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Abstract. In this paper, an empirical study on self-genatatnultimeme me-
metic algorithms is presented. A set of well kndvemchmark functions is used
during the experiments. Moreover, a heuristic tegpis introduced for solv-
ing timetabling problems. The heuristics designedell on this template can
utilize a set of constraint-based hill climbersinooperative manner. Two such
adaptive heuristics are described. Memetic algmsthitilizing each one as if a
single hill climber are experimented on a set ofian nurse rostering problem
instances. Additionally, simple genetic algorithmdawo self-generating mul-
timeme memetic algorithms are compared to the m®panemetic algorithms
and a previous study.

1 Introduction

Genetic Algorithms (GAs), introduced by J. Holla[#¥], are very promising for
tackling complex problems [24]. Effectiveness of biimbing methods in population
based algorithms is underlined by many researdiérs38, 45, 46]. Memetic Algo-
rithms (MAs) embody a class of algorithms that carmalgenetic algorithms and hill
climbing methods. Aneme represents a hill climbing method and its relgiathme-
ters used within an MA. Ning et al. [39] concludiedm their experiments that the
meme choice in an MA influence the performance ificantly. Krasnogor [31] ex-
tended the previous studies and suggesttf-generating (co-evolving)multimeme
MA for solving problems in the existence of a setitl climbers. Memes are evolved
with the candidate solutions, providing a learningchanism to fully utilize the pro-
vided hill climbers [32, 34].

In the first part of this study, the MA proposedHwasnogor [33] is tested on a se
of benchmark functions. The study aims to answefdhewing questions:

¢ Can the suggested learning mechanism discoverluskftiimbers?

« Does a set of hill climbers generate a synergybtain the optimal solution?

In the second part of this study, MAs for solvingwase rostering problem, intro-
duced by Ozcan [41], are considered. Ozcan extetidedtudy by Alkan et al. [5]
and suggested templates designing a set of opgratoluding a self-adjusting viola-
tion-directed and constraint-based heuristics, mhaseVDHC, within MAs for solv-
ing timetabling problems. A new heuristic templfde managing a set of constraint:
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based hill climbers is introduced in this paper. Tiveav instances based on this tern
plate are implemented and used as a single hitbar within MAs. Furthermore, two
multimeme memetic algorithms (MMAS) are describ€de performances of all the
proposed algorithms, including the traditional genalgorithm and the MA provided
in [41] are compared.

2 Background

2.1 Benchmark Functionsand Hill Climbing M ethods

Benchmark functions with different features, wetiokvn among the evolutionary
algorithm researchers, are utilized during the eérpents (Table 1). F1-F11 are con
tinuous, whereas F12-F14 are discrete benchmanttifuns. Detailed properties of
each function can be found in the source referepmesented in Table 1. Benchmarl
functions include De Jong’s test suite [17]. Oniffedence is that the noise compo:
nent of the Quartic function is modified as desedilin [53].

Table 1. Benchmark functions used during the experimditsind ub indicate the lower and
upper bound for each dimension, respectivepy indicates the optimum

label function name Ib ub  opt source
F1 Sphere -5,12 5,12 0 [17]
F2 Rosenbrock -2,048 2,048 0 [17]
F3 Step -5,12 512 0 [17]
F4 Quarticwith noise -1,28 1,28 1 [53, 17]
F5 Foxhole 65,536 65536 0 [17]
F6 Rastrigin -5,12 5,12 0 [47]
F7 Schwefel -500 500 0 [50]
F8 Griewangk -600 600 0 [27]
F9 Ackley -32,768 32,768 O [1]
F10 Easom -100 100 -1 [20]
F11 Schwefel's Double Sum -65,536 65,536 0 [51]
F12 Royal Road - - 0 [37]
F13 Goldberg - - 0 [25, 26]
F14 Whitley - -0 [54]

Eight memes are used in the experiments:

» Steepest Descent (MA(B7]

* Next Descent (MA1)[37]

e Random Mutation Hill Climbing (MA2), [37]
» Davis’s Bit Hill Climbing (MA3), [16]
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The remaining four memes are derived from the fisst memes. The bit flip opera-
tion in MAO and MAL is replaced by an AND operatiath 0, yielding MA4 and
MABG, respectively. Similarly, an OR operation withs employed, yielding MA5 and
MA7, respectively. Gray and binary encodings aredu® represent candidate solu
tions during benchmark experiments for continuong discrete functions, respec
tively. Due to the gray encoding, the memes MA4-Mapresenpoor hill climbers
for almost all continuous benchmark functions.

2.2 NurseRostering Problem

Timetabling problems are real-world constraint oftation problems. Due to their
NP complete nature [20], traditional approacheshinigil to generate a solution for
an instance. Timetabling problems can be represemtedms of a three-tuplé\& D,
C>, whereV is a finite set okariables, D is a finite set oflomains of variables and
Cis a set ofonstraints to be satisfied:
V:{Vl, Vo, ...y VM}, D:{dl, . di, ...,dM}, C:{Cl, Coy vvny CK}

Solving a timetabling problem instance requiresarsh for finding the best as-
signment for all variables that satisfy all the saints. Thus, a candidate solution i
defined by an assignment of values from the donmathe variables:

V ={v,=V,..,v =v,..,v, =V, }, wherev Od andd OD; X ... X Dp, whereP>1

M
In all timetabling problems, there is at least @dioenain for each variable that is foi
time. A problem instance might require other resesrto be scheduled as well. Fc
example, a university course timetabling problestance might require arrangemer
of classrooms for each course meeting, as wellnTthe search will be performed
within a domain that will be a Cartesian productiofe and classroom sets.

