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Abstract. The timetabling problem is well known to be NP complete combina-
torial problem. The problem becomes even more complex when addressed to 
individual timetables of students. The core of dealing with the problem in this 
application is a timetable builder based on mixed direct-indirect encoding 
evolved by a genetic algorithm with a self-adaptation paradigm, where the pa-
rameters of the genetic algorithm are optimized during the same evolution cy-
cle as the problem itself. The aim of this paper is to present an encoding for 
self-adaptation of genetic algorithms that is suitable for timetabling problem. 
Comparing to previous approaches we designed the encoding for self-
adaptation not only one parameter or several ones but for all possible parame-
ters of genetic algorithms at the same time. Genetic algorithms are naturally 
parallel so also the parallel representation of the self-adaptive genetic algorithm 
is presented. The proposed parallel self-adaptive genetic algorithm is then ap-
plied for solving the real university timetabling problem and compared with a 
standard genetic algorithm. The main advantage of this approach is, that it 
makes possible to solve wide range of timetabling and scheduling problems 
without setting parameters for each kind of problem in advance. Unlike com-
mon timetabling problems the algorithm was applied to the problem in which 
each student has an individual timetable, so also we present and discuss the al-
gorithm for optimized enrolment of students that minimize the number of clash-
ing constraints for students. 

1    Introduction 

Genetic algorithms are search algorithms based on the idea of natural selection and 
natural genetics. It is well known, that efficiency of genetic algorithms strongly de-
pends on their parameters. These parameters are usually set up according to vaguely 
formulated recommendations of experts or by the so-called two-level genetic algo-
rithm, where at the first-level genetic algorithm optimizes parameters of the second-
level. A self-adaptation seems to be a promising way of genetic algorithms, where the 
parameters of the genetic algorithm are optimized during the same evolution cycle as 
the problem itself. The aim of this paper is to present an encoding and genetic opera-
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tors for self-adaptation of genetic algorithms that is suitable for solving the university 
timetabling problem. Comparing to previous approaches (e.g. [2], [12], [20]) we 
designed the encoding for self-adaptation not only one parameter but for all or nearly 
all possible parameters of genetic algorithms at the same time. Moreover, the parame-
ters are encoded separately for each element of a chromosome. Genetic algorithms are 
naturally parallel so also the parallel representation of the self-adaptive genetic algo-
rithm is presented. 

The proposed parallel self-adaptive genetic algorithm is then applied for solving 
the real university timetabling problem at Silesian University. The problem is known 
to be NP-complete and hence it is known no algorithm for solving it in polynomial 
time [8]. The requirements for timetabling differs from university to university, but in 
general the timetabling problem consists of assigning each lecture from a set of lec-
tures to a suitable room and a time slot subject to a number of hard and soft con-
straints, such as no teacher can teach more lectures at the same time, at no room can 
be taught more than one lecture at the same time, teachers time and room preferences, 
etc. 

At some universities including Silesian University each student has an individual 
timetable, i.e. there are no groups of students, which have the same timetable, even it 
is difficult to find only two students with the same timetable, thus solving the prob-
lem becomes very complex. In order to be able to deal with individual timetables of 
students we designed an algorithm for optimization of enrollment of students that 
effectively decrease the number of constraints for student clashes. 

A large number of diverse methods have been already proposed in the literature for 
solving timetabling problems. These methods come from a number of scientific disci-
plines like Operations Research, Artificial Intelligence, and Computational Intelli-
gence and can be divided into four categories: 1) Sequential Methods that treat time-
tabling problems as graph problems. Generally, they order the events using domain-
specific heuristics and then assign the events sequentially into valid time-room slots 
[19]. 2) Cluster Methods, in which the problem is divided into a number of event sets. 
Each set is defined so that it satisfies all hard constraints. Then, the sets are assigned 
to real time-room slots to satisfy the soft constraints, too [23]. 3) Constraint Based 
Methods, according to which a timetabling problem is modeled as a set of variables 
(events) to which values (resources such as teachers and rooms) have to be assigned 
in order to satisfy a number of constraints [5, 11]. 4) Meta-heuristic methods, such as 
genetic algorithms, simulated annealing, tabu search, and other heuristic approaches, 
that are mostly inspired from nature, and apply nature-like processes to solutions or 
populations of solutions, in order to evolve them towards optimality [1, 7, 14, 18, 21, 
22]. 

