues are formalized by the constraints whose origins lay in the cus-
toms of the local workplace culture, collective agreements, government legisla-
tion, and informal arrangements between the persons responsible for the schedul-
ing of personnel and resources and those directly involved by the schedule. Er-
rors, misunderstanding and misinterpretation of the schedules can raise a host
of problems.

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 293–302. ISBN 80-210-3726-1.

A complicating factor is the emergence of a class of so-called “temporary
workers” who work only as required. The constraints involved in the scheduling
of these people can be more complicated to formulate and more difficult to
respect because of the various start and stop times that can be different for each
person and may depend on the day of the week, the month of the year, forecasted
demand and/or a spectrum of other considerations specific to the industry. All
this must be done within the framework of corporate objectives. The overall
goal is to balance meeting the service level while optimizing the budget and
respecting employees’ rights and preferences to keep them happy.

2 Tour Scheduling in Contact Centres

The scheduling of personnel can often be accomplished in two phases, the phase
that deals with time-of-day or shift scheduling, and the phase that deals with
day-of-week scheduling. Baker [1] has named this type of labour scheduling tour
scheduling. If the work force can be classified into different types (usually corre-
sponding to different skill levels) it is described as heterogeneous. If we are dealing
with one skill level, as is the case with this paper, it is called homogeneous.

Recent reviews of the tour scheduling literature have been published by Al-
fares [2] and by Ernst et al[3]. It is one thing to find feasible schedules i.e.
schedules that satisfy all the staffing rules but quite another to find an optimal
feasible schedule i.e. one that not only satisfies the rules but also minimizes (or
maximizes) some objective function. Alfares [2] has found 14 different criteria
used by various authors to formulate these objective functions. Of these criteria,
the ones germane to the present problem are the total daily and weekly hours
worked, under and over staffing and employee satisfaction.

Alfares has also partitioned the methods used for optimizing functions that
incorporate these criteria into 10 categories. The work reported here uses the
tabu search (TS) created by Glover [4].
As stated by Ernst et al.: [3]

.... heuristics are generally the method of choice for rostering software
designed to deal with messy real world objectives and constraints that
do not solve easily with a mathematical programming formulation.

Contact centres are an integral part of many businesses. They are composed
of their staff whose job it is to answer or initiate telephone calls, to answer ques-
tions or to solicit business. The literature on contact centres has been reviewed
by Gans et al. [5]. Scheduling the staff in these centres is almost never solved
to optimality due to the complexity of the requirements. Suboptimal solutions
that can be used in practice are formulated using heuristic methods.

This paper describes a typical problem that arises in the scheduling of per-
sonnel in contact centres and describes a solution based on tabu search. The
system, part of which is described here, was undertaken by PrairieFyre Software
Inc.

294 P. Tellier and G. White

Fig. 1. Typical schedule

3 Problem Specifics

The problem at hand is to generate a schedule si,j where: i is an integer index
specifying a person and j is an integer index specifying a period, a fixed interval
of time. si,j represents the state of personi during periodj . This state can have
values corresponding to: on-the-job, not working, on paid break, on unpaid break,
on vacation, and a few other things. For our purposes we can simplify the value
of si,j such that it equals 1 when personi is on-the-job during periodj and 0
otherwise. Then the number of persons working during periodi is given by:

wj =
∑

i

si,j

The total number of person-periods working over the entire schedule is given
by:

W =
∑

j

wj

For each periodj a forecast fj is obtained by some method such as reference
to historical data or by a modified Erlang calculation. This forecast is an estimate
of the number of persons “on duty” during the period concerned. This is just
equal to the number of persons at work at the time minus the number having a

Generating Personnel Schedules Using Tabu Search [...] 295

break. If wj − fj is negative, there are too few persons working and the schedule
is said to be underscheduled during that period. If the difference is positive, there
are too many persons working during that period and the schedule is said to be
overscheduled during that period. The penalty assessed for the entire schedule S
is calculated as

P (S) =
∑

j

(wj − fj)2

In the field it may be desirable to change the form of the penalty to reflect the
overall number of people being scheduled. A shortfall of 2 persons is not too
important when 50 people are supposed to be scheduled, however a shortfall of
2 when 3 are to be scheduled can be very bad. A “typical” schedule looks like
the one shown in figure 1.

