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Abstract. The timetabling problem is well known to be NP gdate combina-
torial problem. The problem becomes even more cexplhen addressed to
individual timetables of students. The core of aeplvith the problem in this
application is a timetable builder based on mixaeat-indirect encoding
evolved by a genetic algorithm with a self-adaptatparadigm, where the pa-
rameters of the genetic algorithm are optimizedrduthe same evolution cy-
cle as the problem itself. The aim of this papetigpresent an encoding for
self-adaptation of genetic algorithms that is slé@afor timetabling problem.
Comparing to previous approaches we designed thedeswg for self-
adaptation not only one parameter or several one$ob all possible parame-
ters of genetic algorithms at the same time. Gerdtjorithms are naturally
parallel so also the parallel representation ofsiléadaptive genetic algorithm
is presented. The proposed parallel self-adaptareetic algorithm is then ap-
plied for solving the real university timetablingoplem and compared with a
standard genetic algorithm. The main advantagehisf dpproach is, that it
makes possible to solve wide range of timetablind acheduling problems
without setting parameters for each kind of problenadvance. Unlike com-
mon timetabling problems the algorithm was apptiedhe problem in which
each student has an individual timetable, so als@resent and discuss the al-
gorithm for optimized enrolment of students thahimiize the number of clash-
ing constraints for students.

1 Introduction

Genetic algorithms are search algorithms basechendea of natural selection anc
natural genetics. It is well known, that efficienof/ genetic algorithms strongly de-
pends on their parameters. These parameters arlyusetaup according to vaguely
formulated recommendations of experts or by thealled two-level genetic algo-
rithm, where at the first-level genetic algorithptimizes parameters of the seconc
level. A self-adaptation seems to be a promising @fagenetic algorithms, where the
parameters of the genetic algorithm are optimiagind the same evolution cycle as
the problem itself. The aim of this paper is to presan encoding and genetic oper:
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tors for self-adaptation of genetic algorithms tisatuitable for solving the university
timetabling problem. Comparing to previous appresciie.g. [2], [12], [20]) we
designed the encoding for self-adaptation not onky parameter but for all or nearly
all possible parameters of genetic algorithms atstiime time. Moreover, the parame
ters are encoded separately for each elementluioanosome. Genetic algorithms ari
naturally parallel so also the parallel represémiadf the self-adaptive genetic algo
rithm is presented.

The proposed parallel self-adaptive genetic algarith then applied for solving
the real university timetabling problem at Silesiamiversity. The problem is known
to be NP-complete and hence it is known no algaritbr solving it in polynomial
time [8]. The requirements for timetabling differsrh university to university, but in
general the timetabling problem consists of asey@ach lecture from a set of lec
tures to a suitable room and a time slot subjea tmumber of hard and soft con:
straints, such as no teacher can teach more Isctiithe same time, at no room ca
be taught more than one lecture at the same teaehers time and room preference
etc.

At some universities including Silesian Universitgch student has an individua
timetable, i.e. there are no groups of studentsciwhave the same timetable, even
is difficult to find only two students with the sanimetable, thus solving the prob-
lem becomes very complex. In order to be able & déth individual timetables of
students we designed an algorithm for optimizatidrenrollment of students that
effectively decrease the number of constraintsfodent clashes.

A large number of diverse methods have been alrpegjyosed in the literature for
solving timetabling problems. These methods comm faonumber of scientific disci-
plines like Operations Research, Artificial Intghce, and Computational Intelli-
gence and can be divided into four categories:ehuSntial Methods that treat time-
tabling problems as graph problems. Generally, threler the events using domain
specific heuristics and then assign the eventsesgiglly into valid time-room slots
[19]. 2) Cluster Methods, in which the problem igidied into a number of event sets
Each set is defined so that it satisfies all hamstaints. Then, the sets are assignt
to real time-room slots to satisfy the soft conets too [23]. 3) Constraint Based
Methods, according to which a timetabling problemmodeled as a set of variable
(events) to which values (resources such as tememet rooms) have to be assigne
in order to satisfy a number of constraints [5,. #)]Meta-heuristic methods, such a
genetic algorithms, simulated annealing, tabu $eamd other heuristic approaches
that are mostly inspired from nature, and applyureatike processes to solutions o
populations of solutions, in order to evolve thawards optimality [1, 7, 14, 18, 21,
22].