When applying genetic algorithms to some optimization or scheduling problem, 
the crucial element is encoding. For timetabling problem there are two main types of 
encoding: direct [18] and indirect [14]. The advantage of direct encoding is that the 
whole search space can be encoded, but it usually leads to violation of many hard 
constraints. The indirect encoding is based on some rules or instructions for building 
the resulting timetable and so there is less probability of hard constraint violation, but 
it can reach only limited portion of the search space and thus it can be trapped in a 
local optimum. In our application some combination of both encoding was used, 
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because we want to let the algorithm decide itself whether to use the direct or indirect 
representation, respectively the ratio of using both of them. The timetable builder is 
based on the order of lectures and time-room slots encoded in the chromosome. By 
this approach all the feasible timetables can be addressed and the probability of gen-
erating an infeasible timetable is strongly reduced. Finally the proposed parallel self-
adaptive genetic algorithm is compared to standard genetic algorithms on this time-
tabling problem. Also the role of enrollment optimization algorithm is discussed. 

2    Encoding 

Encoding is a crucial element of every genetic algorithm. The structure of our self-
adaptive genetic algorithm’s encoding is depicted in Figure 1. The idea behind the 
proposed encoding consists in redundancy of information through hierarchical 
evaluation of individuals. 

 

Fig. 1. The structure of a population 

As we can see, in the population each individual is composed of Ng genes, where each 
gene corresponds to exactly one optimized variable. Each gene is composed of Ne 
gene elements. The number of gene element is different for each gene and it varies 
through evolution. Each gene element contains low-level parameters, which encode 
optimized variables and parameters of evolution. All parameters are listed in Table 1. 

The upper index “E” denotes, that it is a gene element value of the parameter. As 
the encoding is hierarchical, there are several levels of the parameters, so gene values 
of parameters are marked by the upper index “G”, individual values by “I” and popu-
lation values by “P”. 

Since genetic operators are applied only to the low level values of parameters 
(gene element), the upper level values of parameters cannot be altered directly 
through evolution process, but only indirectly by evaluation mechanism from low 
level values. 

… 

… 

… 

Population 

Individual 1 Individual 2 Individual Np 

Gene 1 Gene 2 Gene Ng 

Gene elem 2 Gene elem 1 Gene elem Ne 
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Table 1. The structure of a gene element 

Name Description Range 
Ex  Optimized variable <0;1> 
E
mq  Parameter of mutation <-1;1> 

E
pq  Parameter of protected mutation <-1;1> 

E
mr  Radius of mutation <0;0.5> 

E
cp  Probability of crossover <0;1> 

E
cr  Ratio of crossover <0;1> 

E
dq  Parameter of deletion <-0.1;0.1> 

E
uq  Parameter of duplication <-0.1;0.1> 

E
tq  Parameter of translocation <-0.1;0.1> 

E
ms  Identifier of myself for mating <0;1> 

E
ws  Wanted partner for mating <0;1> 

E
rr  Ratio of replacement <0;1> 

E
tr  Ratio of population for selection <0;1> 

E
pr  Ratio of population for 2nd partner selection <0;1> 

E
dc  Coefficient of death <0;1> 

E
pN  Wanted size of population <0;1> 

E
ti  Identifier of translocation <0;1> 

 

Mechanism of Gene Evaluation 

The proposed encoding is polyploiditial, so each gene is composed of Ne gene ele-
ments. The number of gene elements is variable and undergoes evolution. For evalua-
tion of gene values of gene elements we use simple arithmetical average, i.e. 

∑
=

=
eN

i

E
i

e

G X
N

X
1

1
 , 

(1) 

  where X stands for parameters that must be evaluated, i.e. x, sm, sw, rr, r t, rp, cd, Np, it. 

