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Abstract. In this paper, an empirical study on self-generating multimeme me-
metic algorithms is presented. A set of well known benchmark functions is used
during the experiments. Moreover, a heuristic template is introduced for solv-
ing timetabling problems. The heuristics designed based on this template can
utilize a set of constraint-based hill climbers in a cooperative manner. Two such
adaptive heuristics are described. Memetic algorithms utilizing each one as if a
single hill climber are experimented on a set of random nurse rostering problem
instances. Additionally, simple genetic algorithm and two self-generating mul-
timeme memetic algorithms are compared to the proposed memetic algorithms
and a previous study.

1   Introduction

Genetic Algorithms (GAs), introduced by J. Holland [27], are very promising for
tackling complex problems [24]. Effectiveness of hill climbing methods in population
based algorithms is underlined by many researchers [15, 38, 45, 46]. Memetic Algo-
rithms (MAs) embody a class of algorithms that combine genetic algorithms and hill
climbing methods. A meme represents a hill climbing method and its related parame-
ters used within an MA. Ning et al. [39] concluded from their experiments that the
meme choice in an MA influence the performance significantly. Krasnogor [31] ex-
tended the previous studies and suggested a self-generating (co-evolving) multimeme
MA for solving problems in the existence of a set of hill climbers. Memes are evolved
with the candidate solutions, providing a learning mechanism to fully utilize the pro-
vided hill climbers [32, 34].

In the first part of this study, the MA proposed by Krasnogor [33] is tested on a set
of benchmark functions. The study aims to answer the following questions:

• Can the suggested learning mechanism discover useful hill climbers?
• Does a set of hill climbers generate a synergy to obtain the optimal solution?
In the second part of this study, MAs for solving a nurse rostering problem, intro-

duced by Ozcan [41], are considered. Ozcan extended the study by Alkan et al. [5]
and suggested templates designing a set of operators, including a self-adjusting viola-
tion-directed and constraint-based heuristics, named as VDHC, within MAs for solv-
ing timetabling problems. A new heuristic template for managing a set of constraint-
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based hill climbers is introduced in this paper. Two new instances based on this tem-
plate are implemented and used as a single hill climber within MAs. Furthermore, two
multimeme memetic algorithms (MMAs) are described. The performances of all the
proposed algorithms, including the traditional genetic algorithm and the MA provided
in [41] are compared.

2   Background

2.1   Benchmark Functions and Hill Climbing Methods

Benchmark functions with different features, well known among the evolutionary
algorithm researchers, are utilized during the experiments (Table 1). F1-F11 are con-
tinuous, whereas F12-F14 are discrete benchmark functions. Detailed properties of
each function can be found in the source references presented in Table 1. Benchmark
functions include De Jong’s test suite [17]. Only difference is that the noise compo-
nent of the Quartic function is modified as described in [53].

Table 1. Benchmark functions used during the experiments: lb and ub indicate the lower and
upper bound for each dimension, respectively, opt indicates the optimum

label function name       lb     ub opt source

F1 Sphere -5,12 5,12 0 [17]

F2 Rosenbrock -2,048 2,048 0 [17]

F3 Step -5,12 5,12 0 [17]

F4 Quartic with noise -1,28 1,28 1 [53, 17]

F5 Foxhole -65,536 65,536 0 [17]

F6 Rastrigin -5,12 5,12 0 [47]

F7 Schwefel -500 500 0 [50]

F8 Griewangk -600 600 0 [27]

F9 Ackley -32,768 32,768 0 [1]

F10 Easom -100 100 -1 [20]

F11 Schwefel’s Double Sum -65,536 65,536 0 [51]

F12 Royal Road - - 0 [37]

F13 Goldberg - - 0 [25, 26]

F14 Whitley -  - 0 [54]

Eight memes are used in the experiments:
• Steepest Descent (MA0), [37]
• Next Descent (MA1), [37]
• Random Mutation Hill Climbing (MA2), [37]
• Davis’s Bit Hill Climbing (MA3), [16]
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The remaining four memes are derived from the first two memes. The bit flip opera-
tion in MA0 and MA1 is replaced by an AND operation with 0, yielding MA4 and
MA6, respectively. Similarly, an OR operation with 1 is employed, yielding MA5 and
MA7, respectively. Gray and binary encodings are used to represent candidate solu-
tions during benchmark experiments for continuous and discrete functions, respec-
tively. Due to the gray encoding, the memes MA4-MA7 represent poor hill climbers
for almost all continuous benchmark functions.