A nurseroster is a timetable consisting of employee shift agsignts and the rest
days of nurses in a health-care institution. Somalth-care institutions might be
composed of several departmentsdeibartmental roster is defined as a collection of
the nurse rosters of all nurses working within saene department. Nurse Rosterin
Problems (NRPs) are timetabling problems that $eekatisfactory schedules to be
generated for employees, employers, even custoftmeascommon NRP, a nurse cal
be assigned to a day or a night shift, or can efaguty. A variable represents the
shift assignment of a nurse. In this pamsent anddaily shift will be used to refer
variable, interchangeably. Agroup of events indicates a subset of event¥iand
their assignments in a candidate solution.

In all timetabling problems, constraints are clisdiashard or soft. Hard con-
straints must be satisfied, while soft constraiefzresent preferences that are high
preferred. Furthermore, there are six differentst@int categories for practical
timetabling:edge constraints, exclusions, presets, ordering constraints, event-spread
constraint and attribute constraints (includescapacity constraints) [42]. Edge con-
straints are the most common constraints that septepairs of variables to be schec
uled without a clash. A timetabling problem redut®graph coloring problem, if the
instance requires only edge constraints to befieatif35]. Exclusions determine the
members to be excluded from the domain of variafdegach variable. Presets ar
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used to fix the assignment of a variable. Ordedagstraints, as the name suggest
are used to define an ordering between a pair dabas based on the timeline
Event-spread constraints define how the eventsheilspread out in time. Attribute
constraints deal with the restrictions that appdwzen the attributes of a variable
and/or the attributes of its assignment. Numeresgarchers deal with NRPs base
on different types of constraints utilizing varied§ approaches. A recent survey ol
nurse rostering can be found in [10].

Burke et al. [8] applied variable neighborhood skaising a set of different per-
turbation methods and local search algorithms owomly generated schedules
Chun et al. [13] modeled nurse rostering as coimstsatisfaction problem and em-
bedded it as a Rostering Engine into the Staff &ogj System for the Hong Kong
Hospital Authority. Similarly, Li et al. [36] modedl nurse rostering as a weighte
constraint satisfaction problem. Their algorithmnsists of two phases. In the firs
phase, forward checking, variable ordering and adsgpy backjumping are used,
whereas in the second phase descend local seatdhlansearch are used. Ahmad «
al. [1] proposed a population-less cooperative tierdgorithm and experimented or
a 3-shift problem. Kawanaka et al. [30] attemptednteet absolute and desirabli
constraints fro obtaining optimal nurse schedulksiskelin et al. proposed a co-
evolutionary pyramidal GA and experimented an iaclirrepresentation and three
different decoders within GA for solving NRP in [3#], respectively. Gendreau et
al. [23] used TS to generate shifts of nurses etldwish General Hospital of Mont-
real. Berrada et al. [6] combined TS with multialtjee approach, prioritizing the
objectives. Heuristic swaps working and rest da@ysenas et al. [19] applied interac:
tive Sequential Multiobjective Problem Solving madhin conjunction with a genetic
algorithm to produce a weekly schedule of eightsasr Burke et al. [7] comparec
steepest descent, traditional TS and its hybridh wito local search heuristics for
solving nurse rostering problem in Belgian Hosgital

Recently, research on timetabling started to moveatds finding a goodiyper-
heuristic [11]; a heuristic for selecting a heuristic amanget of them to solve an
optimization problem. Cowling et al. [14] introdut@yper-heuristicas an iterative
search method which maintains a single candiddtgiso and a set of heuristics. A
hyper-heuristic is a heuristic utilized to choodewer level heuristics. Han et al. [29]
compared different versions of hyper-heuristicsedasn GA that they were devel-
oped for solving trainer scheduling problem utiigifourteen different lower level
heuristics. Burke et al. [12] proposed a tabu-dedrased hyper-heuristic, demon
strating its success for solving a set of nursterogy problems at a UK hospital.

2.3 Multimeme Algorithms

Memetic Algorithms (MAS) are population based hgbalgorithms that combine
Genetic Algorithms and hill climbing [15, 38, 45%5]4In MAs, achromosome (indi-

vidual) represents a candidate solution to a problenaiadl hAgene is a subsection of
a chromosome that encodes the value of a singkmeder éllele). Generally, the
search for an optimal solution starts with a ranijogenerated set of individuals,
calledinitial population. Then at each evolutionary stegerferation) a set of opera-
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tors are applied to each individual in the popolatiFirst, mates are selected for
performing crossover, an operator that exchanges genetic material leetvmeates.
While selecting the mates, better ones are prefeiter the crossover, a set of nev
individuals, calledoffspring, is generated. Offspring are themtated. In MAs, hill
climbing operator is applied to the individualghi after the crossover, or the muts
tion or in both places. Even the initial generata@m be hill climbed. Whenever the
termination criteria are satisfied, evolution stops. The best individuahe last gen-
eration is the best candidate solution achievedhi paper, all MAs utilize a hill
climber after the initialization and mutation.

Using a set of hill climbers, different MAs can benerated and compared fo
solving a problem. As another possibility, all kilimbers can be combined under
heuristic that selects one hill climber at a tinmel @applies it. Such a hyper-heuristic
schedules a hill climber ind@eterministic or anon-deterministic way. For example, a
deterministic round-robin strategy schedules thd hil climber in a queue. A non-
deterministic strategy schedules the next hill blemrandomly. These approache
employ blind choices. More complex and smart hyesristics can be designed by
making use of a learning mechanism that gets é#esdfrom the previous choices tc
select the right hill climber at each step. Differéypes of hyper-heuristics are dis
cussed in [11].