Mechanism of Individual Evaluation 

Parameters concerning the whole individual, such as I
ms , I

ws , I
rr , I

tr , I
pr , I

dc , I
pN  

are evaluated as simple arithmetical average, i.e. 
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The number of genes Ng is not variable, because one gene contains exactly one opti-
mized variable. 

Mechanism of Population Evaluation 

Parameters concerning the whole population, such as P
rr , P

tr , P
dc , P

pN  are evaluated 
as weighted average with weights according to their relative fitness fw , defined as 
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where i is index of i th individual in population sorted by fitness in descending order, 
i.e. the individual with the highest value of the fitness function has the value of i 
equal to 1, the individual with the second highest value of the fitness function has the 
value of i equal to 2 etc. 

3    Genetic Operators 

As the proposed encoding is specific, the genetic operators must be adjusted to fit the 
encoding. There are used not only common genetic operators as selection, crossover 
or mutation, but also some specific ones, as described in following paragraphs. 

Selection 

In genetic algorithms the selection of both parents for mating is usually based on their 
fitness, but this is not true in nature. In nature a winner of a tournament selects his 
partner according to his individual preferences. Important is that he cannot take into 
account his genotype, i.e. directly the values of his genes nor his fitness, but only his 
phenotype, i.e. only expression of the genes to the outside. In a similar way we try to 
imitate nature by using parameters I

ms  and I
ws . The parameter Iws  represents individ-

ual’s preferences for mating and the parameter I
ms  represents individual’s phenotype 

for mating. So the first parent is selected by a tournament selection method with vari-
able ratio of population P

tr  from which the fittest individual is selected. The second 
parent is selected according to individual’s preferences represented by the parameter 

I
ws , i.e. the first parent selects an individual with the minimal value of expression 

I
m

I
w ss − , but this selection is made from only limited ratio of population I

pr . 
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Crossover 

The crossover operator is applied to every gene element of the first parent with the 
probability E

cp . The crossover itself proceeds only between gene elements of mating 
parents according to formula 

( ) E
c

EEEE rXXXX ⋅−+= 1213  (4) 

where X stands for all parameters of a gene element (see Table 1), E
cr  is a ratio of 

crossover of the first parent defined in this gene element, the lower index “1” denotes 
the gene element of the first parent, the index “2” the second parent and the index “3” 
denotes the child of both parents. The gene element of the second parent is selected 
randomly, but it is of the same gene as the gene element of the first parent. 

Mutation 

The mutation operator is applied to every gene element with probability E
m

E
m qp = . 

Notice that probability of mutation is calculated as the absolute value of the parame-
ter of mutation 1;1−∈E

mq , because the mean value of Emp  should be zero. More-
over, every gene element has its own probability of mutation. The mutation formula 
is defined as 

( ) ( )E
m

E
m

EEE
old

E
new rrUXXXX ,minmax −⋅−+=  (5) 

where X stands for all parameters of the gene element, ( )baU ,  is a random variable 
with uniform probability distribution in the interval ba; , E

newX  is the value of the 
parameter after mutation, E

oldX  is the original value of the parameter, EXmax  ( EXmin ) is 
the maximal (minimal) allowed bit element value of the parameter as defined in Ta-
ble 1. 

Duplication 

The duplication operator is applied to every gene element with probability E
u

E
u qp = . 

The gene element is duplicated (copied) with the same value of all parameters with 
the only exception, that the values of parameterE

uq  of both gene elements are divided 
by 2, in order to inhibit exponential growth of the number of bit elements.  

