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Bus scheduling is a complex combinatorial optimization problem [3], [10]. The op-
erations planning and scheduling process starts off with the designing of a timetable
of trips that have to be served by buses. Each trip has a starting time/location and a
destination time/location.

Bus scheduling involves assigning a set of trips to a set of buses such that:
1. The sequence of the trips for each bus is time feasible: no trip precedes an ear-

lier trip in the sequence
2. Each trip is served by exactly one bus

There are two types of operational cost involved, these are layover (idle time) and
dead running (relocating the bus between locations without passenger, this includes
leaving and returning to the depot). The objective is to minimise the operational cost
and the number of buses. Given the nature of the problem it is almost always impos-
sible to reduce the layover and dead running cost to zero. The complexity of the
problem quickly increases as the number of the depots and the types of vehicle in-
creases.

A solution is said to be λ-optimal (or simply λ-opt) if it is impossible to obtain a
better solution by replacing any λ relation instances by any other set of λ relation
instances. The λ-opt heuristic [5] is based on this concept of λ-optimality where in
each trial, λ instances of the chosen relation (mapping between problem components,
e.g. bus trips to bus’s timeslots) in the working solution are exchanged. The trial
process continues until a move that satisfies the specified acceptance criteria is found.
The accepted move is then used to update the working solution. Computational time
rapidly increases for increasing values of λ, as a result, the values λ = 2 and λ = 3 are
the most commonly used. When λ = number of relation instances we have an exhaus-
tive search where every possibility is tried. In many applications λ = 2 is powerful
enough to yield near optimal solutions in a fraction of the time needed for an exhaus-
tive search.
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Fig. 1. λ-opt Heuristic

Figure 1 illustrates the general scheme of a λ-opt heuristic. Apart from specifying
value of λ, there are four other decisions that need to be taken to fully configure a λ-
opt heuristic. The relative merits of the options are not obvious for example, which
relation should be selected, which trial solution should be accepted, etc. Different
combinations of design options constitute different search strategies. If dynamically
configured, these design options could adapt the heuristics to suit the current state of
the search process, but choosing “the right” combination of design options is not a
trivial task. Figure 2 illustrates the hyper-heuristic framework for the λ-opt heuristic
dynamic configuration.

BOOST [4] applies an object-oriented paradigm to solving the bus scheduling prob-
lem. Object classes like ‘Vehicle activities’ (represent bus links, the connection be-
tween two bus trips) and ‘Link swap rules’ are used. The link swap rules or the
scheduling heuristics provide the search moves for the optimization. For example,
swapping valid bus links (bus links that correctly follow the sequence) with invalid
bus links or valid bus links with start activities links (in order to find earlier starting
time). These link swap rules are the extended functions that made up the algorithm in
VAMPIRES [8]. These heuristics are the 2-opt scheduling heuristics. Although the
major benefit of applying object-oriented models was to increase the extendibility of
the application, the heuristics used inside the link swap rules class still require much
of the problem specific knowledge. Configuring the 2-opt heuristic use within the
system is still a tedious task. The heuristics were hard-wired and the design options
were specified by the system designer. A more desirable approach would be to have
the design options to be configured by the system itself based on the current search
situation.

Hyper-heuristics are a powerful emerging search technology [1]. Search algorithms
can be constructed from a collection of simple neighbourhood moves referred to as
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low-level heuristics. Rather than hard-wiring such simple moves, hyper-heuristics
employ a domain independent driver that iteratively makes dynamic decisions on
which simple move or moves should be executed next. The selected heuristics can be
knowledge-poor heuristics like simple add, drop and swap moves or complete algo-
rithms more akin to Meta-heuristics.

Soubeiga [9] proposed a choice function based hyper-heuristic driver, which has
components designed for search intensification and diversification and incorporates
some simple learning capability. The choice function provides the ranking of the low-
level heuristics, based on information about the individual performance of each low-
level heuristic, joint performance of pairs of heuristics, and the amount of time
elapsed since the low-level heuristic was last called. The low-level heuristic perform-
ance is calculated in terms of the amount of solution improvement the low-level heu-
ristic has achieved and the time it used to obtain this improvement. This choice func-
tion has been applied to select problem specific low-level heuristics on several time-
tabling and scheduling problems [2], [6].

Fig. 2. The Hyper-heuristic framework for the static heuristics (left) and λ-opt heuristic dy-
namic configuration (right)

There are many possible useful relations for bus scheduling, for example, a relation of
multiple bus trips to multiple bus timeslots of the same bus, a relation of a single bus
trip to a single bus’s timeslot. In the initial experiment, only the simple type of rela-
tion is experimented with, a trip to a bus’s timeslot. Instead of trying to swap exhaus-
tively between the 2 candidate sets (λ = 2), the trial swap performs the exchange
between a selected candidate instance (the first candidate) and all other candidate
instances (the second candidate). The first candidate is obtained by selecting ran-
domly from the top ten instance of the selected ordered candidate set. Three kinds of
instance order are used, based on four different kinds of cost (dead run, idle time,
start activity and end activity), max-min, min-max and random. After all candidates
are tried, the best pair will be selected and the update will be made to the schedule.
Figure 3 illustrates the move structures used. Each square represents each bus trip and
the dash line represent the bus link where the crossover is made.
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                 (a) Simple crossover                       (b) Multiple crossover

Fig. 3. Move structures

Similar rules were previously used on a university timetabling problem [7]. A few
minor modifications were needed to make it suitable to bus scheduling, for example,
the constraint violation in timetabling is considered as the operational cost in bus
scheduling. The starting solution is generated using a simple greedy assignment algo-
rithm. The trips are assigned to the bus based on their starting time (which was given
in the problem data set). A new bus is started once no more trips can be assigned to
the existing bus. The process continues until all buses are tried. If there are any more
trips left un-assigned then the rest of the trips are assigned to any empty bus timeslot.

In the initial experiment, all rules are expanded into every possible configuration
(every possible low-level heuristic that could be obtained within the provided set of
rules). The aim of this initial experiment was to investigate the feasibility of this gen-
eral framework. At each iteration, the hyper-heuristic selects an expanded combina-
tion based on their score (as if it was to select a low-level heuristic).

The initial results obtained on a test data set is comparable to a highly specialised
approach [4]. The fact that similar or identical low-level heuristics can be reused
demonstrates the main strength of hyper-heuristics, flexibility. Further tuning and
optimisation can improve performance but the fact that that isn’t needed can be seen
as a major success of the system. One possible fine-tuning is to supply hyper-
heuristic with a more problem specific rules. More details results will be presented at
the conference.

The initial investigation has revealed possible obstacles that need to be overcome
before this approach can be considered completely successful. For example, the hy-
per-heuristic is performing less well as the number of rules increases. Rather than
selecting an expanded configuration the hyper-heuristic has to be configured more
dynamically. It is believed that this dynamic configuration is too big a task for a sin-
gle choice function alone. Our current investigation is looking into a hierarchical
hyper-heuristic where each layer makes different decisions but all leading to one goal
of dynamically selecting the suitable configuration.
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