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1 Introduction

For many strongly NP-hard combinatorial optimization problems a natural rep-
resentation of a solution is a permutation. Practical approaches to solve such
problems are local search algorithms based on the neighborhood’s search. Well
chosen neighborhood is one of the key elements, which affects efficiency of this
method. Classic neighborhoods have polynomial number of elements and they
are generated by single moves. Neighborhoods with an exponential number of
elements have been successfully applied for a few years. We introduce the neigh-
borhood (and its properties – neighborhood graph, diameter, etc.), which has
application in the best local search algorithms. This neighborhood belongs to
very large scale neighborhood class (VLSN) and it is generated by swap multi-
moves. We present a theorem which states that any permutation (solution) can
be transformed into any other permutation by execution at most two swap mul-
timoves (that is the diameter of the neighborhood graph equals 2). The second
theorem of this paper states that the problem of determining an optimal swap
multimove in the neighborhood is NP-hard. Applying this neighborhood (and
the algorithms of its exploration) to local search algorithms allows us to obtain
the best known results for the most difficult scheduling problems considered in
literature (single machine total weighted tardiness problem, flow shop and job
shop problems ).

In this paper we propose a neighborhood generated by a composition of all
the swap moves, where supports of the permutation connected with these moves
are disjoint - that is different swaps of a multiswap does not change the same
elements of the permutation (they are commutative). Such a neighborhood is
very large (has an exponential number of elements). Determining its optimal
element is an NP-hard problem.

One of the characteristics of the neighborhood structure is the diameter of
the corresponding graph. We will also prove, that the diameter of the multiswap
neighborhood graph is 2. Applying this neighborhood to local search algorithms
allows us to obtain the best known results for the most difficult scheduling
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problems considered in literature (e.g. single machine total weighted tardiness
problem [2], flow shop [6] and job shop problems [7]).

2 Swap multimoves

We consider a combinatorial optimization problem with a permutational repre-
sentation of a solution. Let I = {1, 2, . . . , n} be a set of n elements (enumerated
by numbers from 1 to n). By S(n) we mean a set of all permutations of the set I.

Permutation σ ∈ S(n) is called involution [8], if it is inverse to itself, i.e.
σ2 = ε, where ε is the identity permutation. It is simple to see, that if σ ∈ S(n)
is an involution, then an inverse permutation σ−1 is an involution too.

Fact 1 Every involution is a composition of pair-independent (with disjoint sup-
ports) transpositions.

Conclusion 1. If π ∈ S(n) and m is a swap move, then executing of this
move generates a permutation β = m(π). If the move m swaps an element
π(i) with π(j), therefore it is easy to see, that β = m(π) = πα, where α =(

1 2 . . . i− 1 i i + 1 . . . j − 1 j j + 1 . . . n
1 2 . . . i− 1 j i + 1 . . . j − 1 i j + 1 . . . n

)
is a transposition. So the move m

can be identified with a transposition α. Therefore Fact 1 follows, that an invo-
lution is a composition of swap moves (and we call it a multiswap).

Theorem 1 [3] For any permutations π, δ ∈ S(n) there exists involutions α, β ∈
S(n) such, that παβ = δ.

Conclusion 2. From Theorem 1 and Fact 1 it follows that for any permutation
δ ∈ S(n) there exist involutions α = α1α2 . . . αl and β = β1β2 . . . βl, where
αsβs (s = 1, 2, ..., l) are independent cycles and such that δ = αβ. The method
of constructing of both involutions is precisely described in the proof of the
theorem.

Lemma 1 The diameter of the neighborhood graph corresponding to multimove
swap neighborhood is 2.

Proof. We consider any two permutations π, δ ∈ S(n) - nodes of the neigh-
borhood graph G = (V, A). From Theorem 1 it follows, that παβ = δ, where
permutations α, β are involutions. Because πα ∈ N (π), then (π, πα) ∈ A (that
is the length between them is 1). Similarly, δ ∈ N (πα), therefore (πα, δ) ∈ A. It
follows that the diameter of the multiswap neighborhood graph is 2.