Deletion 

The deletion operator is applied to every gene element with probability E
d

E
d qp = . It 

means that the gene element is simply removed from the particular gene. By deletion 
and duplication operators the degree of polyploidity is controlled. 
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Translocation 

The translocation means that a gene element is moved from its original gene to one of 
neighboring genes with probability E

t
E
t qp = . However, the neighboring gene may 

decide, whether to accept the gene element, that is the real probability of translocation 
is defined as 

( ) ( )( )oldG
t

newG
t

E
t iipp −−⋅= 1  (6) 

where ( )newG
ti  is the identifier of translocation of the gene, to which the gene element 

is going to move, and index “(old)” denotes the original gene. The values of gene ele-
ment’s parameters are left unchanged with the only exception that E

tq  is multiplied 
by coefficient 5.0− , in order to decrease further translocations. The gene element 
decides whether to translocate to the left or right neighboring gene according to the 
sign of E

tq .  

Protected Mutation 

Protected mutation is an analogy of local optimization and it is applied only to the 
fittest individual in the population after application of all previous operators and after 
values of fitness function of all individuals in the population have been calculated. 
The protected mutation operator is applied to every gene element with probability 

E
p

E
p qp =  and after that the new value of fitness function is calculated and compared 

to the value of fitness function before applying the protected mutation operator. If the 
new value of fitness function is greater than previous than the mutated chromosome is 
used otherwise the old chromosome is used for following evolution cycle. 

Replacement of Individuals 

For every individual the parameter of a life strength – L is defined. When the individ-
ual is created its life strength L is set to one and in every generation it is multiplied by 
the coefficient cL defined as 

( )f
P
dL wcc −−= 11  (7) 

Evidently, through evolution, a less fitter individual causes the greater decrease in L. 
In every generation all PX  parameters are evaluated and by using the above listed 
genetic operators P

r
P
p rN ⋅  new individuals are created. Then a randomly selected 

individual is killed with probability ( )L−1 . This process of killing individuals is 
repeated until only P

pN  individuals survive in the population. 
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4    The Parallel Self-adaptive Genetic Algorithm 

Genetic algorithms are naturally parallel so it invokes an idea to implement the pro-
posed self-adaptive genetic algorithm parallely. We used simple parallel structure, in 
which there is one master genetic algorithm and Na slave genetic algorithms. The 
master genetic algorithm is responsible for performing genetic operators and creating 
new generation, while the slave genetic algorithm just calculate the value of fitness 
function of the individual presented by the master genetic algorithm. In each genera-
tion the master genetic algorithm distributes Np/Na tasks to each slave genetic algo-
rithm. The master genetic algorithm communicates with slave genetic algorithms by 
TCP/IP protocol. The structure of the parallel self-adaptive genetic algorithm is de-
picted in Figure 2. 
 

 

 
Fig. 2. The structure of the parallel self-adaptive genetic algorithm 

5    The Timetabling Problem 

In this chapter we describe the input data for the university timetabling problem and 
formalize the optimization model. In the model we use the following notation 
 
nR – number of available rooms R1, R2, …, 

RnR  

nU – number of subjects U1, U2, …, 
UnU  

nL – number of lectures (events) L1, L2, …, 
LnL  

nS – number of students S1, S2, … 
SnS  

nT – number of teachers T1, T2, …, 
TnT  

nM – number of time slots M1, M2, …, 
MnM  

nG – number of time-room slots G1, G2, …, 
GnG  

C – clash matrix with elements cij; i = 1, 2, …, nL; j = 1, 2, …, nL 
P – preference matrix with elements pij; i = 1, 2, …, nL;  j = 1, 2, …, nG 

 
The purpose of the clash matrix C is to determine which lectures should not be 

scheduled at the same time. Each element of the clash matrix cij is equal to the num-
ber of students, which are enrolled to both lectures Li and Lj. The number of students 
that attend more lectures at the same time is only soft constraint, because each student 

…

Master GA 

Slave GA 2 Slave GA 1 Slave GA Na 
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has an individual timetable and so it is nearly impossible to build a timetable with no 
clashes for students. The clash matrix C is also used for handling teachers clashes, i.e. 
the high penalty coefficient is set to the matrix element cij = 106 for all lectures Li and 
Lj which are taught by the same teacher.  

