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Abstract In many funding agencies a model is adopted whereby a fixed panel
of evaluators evaluate the set of applications. This is then followed by a general
meeting where each proposal is discussed by those evaluators assigned to it with
a view to agreeing on a consensus score for that proposal. It is not uncommon for
some experts to be unavailable for the entire duration of the meeting; constraints
of this nature, and others complicate the search for a solution. We report on a
system developed to ensure the smooth running of such meetings.

1 Background

The process of evaluating research grant proposals presents some interesting
opportunities for operations research practitioners and researchers. The model
we discuss here assumes that a fixed pool of evaluators exists and the set of grant
proposals is distributed amongst them subject to the evaluators’ stated abilities
to evaluate each. (Although this step of the process is outside the current scope it
is an interesting assignment problem with many side constraints. For example,
some evaluators, such as vice-chairs, may be expected to take a reduced load
of evaluations due to other duties; no proposal should have a majority of vice-
chairs evaluating it; and, for each proposal, one evaluator should be appointed as
proposal reporter amongst the – usually 3, although requests for larger financial
sums necessitate more – evaluators assigned to it with this extra duty evenly
allocated amongst all evaluators.)

In the present context our interest begins when a general panel1 meeting
brings all of the evaluators together. Each proposal is discussed face to face by the
assigned evaluators for the purpose of agreeing a consensus position and category
scores, from which the final evaluation report may be written; the consensus
meeting runs for fixed length of time. Following the entry of all scores in a
database a ranking list is generated which forms the basis for funding decisions
by the grant agency. So that the entire panel of evaluators may agree to the
ranking list it is desirable that all consensus meetings be completed as quickly
as possible allowing time for the inevitable clean-up before the final ranking list
acceptance process.

In its most restricted form the problem may be expressed as, given an assign-
ment matrix of proposals to evaluators, where each proposal has been read by
some subset of evaluators, generate a schedule of consensus meetings that uses

1 A panel may be thought of as a general research area, e.g. computer science.
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the fewest number of time periods where the meetings can be held. A maximum
of T time periods exist.

The constraints that must be respected, then, are:

1. A consensus meeting can only take place during one time slot;
2. An expert can only be in one consensus meeting during a time slot;
3. If a consensus meeting for a proposal takes place then all of the experts

assigned to it must be present;
4. No more than T time slots may be used

The goal is to minimize the number of time slots used. While the problem
bears some resemblance to the teacher-class timetabling problem, the objective
function differs, as well as some of the constraints. In the following section we
describe our first approach to solve the problem by modelling it as an ILP.

2 An ILP Model

Given E = eij , the assignment matrix that indicates what experts have been
assigned to read proposal j, we can view its transpose ET = P = pij as the
matrix that indicates what proposals have been assigned to expert j.

We introduce binary variables xij that indicate that the consensus meeting
for proposal i will take place in time slot j, and yij that indicate that expert i

is in some meeting during time slot j, 1 ≤ j ≤ T .
Constraint 1 above can be implemented by

∑

j

xij = 1 ∀i

Constraint 2 says that if an expert is assigned to a time slot then s/he must
be evaluating exactly one proposal from their allocation and, conversely, if an
expert is not assigned to a time slot then none of their allocation are being
evaluated in this slot.

yij =
∑

k

pikxkj =
∑

k

ekixkj ∀i, j

Constraint 3 can be interpreted as meaning “meeting for proposal i happens
at time j ⇒ all of the experts associated with this proposal are assigned to this
slot”. Note that this relation is not ’⇔’ since the same three experts may be
involved in a different proposal. Also, by virtue of constraint 1 an expert can
only attend one meeting in a time slot. Its implementation is

wixij ≤
∑

k

eikykj ∀i, j

where wi =
∑

j pij is the number of evaluators assigned to proposal i.
The goal is to minimise the number of time slots used. To do this we ask

“how many proposals were evaluated in time slot j?” (
∑

i xij) and charge j for
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each of these. This forces as many proposals as possible into “small” time slots
for, if a proposal is evaluated in a later time slot j′, instead of j, the cost rises
by an amount j′ − j. The cost z is

z =
∑

j

(

j
∑

i

yij

)

Thus the ILP model we solve is

minimize
∑

j

(

j
∑

i

yij

)

(1)

subjectto (2)
∑

j

xij = 1 ∀i (3)

yij =
∑

k

ekixkj ∀i, j (4)

wixij ≤
∑

k

eikykj ∀i, j (5)

xij , yij binary

For a problem instance involving 58 evaluators and 383 proposals using
CPLEX 7.0 and running on a Pentium V, the previous model had not terminated
after 3 days of running time.