2.2   Nurse Rostering Problem

Timetabling problems are real-world constraint optimization problems. Due to their
NP complete nature [20], traditional approaches might fail to generate a solution for
an instance. Timetabling problems can be represented in terms of a three-tuple <V, D,
C>,  where V is a finite set of variables, D is a finite set of domains of variables and
C is a set of constraints to be satisfied:
V={v1, v2, …, vM}, D={d1, …, di, …, dM}, C={c1, c2, …, cK}

Solving a timetabling problem instance requires a search for finding the best as-
signment for all variables that satisfy all the constraints. Thus, a candidate solution is
defined by an assignment of values from the domain to the variables:

' ' ' '

1 1
{ , ..., , ..., }

i i M M
V v v v v v v= = = = , where '

i i
v d∈  and di ⊆D1 x … x DP, where P≥1

In all timetabling problems, there is at least one domain for each variable that is for
time. A problem instance might require other resources to be scheduled as well. For
example, a university course timetabling problem instance might require arrangement
of classrooms for each course meeting, as well. Then the search will be performed
within a domain that will be a Cartesian product of time and classroom sets.

A nurse roster is a timetable consisting of employee shift assignments and the rest
days of nurses in a health-care institution. Some health-care institutions might be
composed of several departments. A departmental roster is defined as a collection of
the nurse rosters of all nurses working within the same department. Nurse Rostering
Problems (NRPs) are timetabling problems that seek for satisfactory schedules to be
generated for employees, employers, even customers. In a common NRP, a nurse can
be assigned to a day or a night shift, or can stay off-duty. A variable represents the
shift assignment of a nurse. In this paper, event and daily shift will be used to refer
variable, interchangeably. A group of events indicates a subset of events in V and
their assignments in a candidate solution.

In all timetabling problems, constraints are classified as hard or soft. Hard con-
straints must be satisfied, while soft constraints represent preferences that are highly
preferred. Furthermore, there are six different constraint categories for practical
timetabling: edge constraints, exclusions, presets, ordering constraints, event-spread
constraint and attribute constraints (includes capacity constraints) [42]. Edge con-
straints are the most common constraints that represent pairs of variables to be sched-
uled without a clash. A timetabling problem reduces to graph coloring problem, if the
instance requires only edge constraints to be satisfied [35].  Exclusions determine the
members to be excluded from the domain of variables for each variable. Presets are
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used to fix the assignment of a variable. Ordering constraints, as the name suggests,
are used to define an ordering between a pair of variables based on the timeline.
Event-spread constraints define how the events will be spread out in time. Attribute
constraints deal with the restrictions that apply between the attributes of a variable
and/or the attributes of its assignment. Numerous researchers deal with NRPs based
on different types of constraints utilizing variety of approaches. A recent survey on
nurse rostering can be found in [10].

Burke et al. [8] applied variable neighborhood search using a set of different per-
turbation methods and local search algorithms on randomly generated schedules.
Chun et al. [13] modeled nurse rostering as constraint satisfaction problem and em-
bedded it as a Rostering Engine into the Staff Rostering System for the Hong Kong
Hospital Authority. Similarly, Li et al. [36] modeled nurse rostering as a weighted
constraint satisfaction problem. Their algorithm consists of two phases.  In the first
phase, forward checking, variable ordering and compulsory backjumping are used,
whereas in the second phase descend local search and tabu search are used. Ahmad et
al. [1] proposed a population-less cooperative genetic algorithm and experimented on
a 3-shift problem. Kawanaka et al. [30] attempted to meet absolute and desirable
constraints fro obtaining optimal nurse schedules. Aickelin et al. proposed a co-
evolutionary pyramidal GA and experimented an indirect representation and three
different decoders within GA for solving NRP in [3], [4], respectively. Gendreau et
al. [23] used TS to generate shifts of nurses at the Jewish General Hospital of Mont-
real. Berrada et al. [6] combined TS with multiobjective approach, prioritizing the
objectives. Heuristic swaps working and rest days. Duenas et al. [19] applied interac-
tive Sequential Multiobjective Problem Solving method in conjunction with a genetic
algorithm to produce a weekly schedule of eight nurses.  Burke et al. [7] compared
steepest descent, traditional TS and its hybrid with two local search heuristics for
solving nurse rostering problem in Belgian Hospitals.