The purpose of the preference matrix P is to set preference pij to particular time-
room slot Gj for each lecture Li. Note that the preferences are taken as negative pref-
erences, i.e. the higher is the element of the preference matrix pij, the less suitable is 
the time-room slot Gj for the lecture Li. The matrix P is also used for handling the 
suitable rooms for each lecture. By the matrix P we can handle both, the teacher time 
preferences and the suitable rooms for each lecture. The teacher time preferences are 
usually taken as soft constraints, i.e. only small penalty coefficient is set to pij for all 
time-room slots Gj that correspond to less preferred timeslots for the lectures Li that 
are taught by the teacher. The requirements for suitable room is handled as the hard 
constraint, so the high penalty coefficient pij = 106 is set for all time-room slots Gj that 
correspond to unsuitable rooms for particular lecture Li. 

The core of the timetabling problem is to assign suitable timeslot Gj to each lecture 
Li such that all hard constraints were satisfied and the number of soft constraint viola-
tions was minimal. This problem can be mathematically formulated as optimization 
model minimizing error of the timetable defined as  

( ) ( ) minpenalty,sametime
1 1 1

→⋅+

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1  for j = 1, 2, …, nG 

∑
=

=
Gn

j
ijx

1

1 for i = 1, 2, …, nL, 

(8) 

where xij is a binary optimized variable determining whether the lecture Li is taught in 
the time-room slot Gj. The expression sametime(i,k) is the function that is equal to 1 
if the lecture Li is taught at the same time as the lecture Lk, otherwise it is equal to 
zero. The expression penalty(xij) is the function determining penalty of the timetable 
that is not possible to express by clash matrix C or preference matrix P. And the coef-
ficient wp is the weight of penalty(xij) by which it contributes to the error of the time-
table. 

6    Teacher Preferences 

To express teacher preferences we define following criteria. For each criterion the 
teacher sets its preference *t  by “mark” from 1 to 5, the mark 1 means that it is the 
best and mark 5 means that it is the worst. Because the preferences *t  are used for 
calculation of total error of the timetable and if 1* =t  it means the best possibility for 
the teacher and actually no error of timetable, we transform *t  to *'t  by decreasing 1, 
i.e. 1**' −= tt . If the preference 5* =t  it is hard constraint, so 6*' 10=t . 
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Time Preferences 

For each timeslot Mk the teacher must set its preference M
kt , for which we calculate 

1' −= M
k

M
k tt . After that we assign 'M

kMij twp ⋅=  for all lectures Li that are taught by 
this teacher and for all time-room slots Gj that corresponds to timeslot Mk. The pa-
rameter wM is a weight by which it contributes to the error of the timetable. For ex-
ample if the teacher cannot teach on Wednesdays, on Mondays and Tuesdays he 
prefers to teach in the afternoon and on Thursdays and Fridays he prefers to teach in 
the morning, then the preferences M

kt  could look like that: 
 

  
08:00-
08:45 

08:50-
09:35 

09:40-
10:25 

10:30-
11:15 

11:20-
12:05 

12:10-
12:55 

13:00-
13:45 

13:50-
14:35 

14:40-
15:25 

15:30-
16:15 

Mon 4 3 3 3 2 2 1 1 1 1 

Tue 4 3 3 3 2 2 1 1 1 1 

Wed 5 5 5 5 5 5 5 5 5 5 

Thu 1 1 1 1 1 2 2 3 3 3 

Fri 1 1 1 1 1 2 2 3 3 3 

Number of Teaching Days per Week 

For each number of days the teacher must set N
kt , for which we calculate 1' −= N

k
N
k tt . 