Each person in the workforce and each shift have several important at-
tributes. These are:

– Persons
• name
• scheduling priority
• minimum hours between shifts
• minimum daily hours
• maximum daily hours
• minimum weekly hours
• maximum weekly hours
• earliest start time (for each day of the week)
• latest end time (for each day of the week)

– Shifts
• name
• type
• typical hours
• maximum hours
• minimum hours
• earliest start time
• latest start time

– Breaks
• name
• duration
• paid or not
• shift length required to qualify
• earliest start time after beginning of shift
• latest start time after beginning of shift
• minimum minutes before end of shift

The persons are the staff members to be scheduled. Each line on figure 1 is
a graphic representation of the working day of a different person. The shifts are
the periods during which a person is on the job. Each shift has zero or more
breaks during which that person is off duty. A break may be paid or unpaid.

296 P. Tellier and G. White

4 Constraints

A feasible schedule is one that satisfies a set of constraints. The constraint set
used here can be divided into four parts.

4.1 Weekly Constraints

For all workers

– sum of working paid hours each week ≤ maximum weekly hours for that
worker

– sum of working paid hours each week ≥ minimum weekly hours for that
worker

– for all days, each person-shift must be separated by at least the minimum
hours between shifts

4.2 Daily constraints

Each person-shift

– must start ≥ earliest start time for that day for that person
– must end ≤ latest end time for that day for that person
– must start ≥ earliest start time for that shift
– must end ≤ latest end time for that shift
– shift length ≤ maximum daily hours for that person
– shift length ≥ minimum daily hours for that person (if working that day)
– shift length ≤ maximum shift length
– shift length ≥ minimum shift length

4.3 Breaks

Each shift-break

– length of shift into which break is embedded≥ shift length required to qualify
– start time ≥ earliest start time after beginning of shift
– start time ≤ latest start time after beginning of shift
– start time ≤ shift end time - minimum hours before end of shift

4.4 Global constraints

Since this work is designed for use in a real contact centre a number of prac-
tical features have been built in. These features generally remove some of the
constraints, thereby reducing the penalty of an eventual solution. Some of these
are

– override the available times specified by the employees
– override the days specified as unavailable by the employees
– calculate penalty only during “office hours”

There are six classes of overrides that can be used by the scheduling officers.

Generating Personnel Schedules Using Tabu Search [...] 297

4.5 Other

Another feature completely inhibits optimization of one or more days of the
schedule. Use of this feature will worsen the quality of the optimization but
allows the unoptimized days to be scheduled “as is” i.e. exactly as cast by an
existing initial schedule generator or cast manually or partially manually by
the scheduling officer. Not all of the constraints have been implemented in the
current version.

5 Goal

Each day of interest is divided into a number of periods of the same duration.
The results described here refer to the case where the day consists of 96 periods,
each one lasting 15 minutes. Each period is assigned a forecast of the number
of workers required during that period. The number who are actually on duty
should ideally be equal to the number forecast for that period. Each period is
assigned a penalty equal to the square of the difference between the forecasted
value and the number actually on duty. The penalty corresponding to a complete
day is defined to be the sum of the penalties of all its periods. The goal of the
scheduler is to cast a schedule such that all constraints are satisfied and the
penalty of each day is as low as possible.

The forecasted number of employees required for each period is calculated
by using a modified Erlang calculation. These numbers may be modified by a
supervisor to account for local or unusual circumstances.

In practice, it may be preferable to attempt to minimize a penalty function
that takes into account the total number of employees being scheduled and
minimize the percentage deviation from the desired number of employees rather
than the square of the absolute deviation. At present, however, we are concerned
exclusively with absolute deviations.

With this explanation we can write formally that the problem consists in
casting S such that:

1. P (S) is minimized
2. the constraint set ci � ai is satisfied

– ci is the left hand side of the constraint
– � is a relational operator
– ai is the constant on the right hand side

The implementation has been constructed in such a way that other possible goals
can be easily incorporated. There are two alternate goals under consideration:

1. The number of understaffed periods is zero and the overall penalty as previ-
ously described is minimized.

2. The total dollar cost (salary) of the workers (including various rates of pay
and overtime) is minimized while supplying a minimum level of service.