Recently, research on timetabling started to move towards finding a good hyper-
heuristic [11]; a heuristic for selecting a heuristic among a set of them to solve an
optimization problem. Cowling et al. [14] introduced hyper-heuristics as an iterative
search method which maintains a single candidate solution and a set of heuristics. A
hyper-heuristic is a heuristic utilized to choose a lower level heuristics. Han et al. [29]
compared different versions of hyper-heuristics based on GA that they were devel-
oped for solving trainer scheduling problem utilizing fourteen different lower level
heuristics. Burke et al. [12] proposed a tabu-search based hyper-heuristic, demon-
strating its success for solving a set of nurse rostering problems at a UK hospital.

2.3   Multimeme Algorithms

Memetic Algorithms (MAs) are population based hybrid algorithms that combine
Genetic Algorithms and hill climbing [15, 38, 45, 46]. In MAs, a chromosome (indi-
vidual) represents a candidate solution to a problem at hand. A gene is a subsection of
a chromosome that encodes the value of a single parameter (allele). Generally, the
search for an optimal solution starts with a randomly generated set of individuals,
called initial population. Then at each evolutionary step (generation) a set of opera-
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tors are applied to each individual in the population. First, mates are selected for
performing crossover, an operator that exchanges genetic material between mates.
While selecting the mates, better ones are preferred. After the crossover, a set of new
individuals, called offspring, is generated. Offspring are then mutated. In MAs, hill
climbing operator is applied to the individuals, right after the crossover, or the muta-
tion or in both places. Even the initial generation can be hill climbed. Whenever the
termination criteria are satisfied, evolution stops. The best individual in the last gen-
eration is the best candidate solution achieved. In this paper, all MAs utilize a hill
climber after the initialization and mutation.

Using a set of hill climbers, different MAs can be generated and compared for
solving a problem. As another possibility, all hill climbers can be combined under a
heuristic that selects one hill climber at a time and applies it. Such a hyper-heuristic
schedules a hill climber in a deterministic or a non-deterministic way. For example, a
deterministic round-robin strategy schedules the next hill climber in a queue.  A non-
deterministic strategy schedules the next hill climber randomly. These approaches
employ blind choices. More complex and smart hyper-heuristics can be designed by
making use of a learning mechanism that gets a feedback from the previous choices to
select the right hill climber at each step. Different types of hyper-heuristics are dis-
cussed in [11].

Multimeme Algorithms (MMAs) represent a subset of self generating (co-
evolving) MAs [31-34]. An individual in a population carries a memetic material
along with a genetic material. The materials are co-evolved. In an evolutionary cycle,
the memes are inherited to the offspring from the parents using the Simple Inheri-
tance Mechanism (SIM) [33] during the crossover. SIM favors the meme of a mate
with a better fitness to be transmitted to the offspring. In the case of an equal quality,
a meme is randomly selected from the mates. Furthermore, a meme is altered to a
random value based on a probability, called Innovation Rate (IR) during the mutation.
MMAs, based on the SIM strategy and the mutation, allow modification of the candi-
date solutions by learning in order to obtain improved ones. This mechanism is re-
ferred as Lamarckian learning mechanism [31, 40].

Using a similar notation as provided in [33], a meme, denoted by MhFBbInWt,
represents the hill climbing method (M), its acceptance strategy (FB), the maximum
number of iterations (I), and which part of the configuration to apply the selected
method (W). An individual uses its meme to decide the hill climbing method and the
related components to use, after the mutation takes place. Previously, Ong et al. [40]
conducted tests on three benchmark functions using two new methods that they pro-
posed for selecting the appropriate meme within MAs. In this study, MMAs are ex-
tensively tested on a set of well known benchmark functions. Furthermore, MMAs
are used to determine where to apply a hill climber and which hill climber to apply,
self adaptively for solving a real-world nurse rostering problem.

Success rate, s.r., indicates the ratio of successful runs, achieving the expected fit-
ness to the total number of runs repeated. Comparisons of MAs are based on the av-
erage number of evaluations and the success rate. Additionally, average evolutionary
activity is considered during the assessment of MMA experiments. Evolutionary
activity of a meme at a given generation is the total number of appearance of itself
within each population starting from the initial generation until the given generation.
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Average evolutionary activity is obtained by taking an average of the evolutionary
activity of a meme at each generation over the runs. The slope of the average evolu-
tionary activity versus generation curve shows how much a meme is favored. The
steeper the slope gets for a meme, the more it is favored.