We calculate the number of days d in which the teacher teaches at least one lecture 
and then increase the value of penalty(xij) by the value of 'N

dN tw ⋅ , where Nw  is the 
weight by which it contributes to the penalty of timetable. For example if the teacher 
would like to teach in 2 or 3 days per week, in 4 days it is not convenient for him, in 
5 days it is not acceptable for him and in 1 day it is not possible to teach all lectures 
then the preferences N

kt  could look like that: 
 

Number of Teaching Days 1 2 3 4 5 

Preferences Nkt  5 1 1 3 5 

Length of Teaching Block without Break 

By this criterion the teacher sets if he prefers to concentrate lectures to one long 
teaching block or to disperse it to several short teaching blocks. For each length of the 
teaching block (in hours) the teacher must set its preference B

kt , for which we calcu-
late 1' −= B

k
B
k tt . We calculate for each continuous teaching block its length l and then 

increase the value of penalty(xij) by the value of 'B
lB tw ⋅ , where Bw  is the weight by 

which it contributes to the penalty of timetable. For example if the teacher would not 
like to have too dispersed lectures, i.e. he wants to teach at least 2 hours without 
break, the most preferably he would like to teach 3-4 continuous hours, 5 continuous 
hours is very exhausting and more than 5 continuous hours is not possible to teach 
then the preferences B

kt  could look like that: 
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The Length of Block 1 2 3 4 5 6 7 8 9 10 

Preferences Bkt  5 3 1 1 3 5 5 5 5 5 

Number of Teaching Hours per Day 

For each number of the teaching hours the teacher must set its preference Hkt , for 
which we calculate 1' −= H

k
H
k tt . We calculate for each day the number of teaching 

hours h and then increase the value of penalty(xij) by the value of 'H
hH tw ⋅ , where Hw  

is the weight by which it contributes to the penalty of timetable. For example for the 
teacher it is very inconvenient to go to school to teach only 1 or 2 hours, optimal 
number is 3-5 hours per day, 6-7 hours is exhausting and above 6 hours per day is 
impossible then the preferences H

kt  could look like that: 
 

The Number of Hours 1 2 3 4 5 6 7 8 9 10 

Preferences Hkt  5 4 2 1 1 2 3 5 5 5 

Span of Teaching Day 

This criterion means the difference between beginning of the first lecture and the end 
of last lecture in a day, i.e. the sum of teaching hours and breaks between them. For 
each length of span the teacher must set its preference S

kt , for which we calculate 
1' −= S

k
S
k tt . We calculate for each teaching day the length of span s and then increase 

the value of penalty(xij) by the value of 'S
sS tw ⋅ , where Sw  is the weight by which it 

contributes to the penalty of timetable. 

Length of Continuous Break 

By this criterion the teacher sets how many hours he needs to relax. For each number 
of relax hours the teacher must set its preference R

kt , for which we calculate 
1' −= R

k
R
k tt . We calculate for each break between two teaching blocks its length r and 

then increase the value of penalty(xij) by the value of 'R
rR tw ⋅ , where Rw  is the weight 

by which it contributes to the penalty of timetable. Of course if necessary it is possi-
ble to incorporate other teacher preferences in similar way as previous ones. 

7    Enrollment of Students 

At most universities there are some group of students which share the same timetable. 
But at some universities including Silesian University each student has an individual 
timetable, i.e. there are no groups of students, which have the same timetable, even it 
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is hardly to find only two students that have the same timetable, thus solving the 
problem becomes very complex. 

At Silesian University each student can choose subjects that he wants to study. If 
the subject consists of only one lecture there is usually no problem as the student is 
automatically enrolled to that lecture. But most of subjects consist of two kinds of 
lectures: classical lectures and seminaries. There are usually more seminaries of the 
same subject, but the student can be enrolled only to one of them. The question is 
how to set appropriate seminary for each student. One possibility is to do it randomly, 
but by this way it will be very difficult or nearly impossible to build the timetable, in 
which each student has unclashing timetable or the number of clashing lectures for 
students is acceptably small. So we propose the algorithm for optimized enrolment of 
students that minimize the number of clashing constraints for students. 

