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Abstract. The university timetabling, examination and course, are known to be 
highly constrained optimization problems. Metaheuristic approaches, and their 
hybrids, have successfully been applied to solve the problems. This paper 
presents three artificial immune algorithms, the algorithms inspired by the 
immune system, for university timetabling; clonal selection, immune network 
and negative selection. The main objective is to show that the algorithms may 
be tailored for educational timetabling. The experimental results have shown 
that all algorithms have effectively produced good quality timetables. The 
clonal selection and negative selection are more effective than immune network 
in producing good quality examination timetables; while for course timetabling, 
the immune network and negative selection are more effective than clonal 
selection. A comparison with other published results has significantly shown 
the effectiveness of these algorithms. The main operators in artificial immune 
algorithms are cloning and mutation. For future work, these algorithms will be 
improved by considering other cloning and mutation operators.  

Keywords: Examination Timetabling; Course Timetabling; Artificial Immune 
Algorithms. 

1 Introduction 

The constructions of examination and course (lecture) timetables are common 
problems for all institutions of higher education. Usually it involves modifying the 
previous semester’s timetable so it will work for the new semester. The examination 
and course timetabling are known to be highly constrained combinatorial optimization 
problems. Metaheuristic approaches such as simulated annealing (SA), tabu search 
(TS), evolutionary algorithms (EA), and their hybrids, have successfully been applied 
to solve the problems.  

Artificial immune system (AIS), a new branch of Artificial Intelligence [4], is a 
new intelligent problem-solving technique that being used in optimization and 
scheduling. The AIS algorithms are more efficient than the classical heuristic 
scheduling algorithms such as SA, TS, and genetic algorithm (GA) [12]. AISs have 
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been more successful than GA and other methods in applications of pattern 
recognition, computer and network security, and dynamic tasks scheduling due to the 
applicability features of natural immune systems. Furthermore, the solutions produced 
by the AIS are observed to be robust than solutions produced by a GA [13]. There are 
three algorithms that have widely been applied in AIS; clonal selection algorithm 
(CSA), immune network algorithm (INA), and negative selection algorithm (NSA). 

This paper presents three artificial immune algorithms for examination and course 
timetabling. The main objective is to show that the algorithms may be tailored for 
educational timetabling, and also to compare the effectiveness of the three algorithms 
on examination and course datasets. Twelve Carter datasets (examination) and three 
Schaerf datasets (course) have been used in the implementation. The experimental 
results have significantly shown the effectiveness of the three algorithms; all 
algorithms have effectively produced good quality (low fitness) examination and 
course timetables in most of the datasets. The CSA and NSA are more effective than 
INA on examination datasets, and on course datasets, the INA and NSA are more 
effective than CSA. However, based on CPU time, INA runs faster than CSA and 
NSA on examination datasets, and CSA runs faster than INA and NSA on course 
datasets. A comparison with other published results have significantly shown that the 
three algorithms are capable of producing good quality examination and course 
timetables as good as other optimization algorithms. 

The main operators in artificial immune algorithms are cloning and mutation. For 
future work, these algorithms will be improved by considering other cloning and 
mutation operators so that the fitness values may be further minimized. And also, 
especially for course datasets, a further study is required to solve timetabling 
problems with 100% occupancy by considering dummy timeslots and/or rooms. 

2 University Timetabling Problems 

University timetabling problems can be divided into two main categories: exam and 
course. The main difference is that in course timetabling there cannot be more than 
one course per room, but in exam timetabling there can be more than one exam.  

Examination timetabling problem (ETP) is a specific case of the more general 
timetabling problem. The examination timetabling regards the scheduling for the 
exams of a set of university courses, avoiding overlap of exams of courses having 
common students, and spreading the exams for the students as much as possible [7]. 
Given is a set of exams, a set of timeslots, a set of students, and a set of student 
enrollments to exams, the problem is to assign exams to timeslots subject to a variety 
of hard and soft constraints. The ETP can be seen as consisting of two subproblems: 
(1) assigning exams to timeslots, and (2) assigning exams to rooms. For real-life 
situations, these two subproblems can be solved separately.  