3   Memetic Algorithms for Benchmarking

3.1   Experimental Setup

All runs are repeated 50 times. Pentium IV 2 GHz. machines with 256 MB RAM
are used during the experiments. Chromosome length, l, is the product of dimensions
and the number of bits used. All the related parameters are arbitrarily chosen with
respect to l. The mutation rate is chosen as a factor of 1/l. The rest of the common
parameter settings, used during the experiments are presented in Table 2. Runs are
terminated whenever the overall CPU time exceeds 600 sec., or an expected fitness is
achieved. All MAs use a tournament mate selection strategy with a tour size two, one
point crossover, bit-flip mutation and a trans-generational MA with a replacement
strategy that keeps only two best individuals from the previous generation. The IR
rate is fixed as 0.20 during all multimeme experiments. A single acceptance strategy
that approves only improving moves and a single value for the maximum number of
hill climbing steps are used; b={1} and n={ l}. A hill climber is applied to the whole
individual; t={whole}.

Table 2. Common parameter settings used during the benchmark function experiments

label dim.
no. of

bits
chrom.
length

pop.
size

max. hc
steps

F1 10 30 300 60 600

F2 10 30 300 60 600

F3 10 30 300 60 600

F4 10 30 300 60 600

F5 2 30 60 20 120

F6 10 30 300 60 600

F7 10 30 300 60 600

F8 10 30 300 60 600

F9 10 30 300 60 600

F10 6 30 180 36 360

F11 10 30 300 60 600

F12 8 8 64 20 128

F13 30 3 90 20 180

F14 6 4 24 20 48
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During the initial set of experiments, the benchmark functions are tested using
each meme described in Section 2.1. Experiments are also performed using a tradi-
tional Genetic Algorithm for comparison. The second set of experiments is designed
according to the results obtained from the initial one. The best meme and two poor
memes are fed into a multimeme algorithm. In the last set of MMA experiments, eight
memes are used. Four hill climbing methods; h={MA0, MA1, MA2, MA3} are em-
bedded. Hill climbing is applied depending on the acceptance strategy; b={0, 1}. 0
indicates a rejection, so hill climbing is not applied. If the meme points to the accep-
tance strategy 1, then the related hill climbing operator is applied. Hence, effectively
there are five different memes. For short notation, each meme is referred as GA,
MA0-MA3.

3.2   Empirical Results for the Benchmark Functions

Performance comparison of genetic algorithm and memetic algorithms using different
memes are presented in Fig. 1 for selected benchmark functions based on the average
number of evaluations. For each experiment, related bar appears in the figure, only if
all the runs yield the expected result. MA0 is the best meme choice for F4, F13 and
F14. MA1 is the best meme choice for F6-F8.  MA3 is the best meme choice for F2,
F3, F5, F10, and F12. For functions F1, F9 and F11 genetic algorithm performs
slightly better than the memetic algorithm with the meme MA1. MA2 and MA3 turn
out to be the worst and the best meme, respectively, among MA0-MA3.

The average evolutionary activity versus generation plots generated during the
second set of experiments show that the multimeme approach successfully identifies
useful memes. The MMA chooses the best meme and applies it more than the rest of
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Fig. 1. Mean and the standard deviation of the number of evaluations per run, generated by each
MA for a selected subset of benchmark functions
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the memes for all benchmark function, as illustrated in Fig. 2 for selected benchmark
functions. The success rate for each benchmark function is 1.00. Any hill climber
seems to attain the optimum fast for F1, F3 and F11.

Fig. 2. Average evolutionary activity vs. generation plots of each meme utilized during the
second set of experiments for a selected subset of benchmark functions

In the third and the last set of experiments, results similar to the previous one are
obtained. The MMA can still identify the best meme or a meme that does not perform
significantly better than the best meme for almost each benchmark function, as illus-
trated in Fig. 3 for selected benchmark functions. Furthermore, in all runs full success
is achieved for all cases. Unfortunately, a synergy between hill climbers is not ob-
served. Comparing the experimental results obtained using the MMA and the MA
with the best meme for each benchmark indicate that the MA with the best meme is
superior based on the average number of evaluations, except for F1, F3 and F11
(Table 3).