In the model we use the following notation 
U
ijS  – binary variable defining whether the student Si is enrolled to the subject Uj 

L
ijS  – binary variable defining whether the student Si is enrolled to the lecture Lj 

L
ijU  – binary variable defining whether the subject Ui contains the lecture Lj 

L
ijS  – binary variable defining whether the student Si is enrolled to the lecture Lj 

S
iL  – maximal number of students that can be enrolled to the lecture Li 

Without loss of generality suppose that each kind of lecture of the same subject 

will be labeled as different subject. First we set the elements Tijc  of clash matrix C for 

teacher clashes as was described in the chapter 5. After that student are enrolled to the 
lectures corresponding to the subjects which have only one lecture of the same type, 
i.e. there is no possibility of choice of the lecture to which the student should be en-
rolled. The core of the enrollment problem is then to enroll all students to all lectures 
such that all constraints were satisfied and the number of nonzero elements cij of the 
clash matrix C was minimal. The problem can be mathematically formulated as opti-
mization model minimizing the number of nonzero elements cij defined as 

( ) minnonzero
1 1

→=∑∑
= =

L Ln

i

n

j
ijcc  

 s.t. ∑
=

≤
Sn

i

S
j

L
ij LS

1

 for j = 1, 2, …, nL  

 ∑ ∑
= =

=
U Ln

j

n

k

L
ik

U
ij SS

1 1

 for i = 1, 2, …, nS 

 ∑
=

=⋅⋅
Ln

j

U
ik

L
kj

L
ij SUS

1

1  for i = 1, 2, …, nS , k = 1, 2, …, nU 

 

(9) 

where ∑
=

⋅+=
Sn

k

L
kj

L
ki

T
ijij SScc

1

 for i, j = 1, 2, …, nL and nonzero(cij) is the function which 

is equal to 0 when cij is zero and 1 otherwise. 
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8    Mapping the Timetabling Problem to the Chromosome 

The timetabling problem actually consists of two tasks. In the first one students must 
be enrolled to lectures and in the second one there must be lectures assigned to time-
room slots. In this section the process of decoding from the chromosome will be de-
scribed.  

The Enrolment Builder 

First we enroll students to lectures according their preferences for subjects they want 
to attend by the process described in the chapter 7. For optimization of enrollment of 
students the proposed parallel self-adaptive genetic algorithm was used. As was men-
tioned in the chapter 2, each gene of a chromosome represents one real variable 
within the interval <0;1>. In order to apply this chromosome encoding for the enroll-
ment problem, the chromosome is divided into two parts. The first part A consisting 
of ( )US nn ⋅  genes represents the parameters for all subjects selected by students and 
the second part B consisting of nL genes represents parameters for lectures. The main 
idea behind the encoding of the lecture enrollment is that the subjects selected by 
students are sorted in ascending order according to values of parameters in the part A 
of the chromosome and then in this order the lecture enrollment builder assigns the 
first free suitable lecture with the least difference of ji BA − , where Ai is the i-th 
parameter of the part A of the chromosome and Bj is the j-th parameter of the part B 
of the chromosome. The fitness function f for the genetic algorithm is the negative 
value of c in (9), i.e. zc −= . 

The Timetable Builder 

For solving the university timetabling problem the parallel self-adaptive genetic algo-
rithm was used, too. The process of encoding is similar to encoding of the enrollment 
problem above. The chromosome is divided into three parts. The first part A consist-
ing of nL genes represents the parameters for lectures, the second part B consisting of 
nG genes represents parameters for time-room slots and the last part contains control 
parameters for the timetable builder. Lectures are sorted in ascending order according 
to values of parameters in the part A of the chromosome and then in this order the 
timetable builder assigns the first suitable unused time-room slot with the least differ-
ence of ji BA − , where Ai is the i-th parameter of the part A of the chromosome and 
Bj is the j-th parameter of the part B of the chromosome. Whether the time-room slot 
Gj is suitable for the lecture Li is determined by the control parameter D in the last 
part of the chromosome. The parameter D contains the maximal accepted penalty of 
assigning lecture Li to time-room slot Gj, which is calculated by the formula (8). If 
there is no suitable time-room slot for the lecture Li, the best suited still unused time-
room slot is selected for the lecture. The fitness function f for the genetic algorithm is 
the negative value of z in (8), i.e. zf −= . 
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To make the idea behind decoding the chromosome more clear, a simple example 
will be provided. Let’s suppose we have three lectures: L1, L2, L3 and four time-room 
slots: G1, G2, G3, G4. So the chromosome for such simple timetable will have 8 genes. 
Let’s suppose that after evaluation, the gene values of parameters Ex  are: 