Course timetabling problem (CTP) is another specific case of the more general 
timetabling problem. At its simplest, course timetabling is the problem of scheduling 
a set of events (lectures, tutorials or labs) to a set of classrooms in a set of timeslots 
within a week, and taught by a set of teachers, such that no student or teacher is 
expected to be in more than one room at the same time and that there is enough space 
in each classroom for the number of students expected to be there. The CTP can be 
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seen as consisting of three subproblems; ‘course-teacher assignment’, ‘event-timeslot 
assignment’, and ‘event-room assignment’. In ‘course-teacher assignment’, the 
teachers are scheduled to a number of events in all courses; in ‘event-timeslot 
assignment’, all events for all courses are scheduled into a fixed number of timeslots; 
and in ‘event-room assignment’, these events are assigned to a fixed number of 
rooms. Hence, an assignment is an ordered 4-tuple (a, b, c, d), and has the 
straightforward general interpretation: ‘event a starts at timeslot b in room c, and is 
taught by teacher d’. For some institutions, the allocation of courses to teachers is 
carried out manually, and the allocation of events in a given timeslot to rooms is a 
secondary problem. These three subproblems can be solved separately. 

Hard constraints must be satisfied in order to produce a feasible timetable. Any 
timetable fails to satisfy these constraints is deemed to be infeasible. Soft constraints 
are generally more numerous and varied, and far more dependent on the needs of the 
individual problem than the more obvious hard constraints. The violation of soft 
constraints should be minimized; it is the soft constraints which effectively define 
how good a given feasible solution is so that different solutions can be compared and 
improved via an objective (fitness) function.  

3 Artificial Immune System and Artificial Immune Algorithms 

The ‘artificial immune system’ is an approach which used the natural immune system 
as a metaphor for solving computational problems, not modeling the immune system 
[21]. The main application domains of AIS are anomaly detection [16], pattern 
recognition [23], computer security [14], fault tolerance [1], dynamic environments 
[18], robotics [19], data mining [20], optimization [22], and scheduling [12]. 

The ‘immune system’ (IS) can be considered to be a remarkably efficient and 
powerful information processing system which operates in a highly parallel and 
distributed manner [11]. It contains a number of features which potentially can be 
adapted in computer systems; recognition, feature extraction, diversity, learning, 
memory, distributed detection, self-regulation, threshold mechanism, co-stimulation, 
dynamic protection, and probabilistic detection. It is unnecessary to replicate all of 
these aspects of the IS in a computer model, rather they should be used as general 
guidelines in designing a system. 

There are a number of different algorithms that can be applied to many domains, 
from data analysis to autonomous navigation [5]. These immune algorithms were 
inspired by works on theoretical immunology and several processes that occur within 
the IS. The AISs lead to the development of different techniques, each one mapping a 
different mechanism of the system. For examples, the Artificial Immune Networks as 
proposed by Farmer et al. [9], the Clonal Selection Algorithm proposed by de Castro 
and Von Zuben [6], and the Negative Selection Algorithm introduced by Forrest et al. 
[10]. Immune network models are suitable to deal with dynamic environments and 
optimization problems, algorithms based upon the clonal selection principle are 
adequate to solve optimization and scheduling problems, and the negative selection 
strategies are successfully applied to anomaly detection.  
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3.1 Clonal Selection Algorithms for University Timetabling 

The clonal selection algorithm (CSA) is inspired by the immunological processes of 
clonal selection and affinity maturation. When an antigen is detected, those antibodies 
that best recognize this antigen will proliferate by cloning. This process is called 
clonal selection principle [6]. The clonal selection principle is used to explain how 
the IS ‘fights’ against an antigen. When a bacterium invades our organism, it starts 
multiplying and damaging our cells. One form the IS found to cope with this 
replicating antigen was by replicating the immune cells successful in recognizing and 
fighting against this disease-causing element. Those cells reproduce themselves 
asexually in a way proportional to their degree of recognition: the better the antigenic 
recognition, the higher the number of clones (offspring) generated. During the process 
of cell division (reproduction), individual cells suffer a mutation that allows them to 
become more adapted to the antigen recognized: the higher the affinity of the parent 
cell, the lower the mutation they suffer. Figure 1 shows the CSA for exam or course.  
 

