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1 Introduction

In this abstract we describe the university timetabling problem as it is perceived
and solved at the KaHo Sint-Lieven School of Engineering. Timetabling is carried
out manually by dragging and dropping events in a room-timeslot matrix, but
potential conflicts are automatically spotted by the conflict module built into
the application. We are now in the process of automatizing the construction
of timetables itself. In the next sections we describe the specific timetabling
problem at KaHo Sint-Lieven and the steps we follow to tackle it. The approach
is based on a tabu search algorithm. Inspired by Kingston [13], we group sessions
in order to make the timetabling problem less complex.

2 University Course Timetabling

University timetabling is probably one of the best studied timetabling prob-
lems [2,4,6,14] in academia. Bardadym [2] classifies university timetabling into
5 groups.

– faculty timetabling: assign qualified teachers to courses,
– class-teacher timetabling: assign courses with the smallest timetabling unit

being a class of students,
– course scheduling: assign courses with the smallest scheduling unit being an

individual student,
– examination scheduling: assign examinations to students such that students

do not have two examinations at the same moment,
– classroom assignment: after assigning classes to teachers, assign these class-

teacher couples to classrooms.
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The problem considered in this abstract can be classified as course schedul-
ing. That problem consists of placing events (which we will call sessions) in
appropriate class rooms and timeslots, taking into account that the number of
students attending a session has to fit into the room and that the duration of the
session cannot be greater than the length of the timeslot it is assigned to. Other
constraints that have to be taken into consideration are that students and lectur-
ers cannot be at two places in the same timeslot and that a session can only be
assigned to one timeslot and one room. The university timetabling problem that
is studied in this paper is in general more complex than the secondary school
timetabling problem. In the latter, timeslots are equal in length and the schedule
is weekly repeated during a semester. At the KaHo Sint-Lieven School of Engi-
neering, a timetable is typically constructed for a period of a semester (which is
twelve weeks long). The problem however is that some subjects are taught every
week; some sessions are taught every fortnight, others only the first six weeks of
the semester, others only nine times a semester, ... It is even more complex since
the timeslots are not equal in length, and since they can overlap. This has to
be taken into consideration when constructing the timetable. Multiple lecturers
can be assigned to lab sessions which are taken by large student groups. This
makes the manual construction of timetables a hard and time consuming task.
It usually takes a couple of days to remove all the conflicts in the timetable that
appear once the semester has started.
The considered problem size for one semester is:

– 12 weeks,
– 133 different teacher groups,
– 212 different student groups,
– there are 100 class rooms of different sizes available,
– there are 20 different (sometimes overlapping) possible timeslots per day,
– 1215 sessions need to be scheduled.

Most university timetabling applications described in the literature have been
developed by universities that experienced the need for automatizing their own
timetabling problem [6]. Bardadym [2] remarks that most of these systems are
usually very problem specific and can only be applied in that particular univer-
sity. We are attempting to overcome that by developing a general timetabling
framework [7].

3 Tabu Search Approach

The literature about university course timetabling teaches us that researchers
applied different approaches to tackle the problem (see [14] for an overview).
Meta-heuristics approaches are known to produce good results. Early papers
(beginning 1990’s) of Hertz [11,12] report good results applying tabu search [9]
on the university course timetabling problem. More recent papers on university
course timetabling combine tabu search with other search methods: Schaerf [15]
applies a combination of randomized hill-climbing with tabu search, while Burke
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et al. [5] use a hyperheurisitic in which a tabu search algorithm is employed to
select the lower level heuristics.

3.1 General Description of the OpenTS Framework

In this contribution we report on the OpenTS[10] framework and its employa-
bility on university course timetabling. That framework contains a Java based
implementation of a tabu search algorithm. Developers who start applying the
framework are expected to implement the problem specific interfaces. They thus
describe how a solution will be represented, what will be the different neigh-
borhoods, and how the different constraints will be evaluated. The OpenTS
framework also offers the opportunity to dynamically adapt the length of the
tabu list (reactive tabu list) and to switch between different neighborhoods.

3.2 Application of OpenTS to the Course Timetabling Problem

In this section we describe how we applied the OpenTS framework to the univer-
sity course timetabling problem. We implemented the problem specific interfaces
and incorporated the possibility to dynamically adapt the tabu length size and
switch between neighborhoods.

– The implementation of the OpenTS Solution interface consists in this case of
a two dimensional matrix with the class rooms in the rows and the timeslots
in the columns. If a session is planned, the matrix will contain a session ID,
otherwise it will contain 0.

– We also implemented different moves which define neighborhoods. One move
simply shifts a session ID to a matrix element that equals 0. If a selected
element differs from 0, it swaps the two sessions. Another move swaps all
the scheduled sessions in a particular timeslot with any other timeslot.

– The last interface that a user of OpenTS needs to implement is the Objec-
tive Function interface. By implementing this interface the developer decides
how the different hard and soft constraints will be evaluated. To ascertain
the quality of a solution proposed by the tabu search algorithm (how many
constraints are violated by the proposed solution), this solution needs to
be evaluated by the objective function. At this moment only the hard con-
straints described in the previous section are evaluated.

– If an iteration is unsuccessful - no better solution is found in the consid-
ered iteration - the tabu length is increased. If, however, a better solution
is found the length of the tabu list is decreased (until the lower limit of
size 7 is reached). We opt to choose primes as tabu lengths. Switching be-
tween neighborhoods happens when the number of unimproving moves in
one neighborhood exceeds a predefined value.

The described method allows to schedule a weekly timetable. As noted in Section
2 however, some sessions are only taught a few times during a semester.
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4 Aggregation

To keep the problem size small, we opt not to construct twelve independent
weekly timetables, which probably would not differ much from week to week.
Instead we decided to carry out a pre-processing step. The idea is to group
lectures which are not organized on a weekly basis into aggregate sessions, which
we call ‘pillars’. If a lecture is only organized six times during a semester, the
application will try to find a lecture that is also taught six times (or less). Fig.
1 shows a graphical representation of a semester consisting of twelve weeks.
The ‘pillar’ in the middle of the figure is built up of two lectures organized in
interleaved weeks (marked with and without a cross) that are each organized six
times during a semester to the same class group. The evaluation method in this
example only has to check the constraints for two consecutive weeks (assuming
of course that these lectures are organized alternatingly).

Fig. 1. Graphical representation of pillars. Sessions in the pillar are taught on a fort-
nightly basis.

The method is based upon the tiling approach that Kingston [13] successfully
applies to Australian high school timetabling. He groups similar sessions and
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treats them as one. We are also thinking about generalizing the pillars concept. In
the case described above, the pillar can only be constructed for lectures organized
to the same class group, using the same location and timeslot.

5 Results

The above described model is implemented and tested on real-world data. The
preliminary results look rather promising.

6 Conclusion and Future Work

The presented model with the pillar representation offers a good quality method
to solve large timetabling problems. Currently, it only deals with hard con-
straints. Remaining problems to solve are:

– investigating if the pillar representation can be generalized and applied to
sessions that only have lecturers or students in common.

– taking into account soft constraints (e.g. avoid sessions on the last timeslot
of the day, avoid free hours, take into account personal preferences of lectur-
ers,...). One candidate approach is the linear numberings method [3,8] that
was first introduced for employee timetabling. In that linear numberings
method constraints are expressed in terms of eight numbering constraints
and a corresponding template of numbers.
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