Multimeme Algorithms (MMAS) represent a subset dlf sgenerating (co-
evolving) MAs [31-34]. An individual in a populatiocarries a memetic material
along with a genetic material. The materials arewalved. In an evolutionary cycle,
the memes are inherited to the offspring from theepts using the Simple Inheri-
tance Mechanism (SIM) [33] during the crossoveM $avors the meme of a mate
with a better fithess to be transmitted to themwifgy. In the case of an equal quality
a meme is randomly selected from the mates. Fumiigr, a meme is altered to ¢
random value based on a probability, calletbvation Rate (IR) during the mutation.
MMAs, based on the SIM strategy and the mutatiloyamodification of the candi-
date solutions by learning in order to obtain inyaw ones. This mechanism is re
ferred as Lamarckian learning mechanism [31, 40].

Using a similar notation as provided in [33]nh&me, denoted by MFBbInWt,
represents the hill climbing method (M), its aceeype strategy (FB), the maximun
number of iterations (), and which part of the figuration to apply the selected
method (W). An individual uses its meme to deciuk hill climbing method and the
related components to use, after the mutation tplkes. Previously, Ong et al. [40]
conducted tests on three benchmark functions usiognew methods that they pro-
posed for selecting the appropriate meme within MAsthis study, MMAs are ex-
tensively tested on a set of well known benchmarcfions. Furthermore, MMAs
are used to determine where to apply a hill climdred which hill climber to apply,
self adaptively for solving a real-world nurse sstg problem.

Successrate, sr., indicates the ratio of successful runs, achietireggexpected fit-
ness to the total number of runs repeated. Congrarief MAs are based on the av
erage number of evaluations and the success rdtitignally, average evolutionary
activity is considered during the assessment of MMA exparts1 Evolutionary
activity of a meme at a given generation is the total nurob@ppearance of itself
within each population starting from the initialnggation until the given generation
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Average evolutionary activity is obtained by takiag average of the evolutionary
activity of a meme at each generation over the.rlihs slope of the average evolu
tionary activity versus generation curve shows houch a meme is favored. The
steeper the slope gets for a meme, the moreat/sréd.

3 Memetic Algorithmsfor Benchmarking

3.1 Experimental Setup

All runs are repeated 50 times. Pentium IV 2 GHachines with 256 MB RAM
are used during the experiments. Chromosome lehgththe product of dimensions
and the number of bits used. All the related patarseare arbitrarily chosen with
respect td. The mutation rate is chosen as a factor bf Tlie rest of the common
parameter settings, used during the experimentprasented in Table 2. Runs an
terminated whenever the overall CPU time excee@ssé@., or an expected fitness i
achieved. All MAs use a tournament mate selecticateyy with a tour size two, one
point crossover, bit-flip mutation and a trans-gatienal MA with a replacement
strategy that keeps only two best individuals fribve previous generation. The IR
rate is fixed as 0.20 during all multimeme experitse A single acceptance strateg
that approves only improving moves and a singlee/dbr the maximum number of
hill climbing steps are uset={1} and n={1}. A hill climber is applied to the whole
individual; t={whole}.

Table 2. Common parameter settings used during the benchimmackion experiments

no.of chrom. pop. max. hc
label dim. bits length size steps

F1 10 30 300 60 600
F2 10 30 300 60 600
F3 10 30 300 60 600
F4 10 30 300 60 600
F5 2 30 60 20 120
F6 10 30 300 60 600
F7 10 30 300 60 600
F8 10 30 300 60 600
F9 10 30 300 60 600
F10 6 30 180 36 360
F11 10 30 300 60 600
F12 8 8 64 20 128
F13 30 3 90 20 180

F14 6 4 24 20 48
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During the initial set of experiments, the benchimunctions are tested using
each meme described in Section 2.1. Experimentslaceperformed using a tradi-
tional Genetic Algorithm for comparison. The secaed of experiments is designel
according to the results obtained from the iniine. The best meme and two poc
memes are fed into a multimeme algorithm. In tisé $&t of MMA experiments, eight
memes are used. Four hill climbing methdas{MAO, MA1, MA2, MA3} are em-
bedded. Hill climbing is applied depending on tlheeptance strategyp={0, 1}. O
indicates a rejection, so hill climbing is not a@pgl If the meme points to the accep
tance strategy 1, then the related hill climbingrapor is applied. Hence, effectively
there are five different memes. For short notatieach meme is referred as GA
MAO-MA3.

3.2 Empirical Resultsfor the Benchmark Functions

Performance comparison of genetic algorithm and etienalgorithms using different
memes are presented in Fig. 1 for selected ben&hfimactions based on the averag
number of evaluations. For each experiment, relaedappears in the figure, only if
all the runs yield the expected result. MAO is bHest meme choice for F4, F13 an
F14. MAL1 is the best meme choice for F6-F8. MA®B best meme choice for F2
F3, F5, F10, and F12. For functions F1, F9 and gédetic algorithm performs
slightly better than the memetic algorithm with theme MA1. MA2 and MAS turn

out to be the worst and the best meme, respectiaeipng MAO-MAS.

F5 F8
1.000.000,00 100.000.000,0
T
1 i
1.000.000,00
10.000,004
10.000,00
100,00+
100,00
1,00 1,00
GA MAO0 MA1 MA2 MA3 MA4 MA5 MA6 MA7 GA MAD MAL MA2 MA3 MA4 MA5 MA6 MA7
F12 Fl14
10.000.000.000, 0 10.000.000.000,0t
100.000.000,0 100.000.000,0f
T !
T T o SN
1.000.000,0C 1.000.000,00 T
10.000,00 10.000,00-
100,00 100,00
1,00 1,00
GA MAO MA1 MA2 MA3 MA4 MAS MA6 MA7 GA MAD MA1L MA2 MA3 MA4 MA5 MA6 MA7

Fig. 1. Mean and the standard deviation of the numbevaluations per run, generated by eac
MA for a selected subset of benchmark functions