F8

0
200
400
600
800

1000
1200
1400
1600

1 50 100 150 200 250 300 350 400 450 500
Number of Generations

A
ve

ra
g
e 

E
vo

lu
tio

n
a
ry

 A
ct

iv
ity

MA1

MA4

MA7

F12

0
20
40
60
80

100
120
140
160
180

1 11 21 31 41
Number of Generations

A
ve

ra
g
e
 E

vo
lu

tio
n
a
ry

 A
ct

iv
ity

MA3

MA4

MA6

F14

0

1000

2000

3000

4000

5000

1 50 100 150 200 250 300 350 400 450 500
Number of Generations

A
ve

ra
g
e
 E

vo
lu

tio
n
a
ry

 A
ct

iv
ity

MA0

MA4

MA6

F5

0
10
20
30
40
50
60
70
80
90

1 11 21
Number of Generations

A
ve

ra
g
e
 E

vo
lu

tio
n
a
ry

 A
ct

iv
ity

MA3

MA4

MA7

F8

0

500

1000

1500

2000

2500

3000

3500

1 50 100 150 200 250 300 350 400 450 500
Number of Generations

A
ve

ra
g
e
 E

vo
lu

tio
n
a
ry

 A
ct

iv
ity .

GA MA0
MA1 MA2
MA3

F5

0

50

100

150

200

250

300

350

1 50 100 150 200 250 300 350 400 450 500
Number of Generations

A
ve

ra
g
e 

E
vo

lu
tio

n
a
ry

 A
ct

iv
ity

  
.

GA MA0
MA1 MA2
MA3

Memes, Self-generation and Nurse Rostering [...] 253



Fig. 3. Average evolutionary activity vs. generation plots of each meme utilized during the
third set of experiments for a selected subset of benchmark functions

Table 3.  Average number of evaluations and standard deviations generated by a Memetic
Algorithm for each benchmark function: MA0-MA3 denotes the Memetic Algorithm using
only the corresponding meme and MMA denotes the Multimeme Algorithm using all of them

label type
  avr. no. of

evals.      st.dev. label type
avr. no. of

evals.     st.dev.

MMA 17,580 2,226 MMA 5,215,787 9,658,230
F1

MA1 92,256 0
F8

MA1 1,906,134 6,646,991

MMA 23,605,004 24,364,979 MMA 43,871 12,193
F2

MA3 8,455,507 3,803,504
F9

MA1 180,783 12,647

MMA 72,252 11,772 MMA 3,100,515 4,565,736
F3

MA3 82,769 16,512
F10

MA3 1,340,811 988,971

MMA 12,926,879 11,435,876 MMA 17,580 2,226
F4

MA0 9,494,844 10,332,574
F11

MA1 36,060 0

MMA 46,975 79,394 MMA 31,297 14,961
F5

MA3 11,619 2,293
F12

MA3 29,246 4,936

MMA 553,306 231,124 MMA 7,667,352 2,832,376
F6

MA1 525,398 262,055
F13

MA0 4,348,896 1,617,951

MMA 349,250 324,544 MMA 3,674,932 2,623,300
F7

MA1 167,799 60,577
F14

MA0 1,072,117 1,111,825

4   Memetic Algorithms for Nurse Rostering

4.1   Nurse Rostering Problem at the Memorial Hospital (NRPmh)

An analysis is performed on the Nurse Rostering Problem at the Memorial Hospital
(NRPmh), located in İstanbul, Turkey. There are three types of daily shifts: day, night
and off-duty. The timetable size is known in advance. Although a biweekly schedule
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is preferred, the hospital authorities produce a weekly schedule manually, in order to
simplify the timetabling process. Since the preferences of nurses are essential and
might change in time, schedules are acyclic.

The hospital consists of three departments. Cross duty between the departments
does not occur frequently. Hence, each nurse can be considered to be independent
belonging to a specific department. Nurses are categorized into three ranks according
to their experiences. Ranks {0, 1, 2} indicate the level of experience from lowest to
highest. There are not many experienced nurses with rank 2, but there is at least one
such nurse at each department. The constraints of this problem include;
Excludes:
– Exclude Night Shifts Constraint (ENC): Night shifts can not be assigned to an

experienced nurse with rank 2.
Event-spread constraints:
– Off-duty Constraint (RDC): Nurses can define at most 4 rest day preferences.
– Shift Constraint (SHC): At a department, during each shift there must be at least

one nurse.
– Successive Night Shifts Constraint (SNC):  A nurse can not be assigned to more

than two successive night shifts.
– Successive Day Shifts Constraint (SDC):  A nurse can not be assigned to more

than three successive day shifts.
– Successive Shifts Constraint (SSC): A nurse can not be assigned to two successive

shifts. A day shift in one day and a night shift in the following day are considered
as successive shifts.

– On-duty Constraint (ODC): Each nurse can not be assigned less than eight shifts
per two weeks.

RDC is considered as a soft constraint, while the rest are hard constraints.