1. Initialization: initialize a population of antibodies (feasible timetables) 
for each antibody (timetable) 

randomly select event (exam/course) one by one 
assign event to random selected timeslots and rooms (satisfying hard constraints) 

if no identical antibodies (duplicate timetables) 
add antibody (timetable) to the population 

else eliminate antibody 
2. Population loop:  for each generation of antibodies (feasible timetables) 

for each antibody do 
2.1 Affinity evaluation:  determine the affinity of antibody via an affinity function (affinity = 1/fitness) 
2.2 Selection:  calculate the selection probability (rate of cloning) using affinity 

(selection probability = affinity/total affinities) 
randomly select an antibody (timetable) based on selection probability 
(using roulette wheel selection method) 

2.3 Genetic variation: Cloning: clone copies of the selected antibody 
(number of clones = population size × cumulative selection probability) 

Mutation: for each generated clone, do (mutation rate = 1 - selection probability)
if a random probability <= mutation rate, mutation = failure 

while mutation = failure, select an event at random 
reassign event to random timeslot and room (satisfying all hard constraints) 
if all hard constraints are satisfied and no duplicate timetables 

determine the affinity of the new clone 
if the affinity (new clone) >= the affinity (original clone) 

mutation = success 
2.4 Population update: if the affinity (new clone) > minimum affinity (population), say antibody X 

then X = new clone 
3. Cycle:  repeat (Step 2) until stopping criteria are met.     

Fig. 1. Clonal Selection Algorithm for University Timetabling 

The main operators in CSA are selection, cloning, and mutation. A timetable (high 
affinity) is randomly selected for cloning using Roulette Wheel selection method and, 
on average, a number of clones that equal to half of the population size are generated. 
Almost all clones will be mutated to produce new feasible timetables for the next 
generation since ‘1- selection probability’ would give a high mutation rate for each 
clone. But only new timetables with high affinity will be selected to replace the low 
affinity timetables in the current population. The process (selection, cloning and 
mutation) will be repeated until the stopping criteria are met. 
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3.2 Immune Network Algorithms for University Timetabling 

The immune network algorithm (INA) is based on Jerne’s idiotypic network theory 
[15]. According to this theory, immune cells have portions of their receptor molecules 
that can be recognized by other immune cells in a way similar to the recognition of an 
invading antigen. This results in a network of recognition between immune cells. 
When an immune cell recognizes an antigen or another immune cell, it is stimulated. 
On the other hand, when an immune cell is recognized by another immune cell, it is 
suppressed. The sum of the stimulation and suppression received by the network cells, 
plus the stimulation by the recognition of an antigen corresponds to the stimulation 
level S of a cell. Figure 2 shows the INA for examination or course timetabling.  
 

1. Initialization: initialize a network (population) of immune cells (feasible timetables) 
for each immune cell (timetable)  

randomly select event one by one  
assign event to random timeslot and room (satisfying all hard constraints) 

if no identical immune cells (duplicate timetables)   
add immune cell to the population 

else eliminate immune cell 
2. Population loop:  for each network (generation/population) of immune cells (feasible timetables) 
2.1 Network interactions and Stimulation: 

for each immune cell   
determine the fitness of immune cell via a fitness function 
calculate the stimulation level of immune cell (stimulation level = 1/fitness) 

determine the total stimulation of the network (population) 
calculate the stimulation probability for each immune cell  
(stimulation probability = stimulation/total stimulation) 

2.2 Metadynamics (Antigens and Genetic variations): 
for each immune cell  

cloning – generate a number of clones  
(number of clones = population size × stimulation probability) 
for each clone  

determine the mutation rate (mutation rate = 1 – stimulation probability) 
generate a random probability 
if a random probability <= mutation rate 

mutation = failure 
while mutation = failure 

select an event at random  
reassign event to random timeslot and best room 
if all hard constraints are satisfied and no duplicate timetables 

mutation = success 
determine the fitness of the new clone 
if the fitness (new clone) > the fitness (original clone) 

mutation = failure, and reset the reassignment 
else (no mutation) assign a zero stimulation (large fitness) to immune cell  

2.3 Network dynamics (immune cells and antigens interactions, and population update): 
gather all immune cells (current population and cloned timetables) 
sort immune cells according to stimulation level (descending order) 
select the best (high stimulation) immune cells (feasible timetables) 
(number of selected immune cells = network or population size) 
update the network (population) of immune cells with the selected cells 