The average evolutionary activity versus generaptmis generated during the
second set of experiments show that the multimegppeoach successfully identifies
useful memes. The MMA chooses the best meme arlceajiomore than the rest of
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the memes for all benchmark function, as illusttareFig. 2 for selected benchmark
functions. The success rate for each benchmarktiifumés 1.00. Any hill climber
seems to attain the optimum fast for F1, F3 and F11
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Fig. 2. Average evolutionary activity vs. generation plofseach meme utilized during the
second set of experiments for a selected subdmtrathmark functions

In the third and the last set of experiments, tessimilar to the previous one are
obtained. The MMA can still identify the best meorea meme that does not perforn
significantly better than the best meme for almezsth benchmark function, as illus.
trated in Fig. 3 for selected benchmark functidghgthermore, in all runs full success
is achieved for all cases. Unfortunately, a syndvgiween hill climbers is not ob-
served. Comparing the experimental results obtairgdg the MMA and the MA

with the best meme for each benchmark indicatettf@tMA with the best meme is
superior based on the average number of evaluateept for F1, F3 and F11

(Table 3).
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Fig. 3. Average evolutionary activity vs. generation plofseach meme utilized during the
third set of experiments for a selected subseentbmark functions

Table 3. Average number of evaluations and standard dewstgenerated by a Memetic
Algorithm for each benchmark function: MAO-MA3 ddas the Memetic Algorithm using
only the corresponding meme and MMA denotes thetimeime Algorithm using all of them

avr. no. of avr. no. of
label  type evals. st.dev. label  type evals. st.dev.
F1 MMA 17,580 2,226 8 MMA 5,215,787 9,658,230
MA1 92,256 0 MA1 1,906,134 6,646,991
F2 MMA 23,605,004 24,364,979 F9 MMA 43,871 12,193
MA3 8,455,507 3,803,504 MA1 180,783 12,647
F3 MMA 72,252 11,772 F10 MMA 3,100,515 4,565,736
MA3 82,769 16,512 MA3 1,340,811 988,971
Fa MMA 12,926,879 11,435,876 F11 MMA 17,580 2,226
MAO 9,494,844 10,332,574 MA1 36,060 0
5 MMA 46,975 79,394 F12 MMA 31,297 14,961
MA3 11,619 2,293 MA3 29,246 4,936
6 MMA 553,306 231,124 F13 MMA 7,667,352 2,832,376
MA1 525,398 262,055 MAO 4,348,896 1,617,951
£7 MMA 349,250 324,544 F14 MMA 3,674,932 2,623,300
MA1 167,799 60,577 MAO 1,072,117 1,111,825

4 Memetic Algorithmsfor Nurse Rostering

4.1 NurseRostering Problem at the M emorial Hospital (NRPmh)

An analysis is performed on the Nurse Rosteringplero at the Memorial Hospital
(NRPmh), located itistanbul, Turkey. There are three types of dailftstday, night
andoff-duty. The timetable size is known in advance. Althoaghiweekly schedule
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is preferred, the hospital authorities produce akljeschedule manually, in order tc

simplify the timetabling process. Since the prafiees of nurses are essential ar

might change in time, schedules are acyclic.

The hospital consists of three departments. Crosg lobetween the department:
does not occur frequently. Hence, each nurse carohsidered to be independen
belonging to a specific department. Nurses aregoaieed into three ranks according
to their experiences. Ranks {0, 1, 2} indicate lénel of experience from lowest to
highest. There are not many experienced nursesraiitk 2, but there is at least ont
such nurse at each department. The constraintssgbitoblem include;

Excludes:

— Exclude Night Shifts Constraint (ENC): Night shiftan not be assigned to ar
experienced nurse with rank 2.

Event-spread constraints:

— Off-duty Constraint (RDC): Nurses can define at tdbsest day preferences.

— Shift Constraint (SHC): At a department, duringteabift there must be at leas
one nurse.

— Successive Night Shifts Constraint (SNC): A nurae not be assigned to mor¢
than two successive night shifts.

— Successive Day Shifts Constraint (SDC): A nurse mat be assigned to more
than three successive day shifts.

— Successive Shifts Constraint (SSC): A nurse carbaassigned to two successiv
shifts. A day shift in one day and a night shiftlie following day are considered
as successive shifts.

— On-duty Constraint (ODC): Each nurse can not béasd less than eight shifts
per two weeks.

RDC is considered as a soft constraint, while #s¢ are hard constraints.

4.2 Constraint-based Violation-directed Heuristics

Ozcan [41] proposed a violation directed hierarahiill climbing (VDHC) heuristic
template to be used within MAs for solving timetagl problems and implemented
an instance for solving a real-world nurse rostgnmoblem. Experimental results
show that it is a promising operator. In this studyviolation type directed hill
climbing (VTDHC) heuristic template is presented ithsstrated in Fig. 4. The
VTDHC supports adaptation and cooperation of opesatt is a more general tem-
plate than the VDHC.

The VTDHC template is designed to organize a séilbélimbers where each one
improves a corresponding constraint type in a gitieretabling problem. A set of
events among several ones is selected based oriolaéons. The mechanism for
selecting those events is up to the user. The nuwbeiolations caused by each
constraint type within the selected set is used gside to select a hill climber. Fi-
nally, the selected hill climber is applied onte selected events to resolve the viole
tions due to the related constraint type.
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1. while (termination criteria are not satisfied) do

a. Select a group (or groups) of events based on vio-
| ations

b. Select a constraint type based on contribution of
each constraint type within the sel ected group (or
groups)

c. Apply hill clinbing for the selected constraint
type (without considering the other constraints)
within the selected group of events

