Dynamically Configured A-opt Heuristicsfor Bus
Scheduling

Prapa Rattadilok and Raymond S K Kwan

School of Computing, University of Leeds, UK
{prapa, rsk}@onp.|eeds. ac. uk

Bus scheduling is a complex combinatorial optim@atproblem [3], [10]. The op-
erations planning and scheduling process startwittif the designing of a timetable
of trips that have to be served by buses. Eachhaigpa starting time/location and ¢
destination time/location.

Bus scheduling involves assigning a set of tripa &t of buses such that:
1. The sequence of the trips for each bus is timelfesagno trip precedes an ear
lier trip in the sequence
2. Each trip is served by exactly one bus

There are two types of operational cost involveésghare layover (idle time) anc
dead running (relocating the bus between locatiitisout passenger, this includes
leaving and returning to the depot). The objects/éi minimise the operational cos
and the number of buses. Given the nature of thblg@m it is almost always impos-
sible to reduce the layover and dead running amstero. The complexity of the
problem quickly increases as the number of the deand the types of vehicle in-
creases.

A solution is said to b&-optimal (or simplyA-opt) if it is impossible to obtain a
better solution by replacing any relation instances by any other setiofelation
instances. Tha-opt heuristic [5] is based on this conceptaedptimality where in
each trial A instances of the chosen relation (mapping betvpeeblem components,
e.g. bus trips to bus’s timeslots) in the workirguson are exchanged. The trial
process continues until a move that satisfies peeiied acceptance criteria is found
The accepted move is then used to update the woskihgion. Computational time
rapidly increases for increasing values\pfs a result, the valuas= 2 and\ = 3 are
the most commonly used. Whar= number of relation instances we have an exhai
tive search where every possibility is tried. Innpapplications\ = 2 is powerful
enough to yield near optimal solutions in a fractad the time needed for an exhaus
tive search.

E. K. Burke, H. Rudova (Eds.): PATAT 2006, pp. 473-477. ISBN 80-210-3726-1.

474 P. Rattadilok and R. S. K. Kwan

Move structure Accepted move Update Working solution
for each trial \

X opt Trials

> Acceptance criteria
One instance from
l
t Instances of R
>
f

2 candidate sets J’
Key of relation instances/ «————— |Form candidate sets 4
P Configuration rules

Fig. 1. A-opt Heuristic

Figure 1 illustrates the general scheme of-@pt heuristic. Apart from specifying
value ofA, there are four other decisions that need to kent#o fully configure a-
opt heuristic. The relative merits of the options aot obvious for example, which
relation should be selected, which trial solutidtoidd be accepted, etc. Differen
combinations of design options constitute differe@arch strategies. If dynamically
configured, these design options could adapt theigtees to suit the current state o
the search process, but choosing “the right” coatimn of design options is not a
trivial task. Figure 2 illustrates the hyper-heticisramework for the\-opt heuristic
dynamic configuration.

BOOST [4] applies an object-oriented paradigm twiagl the bus scheduling prob-
lem. Object classes like ‘Vehicle activities’ (repent bus links, the connection be
tween two bus trips) and ‘Link swap rules’ are us€de link swap rules or the
scheduling heuristics provide the search movestHeroptimization. For example,
swapping valid bus links (bus links that corredtylow the sequence) with invalid
bus links or valid bus links with start activitibsks (in order to find earlier starting
time). These link swap rules are the extended fanstthat made up the algorithm ir
VAMPIRES [8]. These heuristics are the 2-opt scheduheuristics. Although the
major benefit of applying object-oriented modelssvt@ increase the extendibility of
the application, the heuristics used inside thke siwap rules class still require muct
of the problem specific knowledge. Configuring tR®pt heuristic use within the
system is still a tedious task. The heuristics weral-wired and the design option:
were specified by the system designer. A more delgirapproach would be to have
the design options to be configured by the systseifibased on the current searc
situation.

Hyper-heuristics are a powerful emerging searchrtelogy [1]. Search algorithms
can be constructed from a collection of simple hbaurhood moves referred to a:

Dynamically Configured A-optimal Heuristics for Bus Scheduling 475

low-level heuristics. Rather than hard-wiring swsimple moves, hyper-heuristics
employ a domain independent driver that iterativelsgkes dynamic decisions or
which simple move or moves should be executed Adnd.selected heuristics can b
knowledge-poor heuristics like simple add, drop amép moves or complete algo
rithms more akin to Meta-heuristics.

Soubeiga [9] proposed a choice function based HRygperistic driver, which has
components designed for search intensification dimdrsification and incorporates
some simple learning capability. The choice funcpoovides the ranking of the low-
level heuristics, based on information about thdvidual performance of each low-
level heuristic, joint performance of pairs of hetics, and the amount of time
elapsed since the low-level heuristic was lasedalThe low-level heuristic perform-
ance is calculated in terms of the amount of smtutmprovement the low-level heu-
ristic has achieved and the time it used to oltaimimprovement. This choice func-
tion has been applied to select problem specificl&vel heuristics on several time-
tabling and scheduling problems [2], [6].