When applying genetic algorithms to some optim@ator scheduling problem,
the crucial element is encoding. For timetablingbgpem there are two main types o
encoding: direct [18] and indirect [14]. The advaataf direct encoding is that the
whole search space can be encoded, but it uswlsito violation of many hard
constraints. The indirect encoding is based on swes or instructions for building
the resulting timetable and so there is less pritihabf hard constraint violation, but
it can reach only limited portion of the searchcgpand thus it can be trapped in
local optimum. In our application some combinati@ihboth encoding was used,
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because we want to let the algorithm decide itsbither to use the direct or indirec
representation, respectively the ratio of usinchbaftthem. The timetable builder is
based on the order of lectures and time-room &ont®ded in the chromosome. By
this approach all the feasible timetables can likesmded and the probability of gen
erating an infeasible timetable is strongly redudédally the proposed parallel self-
adaptive genetic algorithm is compared to stand@mktic algorithms on this time-
tabling problem. Also the role of enrollment optratiion algorithm is discussed.

2 Encoding

Encoding is a crucial element of every genetic dligor. The structure of our self-
adaptive genetic algorithm’s encoding is depictedrigure 1. The idea behind the
proposed encoding consists in redundancy of infaamathrough hierarchical
evaluation of individuals.

Population
Individual 2 - C Individual N,

Individual 1

Fig. 1. The structure of a population

Gene eleniN,

As we can see, in the population each individuabisiposed oNy genes, where each
gene corresponds to exactly one optimized varidbéeh gene is composed N
gene elements. The number of gene element is difféoe each gene and it varies
through evolution. Each gene element contains lawgtparameters, which encode
optimized variables and parameters of evolutiohpAtameters are listed in Table 1.

The upper index™ denotes, that it is a gene element value of trampeter. As
the encoding is hierarchical, there are severall$eof the parameters, so gene valu
of parameters are marked by the upper ind&xitidividual values by ** and popu-
lation values by ™.

Since genetic operators are applied only to the llewel values of parameters
(gene element), the upper level values of parametannot be altered directly
through evolution process, but only indirectly byakiation mechanism from low
level values.
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Table 1. The structure of a gene element

Name | Description Range

xE Optimized variable <0;1>

qt Parameter of mutation <-1;1>

qg Parameter of protected mutation <-1;1>
re Radius of mutation <0;0.5>

pE Probability of crossover <0;1>

rE Ratio of crossover <0;1>

qf Parameter of deletion <-0.1;0.15
qt Parameter of duplication <-0.1;0.15
qF Parameter of translocation <-0.1;0.1»
st Identifier of myself for mating <0;1>

s Wanted partner for mating <0;1>

rE Ratio of replacement <0;1>

rE Ratio of population for selection <0;1>

rpE Ratio of population for partner selection| <0;1>

ct Coefficient of death <0;1>

NE Wanted size of population <0;1>

if Identifier of translocation <0;1>

M echanism of Gene Evaluation

The proposed encoding is polyploiditial, so eachegsncomposed dfl. gene ele-
ments. The number of gene elements is variable addrgoes evolution. For evalua:
tion of gene values of gene elements we use siarjilametical average, i.e.

1 e (1)
whereX stands for parameters that must be evaluated, .S, I'r, ', I'p, Ca, Np, i

M echanism of Individual Evaluation

Parameters concerning the whole individual, suctsass,,, ', r', r}, cy, Nj

X ; . . P
are evaluated as simple arithmetical average, i.e.
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The number of gendy, is not variable, because one gene contains exas#yopti-
mized variable.

M echanism of Population Evaluation

Parameters concerning the whole population, suaif'as,”, c;, N} are evaluated

as weighted average with weights according to tteddtive fithessw, , defined as

_ NJ-i+l ®))

W, =
CT e NPN?

2

wherei is index ofi™ individual in population sorted by fithess in desding order,
i.e. the individual with the highest value of thHtnéss function has the value of
equal to 1, the individual with the second highedtie of the fitness function has the
value ofi equal to 2 etc.

3 Genetic Operators

As the proposed encoding is specific, the gengtarators must be adjusted to fit th
encoding. There are used not only common geneticabqrs as selection, crossove
or mutation, but also some specific ones, as daesttin following paragraphs.