2. end while

Fig. 4. Pseudo-code of the VTDHC

An event arrangement indicates a structured organization of eventstimatabling
problem. An event arrangement will be referredaamngement in short from this
point forward. For example, in Fig. 5, an arrangetier the NRPmh is provided. It
is possible to identify more than one arrangemértvents for a timetabling problem.
Arrangements can be categorizedstaic, dynamic and mixed. An arrangement is
labeled as static, if the members in a group dochahge during the search proces
In static arrangements, events can be hierarchioadlanized. Variables are logically
grouped either as partitions or overlapping subaetsach hierarchy level of an ar
rangement. Static arrangement(s) can be obtainehalyzing the timetabling prob-
lem instance at hand. For example, according toNthese Rostering Problem de-
scribed in the previous section, a static arrangeéroé variables can be derived a:
illustrated in Fig. 5. There are four hierarchilels within the arrangement: Hos:
pital, Department, Nurse and Variable. Hospitahigroup including all variables,
while a group in the Nurse level is a partition,aend each indicates the roster of
nurse for two weeks. In this study, the staticaagement of daily nurse shifts
(events) is used as shown in Fig. 5. Dynamic aearents are based on the structu
of the timetable and the assignment of events. &lemembers of a group might
change during the search for an optimal solutisrntha assignments of events migt
also change. For example, all the events (nurdtsklsicheduled at each day in
timetable constitute a dynamic arrangement of evellixed arrangements are ¢
combination of both static and dynamic arrangeméd¥is example, events schedule
at each day in a specific department represenkacha@rrangement.

.
(H)ospital  r---- oo oo oo oo
Hierarchy | (D)ept. : Dept. 1 |
Levels < S
(N)urse | Nurse 1 |
(Vyariable o] v | oo
\ L] v

(R=14)
Fig. 5. Static arrangement of events (shifts) for NRPmh

Combining the arrangements and VTDHC yields theige®f useful hyper-
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heuristics. For example, VDHC represents a subS&T®HC heuristics, using a
static arrangement of events. It is an iterativariséic that applies a selected hill
climber to a selected group of daily shifts. Th# timber selection is constraint
violation-driven and based on a predetermined gaarent. First, hierarchy levels ol
an arrangement to be used in the VDHC are deci@led.top level is the starting
level to operate on. As the candidate solution ovps, it stays at a level. A selecte:
hill climbing method is applied to a selected gradmurse shifts at a level, evaluat
ing violations due to the each constraint type. VB#{C restricts the area of concerr
to the nurse shifts at one level down in the hidrarin the case of a relapse and tr
same steps are repeated. It terminates wheneviengrovement is provided in none
of the levels or a maximum number of steps is edede

A hill climber is selected using an implicit feedkearom the evolutionary process,
hence the VDHC is adaptive and in a way self-agjgstDuring the traversal of an
arrangement downwards in the hierarchy levelsMbeIC switches from individual
level adaptation to component level adaptation.[h2]this study, two other hyper-
heuristics are proposed based on the VTDHC templadeused within MAs.

The VTDHC template can be extended and used fairgpbther multiobjective
problems. Moreover, heuristics based on the VTDHE be hybridized with other
hyper-heuristics. In the current implementatiorsirggle hill climber is designed for
each objective. In the case of multiple hill climbéor each objective, the VTDHC
instance can act as a decision mechanism for deie@grwhich objective to improve.
Then, for the improvement of a selected objectwiaditional hyper-heuristic can be
utilized to choose the hill climber to employ. Thgsa research direction beyond th
scope of this paper.

4.3 MAsfor Solving NRPmh

For solving the NRPmh described in Section 4.1, M#e proposed. If there afie
nurses in a hospital, then the total number of bkhkeshifts to be arranged lisT*14,
wherel is chromosome length. The search space sizerfdinfy the optimal schedule
becomes immense;.3The traditional approaches fail to obtain a sotyt making
MAs an appropriate choice. In all MAs, an alleleaichromosome represents a dail
shift assignment of a nurse. Furthermore, eachnohsome in the population is
structured as illustrated in Fig. 5.

Seven hill climbing (HC) operators are designetdaised in the MAs: ENC_HC,
RDC_HC, SHC_HC, SNC_HC, SDC_HC, SSC_HC, and ODC _[EHth constraint
based HC operator attempts to resolve the confligesto the related constraint for ¢
given variable in an individual by random reschéuul Details of the hill climbing
operators can be found in [41]. In this study, feets of experiments are performec
In each set, a different MA is used.

In the first set of experiments, a multimeme stratior selecting which region to
apply a selected hill climber is tested. The stgwatalso decides how many hill
climbing steps should be used. Twelve different meralues are utilized. For all
problem instances used during the experimentsglesacceptance strategy is usec



258  E. Ozcan

b={1} and n changes from one problem instance to anothervahes inn are fixed
during the start of a run asl{2, 3/4,1, 2}. The values ot are {whole, department,
nurse}. A meme acting as a scheduler determineghshe hill climber will be
applied to the whole individual, or to a departna¢nbster or to a nurse roster. Ther
a constrained type is determined to be improvedhfergroup of shifts pointed by the
meme. Using a tournament selection method with gize of two, the constraint
causing more violations within the group of shiisfavored among two randomly
selected constraint types. Afterwards, the appatgrhill climber based on the
selected constraint is applied to the group oftstidr a number of steps determine
by the same meme. The MMA experiments using thisratpr are performed for
three different IR values.

During the second set of experiments, hierarctieafersal of groups is reversec
in the VDHC. The new hill climbing scheduler wilebreferred asVDHC. Hill
climbing starts from the bottom level; nurse leveAs the candidate solution im-
proves, thaVDHC stays at the nurse level. A selected hill diing method is ap-
plied in the same way as the VDHC as describeceintiéh 4.2. TheVDHC broad-
ens the area of concern to nurse shifts in a wileartment, which is one level up ir
the hierarchy, in the case of deterioration. THem $ame steps are repeated. TI
termination criteria are the same as the VDHC.