LLH Execution A- opt Execution
H H < Working solutions H H < Working solutions
Y Y
LLH Low-level heuristics Rule Rules pools
Performance statistics =] Performance statistics A, value selection
Relation selection
Candidate selection|
Instance selection
Acceptance criteria

Fig. 2. The Hyper-heuristic framework for the static hetics (left) and\-opt heuristic dy-
namic configuration (right)

There are many possible useful relations for busdwling, for example, a relation of
multiple bus trips to multiple bus timeslots of tteame bus, a relation of a single bu
trip to a single bus’s timeslot. In the initial epment, only the simple type of rela-
tion is experimented with, a trip to a bus’s tinmslnstead of trying to swap exhaus
tively between the 2 candidate seixs< 2), the trial swap performs the exchang
between a selected candidate instance (the firdidate) and all other candidate
instances (the second candidate). The first caraigabbtained by selecting ran-
domly from the top ten instance of the selectectiimd candidate set. Three kinds ¢
instance order are used, based on four differamdskof cost (dead run, idle time,
start activity and end activity), max-min, min-mard random. After all candidates
are tried, the best pair will be selected and theate will be made to the schedule
Figure 3 illustrates the move structures used. Eqolare represents each bus trip at
the dash line represent the bus link where thesoras is made.

476 P. Rattadilok and R. S. K. Kwan

(a) Simple crossover (b) Multiple crossover

Fig. 3. Move structures

Similar rules were previously used on a universityetabling problem [7]. A few

minor modifications were needed to make it suitableéus scheduling, for example
the constraint violation in timetabling is consig@dras the operational cost in bu
scheduling. The starting solution is generated uaisgnple greedy assignment algc
rithm. The trips are assigned to the bus basedaingtarting time (which was given
in the problem data set). A new bus is started aracenore trips can be assigned t
the existing bus. The process continues until adeblare tried. If there are any mor
trips left un-assigned then the rest of the trifgsassigned to any empty bus timeslot

In the initial experiment, all rules are expandatbievery possible configuration
(every possible low-level heuristic that could beained within the provided set of
rules). The aim of this initial experiment was teestigate the feasibility of this gen-
eral framework. At each iteration, the hyper-hdigiselects an expanded combing
tion based on their score (as if it was to seldotalevel heuristic).

The initial results obtained on a test data setimpgarable to a highly specialisec
approach [4]. The fact that similar or identical ¥mvel heuristics can be reusec
demonstrates the main strength of hyper-heurisfiegijbility. Further tuning and

optimisation can improve performance but the fhet that isn't needed can be see
as a major success of the system. One possibletuitieg is to supply hyper-
heuristic with a more problem specific rules. Mdetails results will be presented a
the conference.

The initial investigation has revealed possible atlss that need to be overcom
before this approach can be considered completalgessful. For example, the hy:
per-heuristic is performing less well as the numbkrules increases. Rather thai
selecting an expanded configuration the hyper-sgarhas to be configured more
dynamically. It is believed that this dynamic cgpfiation is too big a task for a sin-
gle choice function alone. Our current investigatie looking into a hierarchical
hyper-heuristic where each layer makes differentsitens but all leading to one goa
of dynamically selecting the suitable configuration

Dynamically Configured A-optimal Heuristics for Bus Scheduling 477

References

9.

Burke, E., Hart, E., Kendall, G., Newall, J., Ross, &d Schulenburg, S.: Hyper-
Heuristics (2003): “An Emerging Direction in Mode8earch Technology”. In: Glover,
Fred, and Kochenberger, Gary A. (edblgndbook of Meta-Heuristics. Kluwer Academic
Publishers, Boston, USA, 457-474.

Cowling, P., Kendall, G., Soubeiga, E. (2002): Hymeristics: A Tool for Rapid
Prototyping in Scheduling and Optimisation. In: Cagin C. et all (eds.)EvoWorkShops.
Lecture Notes in Computer Science, Vol. 2279. Springer-Verlag, Berlin Heidelberg (290
Daduna, J. R. and Paixao, J. M. P. (1995): “Vehscleeduling for public mass transit — Ar
Overview”. In: Daduna, J. R., Branco, |., PaixaoMJ.P. (eds.): Computer-aided transit
scheduling, Springer-Verlag 76-90

. Kwan, R. S. K. and Rahim, M. A. (1999): “Object Ottieth Bus Vehicle Scheduling — the

BOOST System”. In Wilson N. H. M. (ed.), Computereadtransit scheduling, Springer,
Berlin, pp-177-191, 1999.

. Lin, S. and Kernighan, B. W. (1973): “An Effectiveettistic Algorithm for the Travelling

Salesman ProblemOperations Research Vol. 21, 498-516.

. Rattadilok, Prapa, Gaw, Andy, Kwan, R. S. K. (200B)stributed Choice Function Hyper-

heuristics for Timetabling and Scheduling”. In Burke and Trick, M. (eds.Practice and
Theory of Automated Timetabling V. Springer LNCS. Vol. 3616/2005 pp. 51-67

. Rattadilok, P. and Kwan, R. S. K. (2005): “Hyper-hstiz Driven Dynamically Configured

A-opt heuristics”. In: Proceeding of Metaheuristitelrnational Conference 2005

. Smith, B. M. and Wren, A. (1981): “WVAMPIRES and TAS®o successfully applied bus

scheduling programs”. In: Wren, A. (ed.): Computelnediuling of public transport. North
Holland 97-124

Soubeiga, Eric (2003): “Development and Applicatioh Hyperheuristics to Personnel
Scheduling”Ph.D. Thesis, University of Nottingham.

10Wren, A. (1981): “General review of the use of cagps in scheduling buses and thei

crews”. In: Wren, A. (ed.): Computer scheduling abfic transport. North Holland, 3-16