Selection

In genetic algorithms the selection of both parémtsnating is usually based on theil
fitness, but this is not true in nature. In natarevinner of a tournament selects hi
partner according to his individual preferencespdntant is that he cannot take intc
account his genotype, i.e. directly the valuesisfgenes nor his fitness, but only hi
phenotype, i.e. only expression of the genes tathside. In a similar way we try to
imitate nature by using parametes’s and s,,. The parametes|, represents individ-
ual’s preferences for mating and the paramsterepresents individual’'s phenotype
for mating. So the first parent is selected bywarnament selection method with vari:
able ratio of populatiom,” from which the fittest individual is selected. Teecond
parent is selected according to individual's prefees represented by the paramet
s, , i.e. the first parent selects an individual witle minimal value of expression
|sv'V —s'ﬂ| but this selection is made from only limited eaif populationr .
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Crossover

The crossover operator is applied to every genmesie of the first parent with the
probability pS . The crossover itself proceeds only between gtaraents of mating
parents according to formula

XE = XE +(XF - xF)us ©)

whereX stands for all parameters of a gene element (sdée 1), r” is a ratio of
crossover of the first parent defined in this gelement, the lower index™denotes
the gene element of the first parent, the indéxtHe second parent and the indgk “
denotes the child of both parents. The gene elewfetiite second parent is selecte

randomly, but it is of the same gene as the gesraasit of the first parent.

Mutation

The mutation operator is applied to every gene efegrwith probability p& :|qn'f|.
Notice that probability of mutation is calculatesl the absolute value of the parame
ter of mutationg’, D(— 1:L>, because the mean value pf, should be zero. More-
over, every gene element has its own probabilitynatation. The mutation formula
is defined as

)WJ(—rE rE) ®)

mIi'm

Xrlfew = Xcl)zld + (Xrlrzmax - X;in
whereX stands for all parameters of the gene elemél(m, b) is a random variable
with uniform probability distribution in the inteaV (a;b), Xg,, is the value of the
parameter after mutatiorX 5, is the original value of the parametet,, ( Xy, ) is
the maximal (minimal) allowed bit element valuetbé parameter as defined in Ta

ble 1.

Duplication

The duplication operator is applied to every geeenent with probabilitypt = |quE|
The gene element is duplicated (copied) with theesgalue of all parameters with
the only exception, that the values of paramgfeof both gene elements are divide:
by 2, in order to inhibit exponential growth of thember of bit elements.

Deletion
The deletion operator is applied to every gene efgrwith probability p; = |qu| It

means that the gene element is simply removed fhenparticular gene. By deletion
and duplication operators the degree of polyplgigitcontrolled.
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Translocation

The translocation means that a gene element is drfowm its original gene to one of
neighboring genes with probabilitp’ :|nt|. However, the neighboring gene ma
decide, whether to accept the gene element, thia¢ ileal probability of translocation
is defined as

o e -5 ©

where i[G(neM is the identifier of translocation of the genemthich the gene element
is going to move, and indeX*®” denotes the original gene. The values of gene e
ment's parameters are left unchanged with the emrbeption thatg® is multiplied
by coefficient — 05 in order to decrease further translocations. géee element
decides whether to translocate to the left or riggighboring gene according to the
sign of gF .

Protected Mutation

Protected mutation is an analogy of local optiniaratand it is applied only to the
fittest individual in the population after applicat of all previous operators and afte
values of fitness function of all individuals inettpopulation have been calculatec
The protected mutation operator is applied to exgage element with probability
pE :|q§| and after that the new value of fitness funct®icalculated and comparec
to the value of fitness function before applying itotected mutation operator. If the
new value of fitness function is greater than prasithan the mutated chromosome
used otherwise the old chromosome is used foratig evolution cycle.