298 P. Tellier and G. White

6 Tabu Search

The well known tabu search methodology [4] has proven to be a robust method
of finding heuristic minimums of complex scheduling problems in reasonable
times [6] [7] [8] [9] . Tabu search (TS) is a heuristic procedure designed to guide
the search for an optimal schedule through the trap of local minima. Starting
from an initial solution s0 the TS algorithm iteratively explores a subset V ∗

of the neighbourhood N(s) of a current solution s. The member of V ∗ that
gives the minimum value of the objective function becomes the new current
solution independently of whether its value is better or worse than the value
corresponding to s. If N(s) is not too large, it is possible and convenient to take
V ∗ = N(s). This strategy may induce cycling.

In order to prevent cycling, the algorithm calculates a so-called tabu list, a list
of moves which the search portion of the procedure is forbidden to make. This is
a list of the last k accepted moves (in reverse order) and it is often implemented
as a queue of fixed size. At equilibrium, when a new move is added, the oldest
one is discarded.

There is also a mechanism that may override the tabu status of a move. If
a move could give a large improvement (reduction) of the objective function,
then its tabu status is dropped and the resulting solution is accepted as the new
current one. This is implemented by defining an aspiration function A that, for
each value v of the objective function, returns another value v′ that represents
the value that the algorithm aspires to reach from v. Given a current solution s,
the objective function f(s), and a neighbour solution s′, then if f(s′) ≤ A(f(s))
then s′ can be accepted as the new current solution, even if s′ is in the tabu list.

The procedure stops either after a given number of iterations without im-
provements or when the value of the objective function in the current solution
reaches a given lower bound.

The main control parameters of the procedure are the length of the tabu list,
the aspiration function A, the cardinality of the set V ∗ of neighbour solutions
tested at each iteration, and Tsmax, the maximum number of iterations allowed
that do not improve the objective function.

The tabu search strategy is implemented in the following way:

1. An initial schedule s0 ∈ X is chosen by an approximate but rapid method.
X is a set of feasible solutions.

2. Certain variables controlling the stopping conditions are initialized here.
These variables consist of the maximum number of iterations permitted, the
maximum time the program is permitted to run and other similar quantities.
These variables are used to determine whether the program should terminate
or continue at step 4. The tabu list T is implemented as a linked list. The
tenure was given a fixed value of 10. The value of the objective function
corresponding to the initial solution is calculated.

3. The aspiration function is set to return the minimum value found so far.
4. At this point the program enters its main loop which exits when one of the

following conditions become true:

Generating Personnel Schedules Using Tabu Search [...] 299

– the best solution found yet has a penalty = 0.
– the number of iterations without improvement ≥ some maximum value,

currently set to 1,000.
5. Each schedule s ∈ X can be modified by applying a simple perturbation

called a move to s. The neighbourhood, N(s), consists of all feasible solu-
tions that can be obtained by applying the perturbation to s. There are two
separate move classes considered:

– swapping two periods of one person
– extending or shortening the schedule of one person by one period at

the beginning or the end of their shift. This has the effect of either
lengthening or shortening the shift or sliding it forwards or backwards
by a small amount.

For each person, these are applied sequentially. First all swapping possi-
bilities are considered. Next, depending on whether the schedule is over or
under scheduled, shortening or lengthening the shift is tried. Finally sliding
the shift forward and backward is considered.

6. A subset of feasible solutions V ∗ ⊆ N(s) is constructed from the elements
of N(s) in the following way. An element s′ ∈ N(s) is placed in V ∗ unless s′

is in the tabu list T . However, even if s′ ∈ T , it will be still be placed in V ∗

if f(s′) < A(f(s)). f(s′) is the penalty or objective function associated with
schedule s′ and A(f(s)) is the value of the aspiration function associated
with each value of the objective function f . Thus A(f(s)) is the value of the
aspiration function associated with schedule s. In our work, A(f(s)) = f(s0)
where s0 is the best schedule found so far i.e. f(s0) is the lowest value of
the objective function calculated as of yet. Note that s is not a member of
its own neighbourhood. Therefore s 6∈ V ∗.

7. The penalties f(s∗) associated with each s∗ ∈ V ∗ are calculated and the
value s∗ having the lowest value f(s∗) is chosen. This is done even if s∗ is
worse than the current schedule. There are cases where the shift and break
requirements are so strict that no legal moves are possible. In this case, the
step is exited immediately.

8. The tabu list is updated with the new solution found s∗. Rather than storing
the entire solution in the list, the move itself is stored, making list manage-
ment easier. Any list entries whose tenure ≥ 10 are discarded.