4.2   Constraint-based Violation-directed Heuristics

Ozcan [41] proposed a violation directed hierarchical hill climbing (VDHC) heuristic
template to be used within MAs for solving timetabling problems and implemented
an instance for solving a real-world nurse rostering problem. Experimental results
show that it is a promising operator. In this study, a violation type directed hill
climbing (VTDHC) heuristic template is presented as illustrated in Fig. 4.  The
VTDHC supports adaptation and cooperation of operators. It is a more general tem-
plate than the VDHC.

The VTDHC template is designed to organize a set of hill climbers where each one
improves a corresponding constraint type in a given timetabling problem. A set of
events among several ones is selected based on the violations. The mechanism for
selecting those events is up to the user. The number of violations caused by each
constraint type within the selected set is used as a guide to select a hill climber. Fi-
nally, the selected hill climber is applied onto the selected events to resolve the viola-
tions due to the related constraint type.
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Fig. 4. Pseudo-code of the VTDHC

An event arrangement indicates a structured organization of events in a timetabling
problem. An event arrangement will be referred as arrangement in short from this
point forward. For example, in Fig. 5, an arrangement for the NRPmh is provided.  It
is possible to identify more than one arrangement of events for a timetabling problem.
Arrangements can be categorized as static, dynamic and mixed. An arrangement is
labeled as static, if the members in a group do not change during the search process.
In static arrangements, events can be hierarchically organized. Variables are logically
grouped either as partitions or overlapping subsets at each hierarchy level of an ar-
rangement. Static arrangement(s) can be obtained by analyzing the timetabling prob-
lem instance at hand. For example, according to the Nurse Rostering Problem de-
scribed in the previous section, a static arrangement of variables can be derived as
illustrated in Fig. 5. There are four hierarchical levels within the arrangement: Hos-
pital, Department, Nurse and Variable. Hospital is a group including all variables,
while a group in the Nurse level is a partition, where each indicates the roster of a
nurse for two weeks.  In this study, the static arrangement of daily nurse shifts
(events) is used as shown in Fig. 5. Dynamic arrangements are based on the structure
of the timetable and the assignment of events. Hence, members of a group might
change during the search for an optimal solution, as the assignments of events might
also change. For example, all the events (nurse shifts) scheduled at each day in a
timetable constitute a dynamic arrangement of events. Mixed arrangements are a
combination of both static and dynamic arrangements. For example, events scheduled
at each day in a specific department represent a mixed arrangement.

Fig. 5. Static arrangement of events (shifts) for NRPmh

Combining the arrangements and VTDHC yields the design of useful hyper-

1. while (termination criteria are not satisfied) do
a. Select a group (or groups) of events based on vio-

lations
b. Select a constraint type based on contribution of

each constraint type within the selected group (or
groups)

c. Apply hill climbing  for the selected  constraint
type (without considering the other constraints)
within the selected group of events

2. end while
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heuristics. For example, VDHC represents a subset of VTDHC heuristics, using a
static arrangement of events. It is an iterative heuristic that applies a selected hill
climber to a selected group of daily shifts. The hill climber selection is constraint
violation-driven and based on a predetermined arrangement. First, hierarchy levels of
an arrangement to be used in the VDHC are decided. The top level is the starting
level to operate on. As the candidate solution improves, it stays at a level. A selected
hill climbing method is applied to a selected group of nurse shifts at a level, evaluat-
ing violations due to the each constraint type. The VDHC restricts the area of concern
to the nurse shifts at one level down in the hierarchy in the case of a relapse and the
same steps are repeated. It terminates whenever no improvement is provided in none
of the levels or a maximum number of steps is exceeded.

A hill climber is selected using an implicit feedback from the evolutionary process,
hence the VDHC is adaptive and in a way self-adjusting. During the traversal of an
arrangement downwards in the hierarchy levels, the VDHC switches from individual
level adaptation to component level adaptation [52]. In this study, two other hyper-
heuristics are proposed based on the VTDHC template and used within MAs.

The VTDHC template can be extended and used for solving other multiobjective
problems. Moreover, heuristics based on the VTDHC can be hybridized with other
hyper-heuristics. In the current implementation, a single hill climber is designed for
each objective. In the case of multiple hill climbers for each objective, the VTDHC
instance can act as a decision mechanism for determining which objective to improve.
Then, for the improvement of a selected objective, a traditional hyper-heuristic can be
utilized to choose the hill climber to employ. This is a research direction beyond the
scope of this paper.