 
Part A B D 
Description L1 L2 L3 G1 G2 G3 G4  
Value  0,45 0,91 0,39 0,82 0,36 0,49 0,56 0,8 

 
First lectures must be sorted according values of Ex , so the order will be L3, L1, 

L2. For all lectures we now must calculate difference between the lecture and particu-
lar time-room slot ji BA − : 

 
 G1 G2 G3 G4 
L3 0,43 0,03 0,10 0,17 
L1 0,37 0,09 0,04 0,11 
L2 0,09 0,55 0,42 0,35 

 
The selected time-room slot with least difference of ji BA −  for each lecture is 

marked by bold font and time-room slots used for previous lectures are in italic. So 
the resulting timetable according chromosome provided in the example will look like 
that: L1→G3, L2→G1, L3→G2. 

9    Numerical Experiments 

This model was then applied for solving the real timetabling problem in the School of 
Business Administration at Silesian University. The problem size and its structure can 
be characterized by the values of parameters: number of rooms nR = 43, number of 
subjects nU = 340, number of lectures nL = 705, number of students nS = 1807, num-
ber of teachers nT = 112, number of time slots nM = 60, number of time-room slots 
nG = 2400. When evaluating the error of timetable z defined in (8), we must set up 
weights of the criteria: wM = 3, wN = 5, wB = 3,  wH = 3, wS = 2, wR = 2, wP = 0.5. The 
number of computers that were used was Na = 30. 

The best solution found by the parallel self-adaptive genetic algorithm was the 
timetable with the minimal value of error function z = 7184. The resulting timetable 
satisfied all hard constraints and there were 83 students that had any clashing lecture. 
Previously used approach for constructing the timetable produced the timetable, in 
which there were in average 2.8 clashing lectures for each student, moreover it was 
very boring and  time consuming process, because the timetable was completely made 
manually, computer was used only as graphical user interface. 

In order to test also the performance of the proposed self-adaptive genetic algo-
rithm (SAGA) we have compared it with the simple genetic algorithm (SGA) on this 
timetabling problem. The simple genetic algorithm used a binary encoding, the size of 
population was 30 individuals, probability of mutation 0.003 and elitism was used. 
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Maximal number of generations for both algorithms was 104. We ran both algorithms 
10 times and measured the average penalty function z of the best timetable found in 
each ran of both genetic algorithms. The average best value of error function for 
SAGA was 7331 and for SGA the average value of z was 7687. As we can see SAGA 
was slightly better, but the main advantage of SAGA is that there is no need for find-
ing values of the parameters, as there are no parameters set in advance. 

We also tested the role of enrollment optimization algorithm. The enrolment opti-
mization algorithm as described in the chapter 7 was substituted by random enroll-
ment students to lectures and the best solution found by the parallel SAGA was the 
timetable with the minimal value of error function z = 12553. As we can see it is 
much worse than with applying the enrollment optimization algorithm. 

10    Conclusions 

In this paper we have designed the optimization model for solving the university 
timetabling problem that is capable of dealing with individual timetables of every 
student. For solving the timetabling problem we have proposed a parallel self-
adaptive genetic algorithm with self-adaptation of all its parameters. This algorithm 
was applied for solving the real university timetabling problem at Silesian University. 
It was shown that the parallel self-adaptive genetic algorithm is able to effectively 
solve the timetabling problem. It was also shown how to significantly decrease the 
number of student clash constraints by the proposed enrollment optimization algo-
rithm when dealing with individual timetables of students. 

Great problem has appeared when it was applied to the real timetabling problem 
with changed preferences and requirements for timetable, because the new timetable 
completely different comparing to the original one. So the further study will be con-
cerned to deal with the problem of minimization of number of changes between new 
and original timetable. 
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