In the third set of experiments a new schedulassisd. The worst nurse roste
among a randomly selected two nurse rosters gaser @nhill climbing process. This
new scheduler is labeled as NHC. Notice thdDHC and NHC are hyper-heuristics
that are instances of VTDHC.

In the fourth set of experiments, a multimeme atbor is implemented. MMA
uses 7 memesi={ ENC_HC, RDC_HC, SHC_HC, SNC_HC, SDC_HC, SSC_H(
ODC_HC }. All the rest of the parameters are fixbd{1}, t={whole}, and n={21}.
Co-evolution determines which hill climber to applyhis version of the MMA is
labeled as MMAY. The traditional GA is used durthg last set of experiments in
order to evaluate the role of hill climbers.

5 Nurse Rostering Experiments

5.1 Experimental Data and Common Settings

Runs are terminated whenever the overall CPU tixoeetls 600 sec., or all the con
straints are satisfied. The maximum number of dlithbing steps is fixed ad.2All

MAs for nurse rostering use ranking as a mate seteenethod, giving four times
higher chance to the best individual to be selediesh the worst one, one poin
crossover and a trans-generational memetic algoritfith a replacement strategy
that keeps only two best individuals from the poesi generation. The mutation op
erator is based on the traditional approach. At gtiii nurse is randomly perturbec
with a mutation probability of 1/Based on the analysis of the NRPmh, six randc
problem instances are generated; rnd1-rnd6 andateeysed during the experiment
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[41]. The characteristics of the problem instanaes summarized in Table 4. The
data set is publicly available at http://cse.yquitedu.tr/~eozcan/research/TTML.

Table 4. Experimental data set, where the number of depatsrend nurses are denoted a
ndep andnnur, respectively. Percentage of nurses from each aadkaverage number of off-
duty preferences of each nurse are denot@traandavrpr, respectively.

Label ndep nnur pnrO0 pnrl pnr2  avrpr

rndl 3 21 042 032 028 1.95
rnd2 3 21 0.18 051 0.32 0.67
rnd3 3 21 0.28 042 032 219
rnd4 4 21 014 047 042 167
rnd5 4 21 0.19 046 037 233
rndé 4 21 013 047 042 0.95

5.2 Empirical Resultsfor the NRP Experiments

Detailed experimental results of the MA with the MO are presented in [41]. The
results obtained from the first set of experimenticate the viability of the MMA if
used as a self adaptive method for selecting thiemewhere to apply a hill climber.
Yet, the MA with the VDHC performs better. Experim are repeated for different
values of IR around 0.20. The results are sumniizdable 5 for the experimental
data. No IR value is significant. Considering thverage success rates, all IR value
yield almost the same performance. An interestegpult of the first set of experi-
ments is that MMA selects mostly a nurse rosterthed applies a hill climber to it,
as illustrated in Fig. 6 for IR=0.20. The rest bétexperiments are performed ol
Pentium IV 3 GHz. machines with 2 GB RAM.

Table 5. MMA experiments using IR={0.15, 0.20, 0.25} withetmandom data set, where the
first row denotes the success rate, the seconddemetes the average number of generatio
per run for each IR value

IR rnd1 rd2  rnd3 rnd4 rnd5 rnd6
0.90 0.98 1.00 0.96 0.92 1.00
1,145.96 217.74 77.54 697.28 667.58 234.08
0.94 0.98 1.00 0.94 0.94 1.00
889.70 316.10 83.78 651.76 722.48 271.52
0.96 0.98 1.00 0.96 0.98 0.96
921.12 317.62 92.20 750.18 371.34 422.90

0.20

0.25
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Fig. 6. Average number of hill climbing steps that areced to improve the whole set of
daily shifts, a departmental roster and a nurseerder each problem instance during the firs
set of experiments, where IR=0.20

During the preceding sets of experiments, the MAR WDHC, NHC, the simple
genetic algorithm and the MMA7Y are tested on thabf@m instances. The succes
rate of each algorithm for each problem instangerésented in Table 6. Obviously
hill climbing boosts the performance GAs. Simplaegie algorithm turns out to be
the worst algorithm for solving the problem instasicAlmost; in none of the runs ¢
violation free schedule is obtained. Empirical tesyield the success of MAs with
the following hill climbers from the best towardsetworst: VDHC,rVDHC and
NHC, respectively. The average performance of MM#&&tomparable to the per-
formance of NHC. Results show that letting the iméime algorithm to choose the
region where to apply a constraint based hill ckmbased on a static hierarchice
arrangement of events performs better than td tetéhoose which meme to use fo
solving nurse rostering problem instances.

Table 6. The success rates of different algorithms forisglvandom problem instances

Label VDHC rVDHC NHC MMA7 Simple GA

rndl 0.96 0.94 0.68 0.86 0.00
rnd2 1.00 0.98 0.88 0.96 0.04
rnd3 1.00 1.00 0.98 1.00 0.00
rnd4 0.98 0.94 0.28 0.18 0.00
rnd5 1.00 0.86 0.26 0.30 0.00
rnd6 1.00 1.00 0.68 0.50 0.00

6 Conclusions

Memetic algorithms, including the self-generatingiltimeme memetic algorithm
proposed by Krasnogor [33] are investigated. DéffierMAs are experimented using
a set of benchmark functions and nurse rosteringplem instances, generated rar
domly by Ozcan [41] based on NRPmh. Some commopirgal results are ob-
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tained from both investigations. As expected, ttdgymance of a genetic algorithir
improves if a hill climbing operator is also utdid. Lamarckian learning mechanisn
employed by the MMASs vyields appealing results felesting a meme among a set ¢
memes during the evolutionary process. Yet, the MAth a good meme choice
perform better. Different memes yield different foemances. In the benchmark ex
periments, the MMAs identify the useful memes fibfunctions, but unfortunately, a
synergy between hill climbers is not observed dytine search. The average pel
formance of the Davis’s Bit Hill Climbing is the $teon the benchmark functions.