Replacement of Individuals

For every individual the parameter of a life stritngL is defined. When the individ-
ual is created its life strengthis set to one and in every generation it is mlidtipby
the coefficient, defined as

c. :1—05’(1—wf) ()

Evidently, through evolution, a less fitter indival causes the greater decreade in
In every generation alX” parameters are evaluated and by using the absted li
genetic operatorsN;’ " new individuals are created. Then a randomly setec
individual is killed with probability(l— L). This process of killing individuals is
repeated until only\l,i> individuals survive in the population.
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4 TheParallel Self-adaptive Genetic Algorithm

Genetic algorithms are naturally parallel so itdkes an idea to implement the pro
posed self-adaptive genetic algorithm parallely. ¥8ed simple parallel structure, ir
which there is one master genetic algorithm ahdslave genetic algorithms. The
master genetic algorithm is responsible for perfoghgenetic operators and creatin
new generation, while the slave genetic algoritist calculate the value of fitness
function of the individual presented by the masfenetic algorithm. In each genera
tion the master genetic algorithm distributégN, tasks to each slave genetic algc
rithm. The master genetic algorithm communicateth wiave genetic algorithms by
TCP/IP protocol. The structure of the parallel salfiptive genetic algorithm is de-

picted in Figure 2.
Master GA

Fig. 2. The structure of the parallel self-adaptive genalijorithm

5 The Timetabling Problem

In this chapter we describe the input data foruhiversity timetabling problem and
formalize the optimization model. In the model vee the following notation

Nk — number of available roon®, R,, ..., R,

Nu = number of subjects;, U, ..., UnU

n. — number of lectures (events), Lo, ..., L,

Ns — number of studentS;, S,, ... SnS

Nt — number of teacherk, Ty, ..., T,

Ny — number of time slotM, My, ..., M.,

Ng — number of time-room sloiG,, G, ..., G,

C — clash matrix with elementg; i =1, 2, ...,n;j=1,2, ....n

P - preference matrix with elememsi=1,2, ...,n; j=1,2, ...ng

The purpose of the clash matiGxis to determine which lectures should not k
scheduled at the same time. Each element of tisé dhtrixc; is equal to the num-
ber of students, which are enrolled to both lestiyendL;. The number of students
that attend more lectures at the same time is softyconstraint, because each stude
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has an individual timetable and so it is nearly asgible to build a timetable with no
clashes for students. The clash ma@iis also used for handling teachers clashes, i
the high penalty coefficient is set to the matieneentc; = 1@ for all lectured; and
L; which are taught by the same teacher.

The purpose of the preference matPixs to set preferencg; to particular time-
room slotG; for each lecturéd;. Note that the preferences are taken as negatife p
erences, i.e. the higher is the element of theepeate matrip;, the less suitable is
the time-room sloG; for the lecturel;. The matrixP is also used for handling the
suitable rooms for each lecture. By the malfiwe can handle both, the teacher tim
preferences and the suitable rooms for each leciime teacher time preferences at
usually taken as soft constraints, i.e. only srpatialty coefficient is set tp; for all
time-room slotsG; that correspond to less preferred timeslots ferléttured; that
are taught by the teacher. The requirements faalslei room is handled as the har
constraint, so the high penalty coefficignt= 1C is set for all time-room slots; that
correspond to unsuitable rooms for particular lecky

The core of the timetabling problem is to assigitesle timesloG; to each lecture
L; such that all hard constraints were satisfiedthrchumber of soft constraint viola-
tions was minimal. This problem can be mathemdtidarmulated as optimization
model minimizing error of the timetable defined as

N | Ng N (8)
z=Y"| > % p, +D.c, sametimf,k) | +w, menalt)(xj) ~ min
i=1| j=1 k=1

s.t. dix slforj=1,2, ...
i=1

dox=1fori=1,2,...n,
=1

wherey; is a binary optimized variable determining whetther lecture.; is taught in
the time-room sloG;. The expression sametimg] is the function that is equal to 1
if the lectureL; is taught at the same time as the lectugeotherwise it is equal to
zero. The expression penaky)is the function determining penalty of the timséa
that is not possible to express by clash ma&ror preference matriR. And the coef-
ficient w, is the weight of penaltyf) by which it contributes to the error of the time
table.