3. Cycle: repeat Step 2 until a given convergence or stopping criterion is met. 
  
 
Fig. 2. Immune Network Algorithm for University Timetabling 

 
The main operators in INA are cloning and mutation. All timetables are selected 

for cloning and, on average, one clone is generated for each timetable. Almost all 
clones will be mutated to produce new feasible timetables since ‘1- stimulation 
probability’ would give a high mutation rate for each clone. All feasible timetables, 
current population and mutated clones, are gathered, but only the timetables with high 
stimulation will be selected to form a new population for the next generation. The 
process (cloning and mutation) will be repeated until the stopping criteria are met.  
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3.3 Negative Selection Algorithms for University Timetabling 

The negative selection algorithm (NSA) is the most widely used techniques in AISs. 
The NSA is based on the principles of self-nonself discrimination [10]. The algorithm 
was inspired by the thymic negative selection process that intrinsic to natural immune 
systems, consisting of screening and deleting self-reactive T-cells, i.e. those T-cells 
that recognize self cells. Figure 3 shows the NSA for examination or course 
timetabling. 
 

1.  Initialization:  initialize a population of candidate detectors (initial feasible timetables) 
for each candidate detector (timetable) 

randomly select event one by one 
assign event to random timeslot and room (satisfying all hard constraints) 

if no identical candidate detectors (duplicate timetables) 
add candidate detector to the initial population 

else eliminate candidate detector 
2.  Population loop:  for each generation (population) of detectors (feasible timetables) 
2.1 Censoring:  for each detector (timetable) in the current population 

determine the fitness value via a fitness function (soft constraints) 
determine the average fitness for the current population 
for each detector 

if the fitness >= average, eliminate the detector 
if all fitness values are equal, eliminate only the second half of the detectors 

2.2 Monitoring:  while the number of detectors (timetables) < population size 
randomly select a detector according to fitness using roulette wheel  
clone the detector, mutation = failure 
while mutation = failure, randomly select an event 

reassign event to random timeslot and best room 
if all hard constraints are satisfied and no identical detectors  

mutation = success 
determine the fitness of new clone 
if the fitness of the new clone > average fitness of the population 

mutation = failure 
eliminate the new clone, and reset the reassignment 

else add the new clone to the new population  
3. Cycle:  repeat population loop until a given convergence criterion is met. 

     
Fig. 3. Negative Selection Algorithm for University Timetabling  

 
The main operators in NSA are negative deletion (censoring), cloning and 

mutation. The timetables (current population) with fitness greater than or equal to 
average fitness are eliminated or deleted from the current population. A timetable is 
randomly selected from the remaining timetables for cloning and mutation using 
Roulette Wheel selection method (based on fitness). All clones will be mutated to 
produce new feasible timetables. For each new (mutated) timetable, if the fitness is 
less than or equal to average, the timetable will be added to the new population for the 
next generation; otherwise, it will be deleted. The monitoring process (cloning and 
mutation) will be repeated until the number of feasible timetables in the new 
population is equal to population size. Finally, the optimization process (censoring 
and monitoring) will be repeated until the stopping criteria are met. 
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4 Benchmark Datasets 

The benchmark datasets (Carter and Schaerf) used in the implementation of the three 
immune algorithms are available from ftp://ftp.mie.utoronto.ca/pub/carter/testprob/ 
and http://www.diegm.uniud.it/schaerf/projects/coursett/, respectively. These datasets 
provide reasonable benchmark problems for comparison of the three different 
artificial immune algorithms. The datasets are shown in Table 1 and Table 2. 

Table 1. Examination Datasets and Characteristics (Carter Datasets) 

Code University 
No. of 
Exams 

No. of 
Students 

No. of 
Enrollments 

Timeslot 
Capacity 

car-f-92 Carleton University 1992 543 18419 55522 2000 
car-s-91 Carleton University 1991 682 16925 56877 1550 
ear-f-83 Earl Haig Collegiate 1983 190 1125 8109 350 
hec-s-92 Ecole des Hautes Etudes Comm 92 81 2823 10632 650 
kfu-s-93 King Fahd University 1993 461 5349 25113 1955 
lse-f-91 London Sch. of Econ. 1991 381 2726 10918 635 
rye-s-93 Ryerson University 1993 486 11483 45051 2055 
sta-f-83 St. Andrews High 1983 139 611 5751 465 
tre-s-92 Trent University 1992 261 4360 14901 655 
uta-s-92 Uni. of Toronto, Arts & Science 92 622 21266 58979 2800 
ute-s-92 Uni. of Toronto, Engineering 92 184 2750 11793 1240 
yor-f-83 York Mills Collegiate 1983 181 941 6034 300 
 
Each of the datasets come in two files, one file (course data file) contains the list of 

courses and the other (student data file) contains a list of student-course selections. 
The courses and student-course selections are sorted in ascending order. 