4.3   MAs for Solving NRPmh

For solving the NRPmh described in Section 4.1, MAs are proposed. If there are T
nurses in a hospital, then the total number of biweekly shifts to be arranged is l=T*14,
where l is chromosome length. The search space size for finding the optimal schedule
becomes immense; 3l. The traditional approaches fail to obtain a solution, making
MAs an appropriate choice. In all MAs, an allele in a chromosome represents a daily
shift assignment of a nurse. Furthermore, each chromosome in the population is
structured as illustrated in Fig. 5.

Seven hill climbing (HC) operators are designed to be used in the MAs: ENC_HC,
RDC_HC, SHC_HC, SNC_HC, SDC_HC, SSC_HC, and ODC_HC. Each constraint
based HC operator attempts to resolve the conflicts due to the related constraint for a
given variable in an individual by random rescheduling. Details of the hill climbing
operators can be found in [41]. In this study, five sets of experiments are performed.
In each set, a different MA is used.

In the first set of experiments, a multimeme strategy for selecting which region to
apply a selected hill climber is tested. The strategy also decides how many hill
climbing steps should be used. Twelve different meme values are utilized. For all
problem instances used during the experiments a single acceptance strategy is used;
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b={1} and n changes from one problem instance to another. The values in n are fixed
during the start of a run as {2l/4, 3l/4, l, 2l}. The values of t are {whole, department,
nurse}. A meme acting as a scheduler determines whether a hill climber will be
applied to the whole individual, or to a departmental roster or to a nurse roster. Then,
a constrained type is determined to be improved for the group of shifts pointed by the
meme. Using a tournament selection method with tour size of two, the constraint
causing more violations within the group of shifts is favored among two randomly
selected constraint types. Afterwards, the appropriate hill climber based on the
selected constraint is applied to the group of shifts for a number of steps determined
by the same meme. The MMA experiments using this operator are performed for
three different IR values.

During the second set of experiments, hierarchical traversal of groups is reversed
in the VDHC. The new hill climbing scheduler will be referred as rVDHC. Hill
climbing starts from the bottom level; nurse level.  As the candidate solution im-
proves, the rVDHC stays at the nurse level. A selected hill climbing method is ap-
plied in the same way as the VDHC as described in Section 4.2. The rVDHC broad-
ens the area of concern to nurse shifts in a whole department, which is one level up in
the hierarchy, in the case of deterioration. Then the same steps are repeated. The
termination criteria are the same as the VDHC.

In the third set of experiments a new scheduler is used. The worst nurse roster
among a randomly selected two nurse rosters goes under a hill climbing process. This
new scheduler is labeled as NHC. Notice that rVDHC and NHC are hyper-heuristics
that are instances of VTDHC.

In the fourth set of experiments, a multimeme algorithm is implemented. MMA
uses 7 memes; h={ ENC_HC, RDC_HC, SHC_HC, SNC_HC, SDC_HC, SSC_HC,
ODC_HC }. All the rest of the parameters are fixed; b={1}, t={whole}, and n={2l}.
Co-evolution determines which hill climber to apply. This version of the MMA is
labeled as MMA7. The traditional GA is used during the last set of experiments in
order to evaluate the role of hill climbers.

5   Nurse Rostering Experiments

5.1   Experimental Data and Common Settings

Runs are terminated whenever the overall CPU time exceeds 600 sec., or all the con-
straints are satisfied. The maximum number of hill climbing steps is fixed as 2l. All
MAs for nurse rostering use ranking as a mate selection method, giving four times
higher chance to the best individual to be selected than the worst one, one point
crossover and a trans-generational memetic algorithm with a replacement strategy
that keeps only two best individuals from the previous generation. The mutation op-
erator is based on the traditional approach. A shift of a nurse is randomly perturbed
with a mutation probability of 1/l. Based on the analysis of the NRPmh, six random
problem instances are generated; rnd1-rnd6 and they are used during the experiments
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[41]. The characteristics of the problem instances are summarized in Table 4. The
data set is publicly available at http://cse.yeditepe.edu.tr/~eozcan/research/TTML.

Table 4. Experimental data set, where the number of departments and nurses are denoted as
ndep and nnur, respectively. Percentage of nurses from each rank and average number of off-
duty preferences of each nurse are denoted as pnr and avrpr, respectively.