6 Teacher Preferences

To express teacher preferences we define followenitgria. For each criterion the
teacher sets its preferente by “mark” from 1 to 5, the mark 1 means that ithie
best and mark 5 means that it is the worst. Becthes@references are used for
calculation of total error of the timetable and’if=1 it means the best possibility for
the teacher and actually no error of timetablefrarsformt™ to t” by decreasing 1,
i.e.t” =t" - 1. If the preferencé” = 5t is hard constraint, sb =10°.
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Time Preferences

For each timesloM, the teacher must set its preferenﬁe, for which we calculate
te =t —1. After that we assignp, =w, ;" for all lectures; that are taught by
this teacher and for all time-room sldg that corresponds to timesIbt. The pa-
rameterwy is a weight by which it contributes to the errdrtioe timetable. For ex-
ample if the teacher cannot teach on Wednesdaydviamays and Tuesdays he
prefers to teach in the afternoon and on ThursdagsFridays he prefers to teach il
the morning, then the preferencgs could look like that:

08:00- | 08:50- | 09:40- | 10:30- | 11:20- | 12:10- | 13:00- | 13:50- | 14:40- | 15:30-
08:45 | 09:35 |10:25 |11:15 |12:05 |12:55 |13:45 |14:35 |15:25 |16:15
Mon 4 3 3 3 2 2 1 1 1
Tue 4 3 3 3 2 2 1 1 1 1
Wed 5 5 5 5 5 5 5 5 5 5
Thu 1 1 1 1 1 2 2 3 3 3
Fri 1 1 1 1 1 2 2 3 3 3

Number of Teaching Days per Week

For each number of days the teacher must,Sefor which we calculate” =t — .1
We calculate the number of daglsn which the teacher teaches at least one lecti
and then increase the value of penajlyby the value ofw, )", wherew, is the
weight by which it contributes to the penalty ohétable. For example if the teache
would like to teach in 2 or 3 days per week, inggglit is not convenient for him, in
5 days it is not acceptable for him and in 1 dag ot possible to teach all lecture:
then the preferences' could look like that:

Number of Teaching Days| 1 2 3 4 5

Preferences, 5 |1 |1 |3 |5

Length of Teaching Block without Break

By this criterion the teacher sets if he preferscémcentrate lectures to one long
teaching block or to disperse it to several steathing blocks. For each length of th
teaching block (in hours) the teacher must setrigderencet’ , for which we calcu-
late t¥ =t —1. We calculate for each continuous teaching bltekengthl and then
increase the value of penalty( by the value ofw, @, wherew, is the weight by
which it contributes to the penalty of timetabler Example if the teacher would no
like to have too dispersed lectures, i.e. he wamtkeach at least 2 hours withou
break, the most preferably he would like to teagh®ntinuous hours, 5 continuous
hours is very exhausting and more than 5 contindmmuss is not possible to teact
then the preferences could look like that:
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TheLengthofBlock| 1| 2| 3 4 §5 6 7 8 9 1

Preferences? 5(3 (113|555 5 5

Number of Teaching Hours per Day

For each number of the teaching hours the teachst set its preferenct' , for
which we calculatet,' =t - 1We calculate for each day the number of teachi
hoursh and then increase the value of penajyby the value ofw, &', wherew,

is the weight by which it contributes to the pepalt timetable. For example for the
teacher it is very inconvenient to go to schootdach only 1 or 2 hours, optimal
number is 3-5 hours per day, 6-7 hours is exhaystimd above 6 hours per day i
impossible then the preferencgs could look like that:

The NumberofHours| 1] 2 3 4 %5 6 [ 8 9 10

Preferences,’ 514 12|1|1|2| 3] 5 5 5

Span of Teaching Day

This criterion means the difference between beguof the first lecture and the enc
of last lecture in a day, i.e. the sum of teachingrs and breaks between them. F
each length of span the teacher must set its refert;, for which we calculate

t° =t> —1. We calculate for each teaching day the lengtbpahs and then increase
the value of penaltyf) by the value ofw, [, where Wy is the weight by which it

contributes to the penalty of timetable.

Length of Continuous Break

By this criterion the teacher sets how many hoersideds to relax. For each numbe
of relax hours the teacher must set its preferetfte for which we calculate
t7 =t7-1. We calculate for each break between two teachiogks its lengthr and
then increase the value of penatfy(by the value ofw; @7, wherew;, is the weight
by which it contributes to the penalty of timetabld course if necessary it is possi
ble to incorporate other teacher preferences iflaginvay as previous ones.

7 Enrollment of Students

At most universities there are some group of sttedemich share the same timetable
But at some universities including Silesian Uniwgreach student has an individua
timetable, i.e. there are no groups of studentsctwhave the same timetable, even
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is hardly to find only two students that have tlaene timetable, thus solving the
problem becomes very complex.