Of equal concern was the inadequacy of the implemented model. It often
arises that an evaluator cannot be present for the entire duration or may arrive
late and thus, not all slots are equally suitable. Further, some evaluators (e.g.
vice-chairs) have other duties and it is desirable that their consensus meetings
be scheduled as early as possible. (One further constraint that the system was
required to deal with was that, on occasion, the entire panel meeting is actually
a coalition of smaller panels, with evaluators involved in some or all of these
smaller panels. It was desirable that smaller panels were completed as soon as
possible, allowing the data entry and ranking list generation to take place for
these smaller panels.)

An alternative solution strategy is described below.

3 A Refined Model

In addition to constraints 1 - 4, the following refinements are now also considered
to address the deficiencies described above.

R1 No consensus meeting may be scheduled at a time when not all assigned
evaluators are present;

R2 Evaluators with other duties should be scheduled to finish their consensus
meeting duties as early as possible;
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R3 Some proposals (for example, those associated with a smaller sub-panel)
should be scheduled as early as possible

Graph coloring is long associated with timetabling [2–4] and we adopt this
approach here. For the model presented in Section 2 we construct a graph G =
(V, E), where the vertices represent proposals and an edge exists between two
vertices if the corresponding proposals have one or more evaluators in common.
In any legal vertex colouring, vertices of the same colour may be scheduled
together since they are guaranteed to be non-adjacant. In the absence of limits
on evaluators availabilities Pi, the proposals of colour i = 1, . . . , C, may be
scheduled, respectively, in time slots Si, i = 1, . . . , C.

Using a Tabu search-based vertex colouring algorithm gives quite satisfactory
results on problem instances commensurate with that described earlier.

3.1 Restricted Evaluator Availabilities

Restricted availability of one or more evaluators can be accommodated by solv-
ing a maximum cardinality bipartite matching instance [1]. We construct the
bipartite graph B = (U, V, E), where U = {i|1 ≤ i ≤ C} is the set of colourings
and V = {j|1 ≤ j ≤ T }. Vertices u and v are connected by an edge if it is possi-
ble to schedule all evaluators involved with proposals Pu during time period v.
The neighbourhood of u is the set of time slots in which all proposals Pu may
be feasibly scheduled.

However, two proposals assigned to the same colour class may require evalua-
tors who cannot be present simultaneously and this will result in vertex u having
0 neighbours, and thus unschedulable. Therefore, it is necessary to add to G,
prior to colouring, an edge between every pair of proposals having evaluators not
present simultaneously. (A separate but related feasibility check ensures that if
two evaluators work together on k proposals then there are at least k slots when
both are available.

Soft Constraints Constraints R2 and R3 are treated differently since they do
not affect feasibility. We build the bipartite graph as previously described but
we now add weights to edges. Initially every edge (u, v) has weight 1 but under
certain circumstances these weights may be augmented by the following process:
for a colour class u and its neighbourhood, N(u) = {vi1 , vi2 , . . . , vim

}, 1 ≤ ij ≤
T, |N(u)| = m, a weight or bias bij , 0 < b < 1 is added to each such edge.
Different biases may be used for R2 and R3.

On this weighted bipartite graph we call a maximum weighted bipartite match-

ing algorithm, which has the effect of choosing earlier time slots for a coloured
set of proposals

In the case of constraint R2 each vice-chair is considered in turn, and the
previous process is applied to the colourings in which their proposals appear.
Likewise, in order to accommodate constraint R3, if a proposal is marked as
requiring early completion then it can be thus biassed. Funding agency officials
have the ability to specify different weightings depending on their priorities.
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The system is implemented in Perl and, when run on a Pentium V using
problem instance data of the magnitude discussed earlier, returns a schedule (or
indicates that there is an infeasibility) in a few seconds. We have also solved
problems along the scale of 110 evaluators and 1,000 proposals in approximately
30 seconds.

4 Discussion

Prior to the introduction of this system consensus meetings took place in a
haphazard, ad-hoc fashion, with evaluators wasting much effort searching out
their associates in order to discuss a proposal. According to one official, for the
scale of problem instance we have discussed in Section 2 the system has resulted
in panel meetings being completed a day sooner than heretofore.

The problem has been decomposed into a graph colouring subproblem and
a matching problem. While the latter is an exact solution, the former finds
a heuristically generated colouring. Further, by separating the problem in this
manner and ignoring the soft constraints initially we may loose opportunities for
finding solutions that are more satisfactory with respect to the soft constraints.

Clearly there is an interaction between the two constraints and the choice of
b for each type of soft constraint and this is an area which can be investigated
further.
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