Label ndep nnur pnr0 pnr1 pnr2 avrpr
rnd1 3 21 0.42 0.32 0.28 1.95

rnd2 3 21 0.18 0.51 0.32 0.67

rnd3 3 21 0.28 0.42 0.32 2.19

rnd4 4 21 0.14 0.47 0.42 1.67

rnd5 4 21 0.19 0.46 0.37 2.33

rnd6 4 21 0.13 0.47 0.42 0.95

5.2   Empirical Results for the NRP Experiments

Detailed experimental results of the MA with the VDHC are presented in [41]. The
results obtained from the first set of experiments indicate the viability of the MMA if
used as a self adaptive method for selecting the region where to apply a hill climber.
Yet, the MA with the VDHC performs better. Experiments are repeated for different
values of IR around 0.20. The results are summarized in Table 5 for the experimental
data. No IR value is significant. Considering the average success rates, all IR values
yield almost the same performance. An interesting result of the first set of experi-
ments is that MMA selects mostly a nurse roster and then applies a hill climber to it,
as illustrated in Fig. 6 for IR=0.20. The rest of the experiments are performed on
Pentium IV 3 GHz. machines with 2 GB RAM.

Table 5. MMA experiments using IR={0.15, 0.20, 0.25} with the random data set, where the
first row denotes the success rate, the second row denotes the average number of generations
per run for each IR value

IR rnd1 rnd2 rnd3 rnd4 rnd5 rnd6

0.90 0.98 1.00 0.96 0.92 1.00
0.15

1,145.96 217.74 77.54 697.28 667.58 234.08

0.94 0.98 1.00 0.94 0.94 1.000.20
889.70 316.10 83.78 651.76 722.48 271.52

0.96 0.98 1.00 0.96 0.98 0.96
0.25

921.12 317.62 92.20 750.18 371.34 422.90
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Fig. 6. Average number of hill climbing steps that are executed to improve the whole set of
daily shifts, a departmental roster and a nurse roster for each problem instance during the first
set of experiments, where IR=0.20

During the preceding sets of experiments, the MAs with rVDHC, NHC, the simple
genetic algorithm and the MMA7 are tested on the problem instances. The success
rate of each algorithm for each problem instance is presented in Table 6. Obviously,
hill climbing boosts the performance GAs. Simple genetic algorithm turns out to be
the worst algorithm for solving the problem instances. Almost; in none of the runs a
violation free schedule is obtained. Empirical results yield the success of MAs with
the following hill climbers from the best towards the worst: VDHC, rVDHC and
NHC, respectively. The average performance of MMA7 is comparable to the per-
formance of NHC. Results show that letting the multimeme algorithm to choose the
region where to apply a constraint based hill climber based on a static hierarchical
arrangement of events performs better than to let it to choose which meme to use for
solving nurse rostering problem instances.

Table 6. The success rates of different algorithms for solving random problem instances

Label VDHC rVDHC NHC MMA7 Simple GA

rnd1 0.96 0.94 0.68 0.86 0.00

rnd2 1.00 0.98 0.88 0.96 0.04

rnd3 1.00 1.00 0.98 1.00 0.00

rnd4 0.98 0.94 0.28 0.18 0.00

rnd5 1.00 0.86 0.26 0.30 0.00

rnd6 1.00 1.00 0.68 0.50 0.00

6   Conclusions

Memetic algorithms, including the self-generating multimeme memetic algorithm
proposed by Krasnogor [33] are investigated. Different MAs are experimented using
a set of benchmark functions and nurse rostering problem instances, generated ran-
domly by Ozcan [41] based on NRPmh.  Some common empirical results are ob-
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tained from both investigations. As expected, the performance of a genetic algorithm
improves if a hill climbing operator is also utilized. Lamarckian learning mechanism
employed by the MMAs yields appealing results for selecting a meme among a set of
memes during the evolutionary process. Yet, the MAs with a good meme choice
perform better. Different memes yield different performances. In the benchmark ex-
periments, the MMAs identify the useful memes for all functions, but unfortunately, a
synergy between hill climbers is not observed during the search. The average per-
formance of the Davis’s Bit Hill Climbing is the best on the benchmark functions.

The MAs are very promising approaches for tackling nurse rostering problems.
Proposed heuristic template combined with a prior knowledge about a timetabling
problem, such as a static arrangement, provides a promising guide for designing
adaptive heuristics. The MAs, each containing such an instance as a single hill
climber are compared to the MMAs, with different memetic materials. The empirical
results indicate the success of the MA with VDHC [41] over the rest of the MAs
presented in this paper. The VDHC using tournament selection provides a better
cooperation among constraint-based memes.  The hierarchical traversal over the
groups based on a static arrangement during the hill climbing seems to work as well.
Applying a constraint-based meme to a larger group of events first and then narrow-
ing the area of concern generates better results than the reverse traversal. Still, the
rVDHC shows potential.
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