At Silesian University each student can chooseemtbjthat he wants to study. If
the subject consists of only one lecture theresisally no problem as the student i
automatically enrolled to that lecture. But mostsabjects consist of two kinds of
lectures: classical lectures and seminaries. Thereusually more seminaries of thi
same subject, but the student can be enrolled tontne of them. The question is
how to set appropriate seminary for each studeme. gssibility is to do it randomly,
but by this way it will be very difficult or nearlynpossible to build the timetable, in
which each student has unclashing timetable omtimber of clashing lectures for
students is acceptably small. So we propose thaitiigh for optimized enrolment of
students that minimize the number of clashing aairss for students.

In the model we use the following notation

SJ#J — binary variable defining whether the stud8ris enrolled to the subjett,
SJL — binary variable defining whether the stud8ris enrolled to the lectuig
ur - binary variable defining whether the subjggtontains the lecturg

jL — binary variable defining whether the stud8ris enrolled to the lectuilg
S — maximal number of students that can be enrotigtie lecture

Without loss of generality suppose that each kifdeoture of the same subject
will be labeled as different subject. First Weﬂ;raelements:g of clash matrixC for

teacher clashes as was described in the chapidieb that student are enrolled to the
lectures corresponding to the subjects which ha one lecture of the same type
i.e. there is no possibility of choice of the leetio which the student should be er
rolled. The core of the enrollment problem is tihernroll all students to all lectures
such that all constraints were satisfied and theber of nonzero elementg of the
clash matrixC was minimal. The problem can be mathematicallynidated as opti-
mization model minimizing the number of nonzerawatsc; defined as

n. n. (9)

c= ZZnonzeréc,j ) — min

i=1 j=1

s.t. DS <L forj=1,2, .0
i=1
y N .
'S/ =S fori=1,2,...ns
j=1 k=1
DS WE =1 fori=1,2,..ns,k=1,2, ...y
j=1

wherec, =¢j +> S;[§; fori,j =1, 2, ...n_and nonzeraf) is the function which
k=1

is equal to 0 wheun; is zero and 1 otherwise.
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8 Mappingthe Timetabling Problem to the Chromosome

The timetabling problem actually consists of twski In the first one students mus
be enrolled to lectures and in the second one tineist be lectures assigned to time
room slots. In this section the process of decoftiogn the chromosome will be de-
scribed.

The Enrolment Builder

First we enroll students to lectures accordingrtpegferences for subjects they war
to attend by the process described in the chaptéor7optimization of enrollment of
students the proposed parallel self-adaptive geadorithm was used. As was men
tioned in the chapter 2, each gene of a chromos@peesents one real variable
within the interval <0;1>. In order to apply thisromosome encoding for the enroll
ment problem, the chromosome is divided into twdd he first parA consisting
of (nS [rh) genes represents the parameters for all subjelgstad by students and
the second paB consisting ofn,. genes represents parameters for lectures. The n
idea behind the encoding of the lecture enrollmerthat the subjects selected b
students are sorted in ascending order accordingltees of parameters in the pArt
of the chromosome and then in this order the lectunroliment builder assigns the
first free suitable lecture with the least diffecenof |A - B, |, whereA is thei-th
parameter of the pak of the chromosome arf§| is thej-th parameter of the palt
of the chromosome. The fitness functibfor the genetic algorithm is the negativi
value ofcin (9), i.e.c=-z.

The Timetable Builder

For solving the university timetabling problem therallel self-adaptive genetic algo-
rithm was used, too. The process of encoding ifairto encoding of the enrollment
problem above. The chromosome is divided into tlpa®s. The first par consist-
ing of n_ genes represents the parameters for lecturesetiond parB consisting of
Ng genes represents parameters for time-room slatsrenlast part contains contro
parameters for the timetable builder. Lecturessaréed in ascending order accordin
to values of parameters in the pArbf the chromosome and then in this order tt
timetable builder assigns the first suitable unuged-room slot with the least differ-
ence of|A - Bj|, whereA is thei-th parameter of the pa#t of the chromosome and
B; is thej-th parameter of the palt of the chromosome. Whether the time-room sl
G; is suitable for the lecturk; is determined by the control paramelein the last
part of the chromosome. The paramdecontains the maximal accepted penalty «
assigning lecturd; to time-room sloiG;, which is calculated by the formula (8). If
there is no suitable time-room slot for the lecturehe best suited still unused time
room slot is selected for the lecture. The fitnesetionf for the genetic algorithm is
the negative value dfin (8),i.e. f =-z.
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To make the idea behind decoding the chromosome wiear, a simple example
will be provided. Let's suppose we have three ledLL,, L,, L3 and four time-room
slots:G;, G,, G, G4. So the chromosome for such simple timetable heille 8 genes.
Let's suppose that after evaluation, the gene satii@arameters® are:

Part A B D
Description Ly L, Ls G G, Gs Gy
Value 045 | 091] 039 087 036 049 056 348

First lectures must be sorted according values'of so the order will bés, L,
L,. For all lectures we now must calculate differehetwveen the lecture and particu
lar time-room sIot|A - Bj| :

Gl G2 G3 G4

L3 043 ] 003 | 0,10 | 0,17

L1 0,37 ] 0,09 | 004 | 0,11

L2 009 | 0,55 | 0,42] 0,35

The selected time-room slot with least differenée A - B;| for each lecture is
marked by bold font and time-room slots used favjmus lectures are in italic. So
the resulting timetable according chromosome predith the example will look like
that: L1-G3, L2->G1, L3-G2.

9 Numerical Experiments

This model was then applied for solving the reaktiabling problem in the School of
Business Administration at Silesian University. Theblem size and its structure cal
be characterized by the values of parameters: nuwfbomsng = 43, number of
subjectsny = 340, number of lectures = 705, number of studentg = 1807, num-
ber of teachersr = 112, number of time slots, = 60, number of time-room slots
ng = 2400. When evaluating the error of timetabldefined in (8), we must set up
weights of the criteriawvy = 3,wy = 5,wz = 3, Wy = 3,Ws=2,wr =2,Wp = 0.5. The
number of computers that were used Was 30.

The best solution found by the parallel self-adaptjenetic algorithm was the
timetable with the minimal value of error functiar= 7184. The resulting timetable
satisfied all hard constraints and there were 88esits that had any clashing lecture
Previously used approach for constructing the tilet produced the timetable, ir
which there were in average 2.8 clashing lectuoeséch student, moreover it wa:
very boring and time consuming process, becatestrtietable was completely made
manually, computer was used only as graphical inserface.

In order to test also the performance of the pregoself-adaptive genetic algo-
rithm (SAGA) we have compared it with the simplengtic algorithm (SGA) on this
timetabling problem. The simple genetic algorithsed a binary encoding, the size
population was 30 individuals, probability of mudat 0.003 and elitism was used
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Maximal number of generations for both algorithmasvid. We ran both algorithms
10 times and measured the average penalty funetadrthe best timetable found in
each ran of both genetic algorithms. The average walue of error function for
SAGA was 7331 and for SGA the average valuewés 7687. As we can see SAG/
was slightly better, but the main advantage of SAG&#at there is no need for find-
ing values of the parameters, as there are no peasnset in advance.

We also tested the role of enrollment optimizatgorithm. The enrolment opti-
mization algorithm as described in the chapter 8 wabstituted by random enroll-
ment students to lectures and the best solutiondfday the parallel SAGA was the
timetable with the minimal value of error functia= 12553. As we can see it is
much worse than with applying the enrollment optetion algorithm.

10 Conclusions

In this paper we have designed the optimization ehddr solving the university
timetabling problem that is capable of dealing wiitdividual timetables of every
student. For solving the timetabling problem we éngwoposed a parallel self-
adaptive genetic algorithm with self-adaptationatifits parameters. This algorithm
was applied for solving the real university timditadp problem at Silesian University.
It was shown that the parallel self-adaptive genatgorithm is able to effectively
solve the timetabling problem. It was also showmtio significantly decrease the
number of student clash constraints by the propesedliment optimization algo-
rithm when dealing with individual timetables ofidéents.

Great problem has appeared when it was appliedeadal timetabling problem
with changed preferences and requirements for gibhet because the new timetabl
completely different comparing to the original o the further study will be con-
cerned to deal with the problem of minimizationnefmber of changes between ne\
and original timetable.
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