The MAs are very promising approaches for tackingse rostering problems.
Proposed heuristic template combined with a prioovidedge about a timetabling
problem, such as a static arrangement, providesomiging guide for designing
adaptive heuristics. The MAs, each containing saohinstance as a single hill
climber are compared to the MMAs, with differentmegic materials. The empirical
results indicate the success of the MA with VDHQ][#ver the rest of the MAs
presented in this paper. The VDHC using tournansethéction provides a better
cooperation among constraint-based memes. Thearbigcal traversal over the
groups based on a static arrangement during thelinibing seems to work as well.
Applying a constraint-based meme to a larger grafugvents first and then narrow-
ing the area of concern generates better resudts tte reverse traversal. Still, the
rVDHC shows potential.
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References

1. Ackley, D.: An empirical study of bit vector funoti optimization. Genetic Algorithms and
Simulated Annealing, (1987) 170-215

2. Ahmad, J., Yamamoto, M., and Ohuchi, A.: Evolutignalgorithms for Nurse Scheduling
Problem. Proc. of IEEE Congress on Evolutionary Cdatjmn (2000) 196-203.

3. Aickelin, U., and Bull, L.: On the Application of Eliarchical Coevolutionary Genetic
Algorithms: Recombination and Evaluation PartneASS, 4(2) (2003) 2-17

4. Aickelin, U., and Dowsland, K.: An Indirect Genetidgorithm for a Nurse Scheduling
Problem. Computers & Operations Research, 31(5) (208B-778

5. Alkan, A., and Ozcan, E.: Memetic Algorithms fomigtabling. Proc. of IEEE Congress
on Evolutionary Computation (2003) 1796-1802

6. Berrada, I., Ferland, J., and Michelon, P.: A M@tyjective Approach to Nurse Schedul-
ing with both Hard and Soft Constraints. Socio-Ecoimo Planning Science. vl.
30(1996)183-193

7. Burke, E.K., Cowling, P.l., De Causmaecker, P., anddéa Berghe, G.: A Memetic
Approach to the Nurse Rostering Problem, Appliedlligence, vol 15 (2001) 199-214

8. Burke, E.K., De Causmaecker, P., Petrovic, S., VarRlenghe G.: Variable Neighbour-
hood Search for Nurse Rostering Problems, in Metéddtens: Computer Decision-Making
(edited by M.G.C. Resende and J. P. de Sousa), Chgp€arwer (2003) 153-172



262 E. Ozcan

10.

11.

12.

13.

14.

15.

16

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28

30

31.

Burke, E.K., De Causmaecker, P., and Vanden Berghei BGlybrid Tabu Search Algo-

rithm For the Nurse Rostering Problem, Proc. of $lseond Asia-Pasific Conference or
Simulated Evolution and Learning, vol. 1, Applicats 1V (1998) 187-194

Burke, E.K., De Causmaecker, P., and Vanden Berghé&/aB.Landeghem, H.: The State
of the Art of Nurse Rostering, Journal of Scheduling2004) 441-499

Burke, E., Kendall, G., Newall, J., Hart, E., Ross,dhd Schulenburg, S.: Handbook o
metaheuristics, chapter 16, Hyper-heuristics: aarging direction in modern search tech
nology, Kluwer Academic Publisher (2003) 457-474

Burke, E., and Soubeiga, E.: Scheduling Nurses Usinbabu-Search Hyper-heuristic,
Proc. of the 1st MISTA, vol. 1 (2003) 197-218

Chun, A.H.W., Chan, S.H.C., Lam, G.P.S., Tsang, FM\fang, J., and Yeung, D.W.M.:
Nurse Rostering at the Hospital Authority of Hongni§o Proc. of 17th National Confer-
ence on AAAI and 12th Conference on IAAI (2000) %86

Cowling P., Kendall G., and Soubeiga E.: A Hyper+sic Approach to Scheduling a
Sales Summit. Proceedings of In LNCS 2079, Practim Theory of Automated Time-
tabling 11l : Third International Conference, PATAZ000, Konstanz, Germany, selecte:
papers (eds Burke E.K. and Erben W) (2000) 176-190

Davis, L.: The handbook of Genetic Algorithms, dostrand Reingold, NY (1991)

. Davis, L.: Bit Climbing, Representational Bias, andtT®site Design, Proceeding of the

4th International conference on Genetic AlgoritHi#891) 18-23

De Jong, K.: An analysis of the behaviour of a €la genetic adaptive systems. Phl
thesis, University of Michigan (1975)

Downsland, K.: Nurse Scheduling with Tabu Searct Strategic Oscillation, European
Journal of Operations Research. Vol. 106, 1198 (1998-407

Duenas, A., Mort, N., Reeves, C., and Petrovic, andiing Preferences Using Genetic
Algorithms for the Nurse Scheduling Problem, Prbthe 1st MISTA, vol.1(2003)180-196
Easom, E. E.: A survey of global optimization teicfues. M. Eng. thesis, Univ. Louisville,
Louisville, KY (1990)

Even, S., ltai, A., and Shamir, A.: On the Complexf Timetable and Multicommodity
Flow Problems, SIAM J. Comput., 5(4) (1976) 691-703

Fang, H.L. Genetic Algorithms in Timetabling anch&duling, PhD thesis, Department o
Artificial Intelligence, University of Edinburgh,c8tland (1994)

Gendrau, M., Buzon, I., Lapierre, S., Sadr, J., &adano, P.: A Tabu Search Heuristic tc
Generate Shift Schedules, Proc. of the 1st MISTA2v2003) 526-528

Goldberg, D. E.: Genetic Algorithms in Search, @ytiation, and Machine Learning,
Addison-Wesley, Reading (MA) (1989)

Goldberg, D. E.: Genetic algorithms and Walsh fiomt: part I, a gentle introduction,
Complex Systems (1989) 129-152

Goldberg, D. E.: Genetic algorithms and Walsh fioms: part I, deception and its analy-
sis, Complex Systems (1989) 153-171

Griewangk, A.O.: Generalized descent of global rojation. Journal of Optimization
Theory and Applications (1981) 34: 11.39

.Holland, J. H.: Adaptation in Natural and Artifit@ystems, Univ. Mich. Press (1975)
29.