Remark 1. In one of the advanced heuristic methods – path relinking – for
two permutations π and δ a permutation γ, lying on a path between π and δ
is constructed. Because παβ = δ, where α, β are involutions, so permutation
γ = πα, which is generated from π by an involution (multimove) α, lies on the
path between π and δ. It is possible to construct such an involution α that per-
mutation γ is in the required range of distance to π. In particular construction
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of involutions α, β (see Conclusion 2) can be successfully applied to diversify
the calculations, as a fully deterministic method. From construction involution
with many transpositions it follows that permutation πα is at a long distance
(counted as a number of swap moves) from π.
Remark 2. For any permutation π ∈ S(n) the set of all permutations S(n) can
be divided into three subsets (orbits): a) {π}, b) {πα : α ∈ S(n) and α is an
involution }, c) {παβ : α, β ∈ S(n) and α, β are involutions }. The dynasearch
neighborhood from the paper [4] is generated by single multimoves and these
neighborhoods are subsets of the set defined in point b).
Remark 3. The neighborhood based on swap multimoves is of very large-scale
(the number of its elements is asymptotically 1√
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4 , see [8]). We will
prove that the problem of finding the optimal multiswap in the multimove swap
neighborhood is equivalent to finding an optimal traveling salesman path in a
certain graph.

Theorem 2 [3] The problem of determining an optimal multiswap in the mul-
timove swap neighborhood is NP-hard.

Remark 4. In the works [6],[7] and [2] multimoves are applied to intensify and
diversify the calculations. Because these moves are compositions of independent
moves, therefore one can estimate the goal function of the permutation generated
by these moves with good precision.

3 Application: The permutation flow shop scheduling

Garey, Johnson and Seti [5] show that for three machine flow shop problem
(F |3|Cmax) is strongly NP-hard. The best available branch and bound algo-
rithms are those of Lageweg, Lenstra and Rinnooy Kan [9]. Their performance
is not entirely satisfactory however, as they experience difficulty in solving in-
stances with 20 jobs and 5 machines. Various local search methods are available
for the permutation flow shop problem. A very fast tabu search algorithms is
proposed by Grabowski, Wodecki [6]. Multimoves are applied to diversify cal-
culations in this algorithm. We have checked how they influence computations
time and values of solutions.

The implementation of the tabu search algorithm TSGW [6] was tested on
benchmark instances taken from the OR-library [1] and compared with reference
results from this library. For comparison, the results of the TSGW algorithm and
the TSGWnoMM algorithm (i.e. TSGW without multimoves) are presented in
Table 3. The results are shown of two groups of columns: one is for the TSGW
algorithm, the other is for the TSGWnoMM algorithm. Time in seconds (CPU)
and percentage relative deviation (PRD) to the reference solutions are presented
in Table 1.
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Table 1. Quality test results.

TSGW TSGWnoMM
n|m CPU PRD CPU PRD
20|5 0.0 0.00 0.0 0.02
20|10 0.3 0.03 0.3 0.08
20|20 0.6 0.07 0.6 0.11
50|5 0.4 -0.08 0.4 0.05
50|10 0.9 -0.29 0.8 0.17
50|20 2.3 0.13 2.2 0.26
100|5 0.6 -0.03 0.6 0.14
100|10 1.4 -0.21 1.3 0.32
100|20 5.0 -0.68 4.5 0.19
200|10 4.4 -0.19 4.1 0.06
200|20 8.5 -1.12 7.9 -0.04
500|20 11.2 -0.81 10.7 0.23

all 2.96 -0.26 2.62 0.12

On the basis of results presented in Table 1 we can say, that computations
times are almost the same. However definitely different are average relative de-
viations to the reference solutions. Average relative percentage deviation (PRD)
for the TSGW (with multimoves) is -0.26, however for the TSGWnoMM (with-
out multimoves) average PRD is 0.12. Applying of the multimoves cause about
3 times decreasing of the average PRD.
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2. Bożejko W., M.Wodecki, Parallel algorithm for some single machine scheduling
problems, Automatics vol. 134 2002 81-90.
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