9. The new solution is compared to the best solution found so far s0.
10. If the new solution is better, it replaces the now former best solution.
11. The current solution becomes the new solution.

7 The initial solution

The initial solution s0 is constructed by an existing algorithm. The quality of
this solution varies widely from instance to instance, sometimes producing good
solutions and sometimes producing bad ones. The present program starts by
calling a module we call the initial solution evaluator that analyzes the quality
of this solution and may alter it severely, removing some shift instances com-
pletely if the solution is overscheduled and adding new shift instances if it is
underscheduled.

300 P. Tellier and G. White

8 Evaluation of the algorithm

The algorithm has been tested both with contrived data (test data) i.e. data
that has been constructed to test specific features of the specification and the
algorithm, and customer data i.e. real data furnished by existing customers.
In both cases measurements have been made of the algorithm’s ability to cast
heuristically optimal schedules. These tests have been made using the module
that starts by generating initial schedules and without using this module. In
the latter case, the tabu search starts from an empty schedule and uses its own
initial schedule evaluator to build a crude initial schedule and then uses the tabu
portion to optimize it. The results are shown in the table below.

Table 1. Some test results

Name length conditional before after reduction % reduction time (sec)

Test1 1 day with initial 128 13 115 0.900 35.9
Test2 1 day with 983 61 922 0.938 36.8

without 5095 71 5024 0.986 33.0
Test3 7 days with 1742 145 1597 0.917 218.0
Cust1 1 day with 6241 32 6209 0.995 90.2

without 1381 24 1357 0.983 13.6

The relative reduction in these examples is never less than 0.90, showing that
the tabu algorithm is capable of reducing the penalty of a schedule to less than
10% of its initial value. The best case shown was obtained for customer data
(from a real customer!) and reduced the penalty from 6241 to 32, or about one
half of one percent of its original value.

Obviously the initial schedule has a heavy influence on the penalty of the final
schedule. The relative reduction values that look so impressive are partially due
to the bad results sometimes produced when the penalty of the initial schedule
is calculated.

In all cases the TS algorithm was able to reduce the penalties of schedules
significantly (better than 90%).

9 Implementation Details

The algorithm was coded in C# using the Microsoft Visual Studio .NET 2003
IDE. The results quoted in the table above were measured using a single pro-
cessor Pentium 4 System with 1 GByte of RAM clocked at 2.40 GHz.

10 Conclusions

After testing with both artificial and real data the heuristic optimizer based on
the classic tabu search paradigm was proven to generate employee schedules that

Generating Personnel Schedules Using Tabu Search [...] 301

satisfy the constraints and have penalties much lower than schedules generated
by the initial construction algorithm. Typically the penalty associated with an
initial schedule is reduced by 90% or more.

A visual inspection of the final schedule often gives the impression that it is
optimal, although one can never be sure. There does not appear to be a test suite
for personnel problems such as the one available for examination schedules, so
there is no way of comparing our results with those found using other systems.

References

1. K. R. Baker. Workforce allocation in cyclic scheduling problems: A survey. Operation
Research Quarterly, 27:155–167, 1976.

2. H. K. Alfares. Survey, categorization, and comparison of recent tour scheduling
literature. Annals of Operations Research, 127:145–175, 2004.

3. A. T. Ernst, H. Jiang, M. Krishnamuoorthy, and D. Sier. Staff scheduling and
rostering: A review of applications, methods and models. European Journal of
Operational Research, 153:3–27, 2004.

4. F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1997.
5. N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review

and research prospects. Manufacturing and Service Operations Management, 5:79–
141, 2003.

6. F. Glover and C. McMillan. The general employee scheduling problem: An integra-
tion of management science and artificial intelligence. Computers and Operations
Research, 13:563–593, 1986.

7. G.M. White, B.S. Xie, and S. Zonjic. Using tabu search with longer-term memory
and relaxation to create examination schedules. European Journal of Operational
Research, 153:80–91, 2004.

8. E.K. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyperheuristic for
timetabling and rostering. Journal of Heuristics, 9(6):451–470, 2003.

9. Luca Di Gaspero and Andrea Schaerf. Tabu search techniques for examination
timetables. Lecture Notes in Computer Science, 2079:104–117, 2001.

302 P. Tellier and G. White