Han, L., and Kendall, G.: Application of Geneticgalithm Based Hyper-heuristic to
Personnel Scheduling Problems, Proc. of the 1sfl¥$ol.2 (2003) 528-537

.Kawanaka, H., Yamamoto, K., Yoshikawa, T., Shindbi, and Tsuruoka, S.: Genetic

Algorithms with the Constraints for Nurse SchedulRrgblem, Proc. of IEEE Congress or
Evolutionary Computation (CEC), Seoul (2001) 1123-1130

Krasnogor, N.: Studies on the Theory and Designc&ps Memetic Algorithms, PhD
Thesis, University of the West of England, Bristdhited Kingdom (2002)



32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.
52

53.

54.

Memes, Self-generation and Nurse Rostering |[...] 263

Krasnogor, N. and Smith, J.E.: Multimeme Algorithfies the Structure Prediction and
Structure Comparison of Proteins. In Proc. of thel Bif a Feather Workshops, GECCC
(2002) 42-44

.Krasnogor, N. and Smith, J.E.: Emergence of Pigft&earch strategies Based on a Sin

ple Inheritance Mechanism. In Proc. of the Genatid Evolutionary Computation Confer-
ence, GECCO (2001) 432-4309.

Krasnogor, N. and Smith, J.E.: A Memetic AlgoritiWith Self-Adaptive Local Search:
TSP as a case study. In Proc. of the Genetic amtufianary Computation Conference,
GECCO (2000) 987-994.

Leighton, F. T.: A graph coloring algorithm for ¢gr scheduling problems. Journal o
Research of the National Bureau of Standards, 84X8K0)

Li, H., Lim, A., and Rodrigues, B.: A Hybrid Al Appach for Nurse Rostering Problem,
Proc. of the 2003 ACM Symposium on Applied Compu(i2@03) 730-735

Mitchell M., Forrest S.: Fitness Landscapes: RoyadrBunctions, Handbook of Evolu-
tionary Computation, Baeck T, Fogel D, MichalewicAEd.), Institute of Physics Pub-
lishing and Oxford Univers (1997)

Moscato, P., and Norman, M. G.: A Memetic Appro&mhthe Traveling Salesman Prob-
lem Implementation of a Computational Ecology for ®Gamatorial Optimization on Mes-
sage-Passing Systems, Parallel Computing and Transipplications (1992) 177-186
Ning, Z., Ong, Y. S., Wong, K. W. and Lim, M. H.: @he of Memes In Memetic Algo-
rithm, Proc. of the 2nd International ConferenceGomputational Intelligence, Robotics
and Autonomous Systems (2003)

Ong, Y.S. and Keane, A.J.: Meta-Lamarckian LearnimgViemetic Algorithms. IEEE
Trans. Evolutionary Computation, vol. 8, no. 2 (2094-110

Ozcan, E.: Memetic Algorithms for Nurse Rosteringcture Notes in Computer Science
Springer-Verlag, The 20th ISCIS (2005) 482-492

Ozcan, E.: Towards an XML based standard for Tibletg Problems: TTML, Multidisci-
plinary Scheduling: Theory and Applications, Spanyerlag (2005) 163 (24)

Ozcan, E., and Alkan, A.: Timetabling using a Sye&thate Genetic Algorithm, Proceed-
ings of the 4th PATAT (2002) 104-107

Ozcan, E., Ersoy, E.: Final Exam Scheduler - FES¢.RPof 2005 IEEE Congress on Evo-
lutionary Computation, vol. 2, (2005) 1356-1363

Ozcan, E., and Onbasioglu E.: Genetic AlgorithmisHarallel Code Optimization, Proc. of
2004 IEEE Congress on Evolutionary Computation, ¢R004) 1775-1781

Radcliffe, N. J., and Surry, P.D.: Formal memetigoathms, Evolutionary Computing:
AISB Workshop, LNCS, vol. 865, Springer Verlag (1994)6

Rastrigin L. A.: Extremal control systems. In Thema& Foundations of Engineering
Cybernetics Series. Moscow: Nauka, Russia. (1974)

Ross, P., Corne, D., and Fang, H-L.: Improving Evohary Timetabling with Delta
Evaluation and Directed Mutation, Proc. of PPSN1894) 556-565

Ross, P., Corne, D., and Fang, H-L.: Fast Practivalufionary Timetabling, Proc. of
AISB Workshop on Evolutionary Computation (1994) Z83

Schwefel, H.-P.: Numerical optimization of computeodels. Chichester: Wiley & Sons.
(1981)

Schwefel, H. P.: Evolution and Optimum SeekindinJ@/iley & Sons. (1995)

. Smith, J. and Fogarty, T. C.:Operator and paranstaptation in genetic algorithms. Soff

Computing 1(2): 81-87 (1997)

Tasoulis D., Pavlidis N., Plagianakos V, Vrahatis Farallel Differential Evolution. Proc.
of 2004 IEEE Congress on Evolutionary Computatiorpfd@®023-2029

Whitley, D.: Fundemental principles of deceptionganetic search. In G.J.E. Rawlins
(Ed.), Foundations of Genetic Algorithms. MorgaruKaann, San Matco, CA (1991)