Table 2. Course Datasets and Characteristics (Schaerf Datasets) 

Instance 
No. of 

Courses 

No. of 
Rooms  

(R) 

No. of 
Timeslots  

(T) 

Timeslots 
per day 

Total 
lectures 

(L) 

No. of 
Teachers 

Occupancy 
(L/(R×T)) 

1 46 12 20 4 207 39 86.25% 
2 52 12 20 4 223 49 92.92% 
3 56 13 20 4 252 51 96.92% 
4 55 10 25 5 250 51 100% 

 
Each of the datasets comes in five files; course.dat contains the information about 

the courses, periods.dat contains the list of timeslots of the timetabling horizon, 
curricula.dat contains the information about groups of courses that share common 
students, constraint.dat contains additional constraints about timeslot unavailabilities, 
and room.dat contains information about rooms. The ‘occupancy’ indicates the 
percentage of timeslot-room required to schedule all the lectures.  

However, the dataset ‘Instance 4’ was not considered; 100% occupancy would 
make the mutation process impossible, and perhaps dummy timeslots and rooms 
would solve the problem. This requires more time and further study, and will be 
included in the future work.   
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5 Comparing Artificial Immune Algorithms on Exam Datasets  

The three artificial immune algorithms (CSA, INA, NSA) have been implemented on 
the twelve examination datasets (Carter datasets). The main objective is to compare 
the effectiveness of the three algorithms on examination datasets.  

Three hard constraints were considered for each of the datasets: (1) no students 
must be assigned to two different exams at the same timeslot, (2) timeslot capacity 
must not be exceeded, and (3) each exam must be assigned to exactly one timeslot. 
The fitness value (soft constraint violations) is the minimum number of students 
having two exams in adjacent (consecutive) timeslots. 

The following (Table 3) are the experimental results for examination datasets using 
the three artificial immune algorithms. Each algorithm was run on each dataset for 
five trials, and the maximum number of generations ‘500’ was used as the stopping 
criterion. The best fitness, the average fitness and the average CPU time (in seconds) 
for each algorithm on each of the datasets, based on five trials, have been recorded. 

Table 3. Comparing Three Artificial Immune Algorithms on Examination Datasets 

Fitness Values 
CSA INA NSA 

Average Average Average 
Fitness Fitness Fitness 

Institution 
No. of              
Exams 

No. of 
Timeslots 

Best 
(CPU time) 

Best 
(CPU time) 

Best 
(CPU time) 

466.6 455.2 432.8 car-f-92 543 31 285 
(310.6s) 

406 
(249.8s) 

386 
(359.4s) 

569.6 582.8 486.2 car-s-91 682 40 535 
(512.6s) 

554 
(399.6s) 

439 
(484s) 

48 112.8 118.8 
ear-f-83 190 24 17 

(75.4s) 
65 

(34.8s) 
74 

(88s) 
11 9.8 14.4 

hec-s-92 81 19 3 
(17.2s) 

0 
(271) (7.8s) 

5 
(11.4s) 

69.4 32.6 13.6 kfu-s-93 461 20 35 
(172.4s) 

16 
(202.2s) 

2 
(240.2s) 

68.8 82.6 167.2 
lse-f-91 381 18 45 

(132.4s) 
34 

(120.8s) 
115 

(147s) 
240.2 309 327.6 

rye-s-93 486 24 143 
(233.8s) 

217 
(247s) 

180 
(336.4s) 

0 0.4 0 sta-f-83 139 14 0 
(196) (12.2s) 

0 
(185) (11.4s) 

0 
(160) (9.6s) 

36.8 70.2 79.2 
tre-s-92 261 25 27 

(110s) 
58 

(57.4s) 
56 

(134s) 
487.6 436 244.6 uta-s-92 622 32 436 

(343.2s) 
374 

(307.4s) 
165 

(387s) 
0.4 2.6 9.8 

ute-s-92 184 10 0 
(352) (34.8s) 

0 
(454) (26.8s) 

1 
(34.4s) 

8 33.2 6.6 yor-f-83 181 22 3 
(62.6s) 

24 
(30.4s) 

1 
(63.2s) 
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The number of timeslots used for all datasets were imposed according to those 
given in Carter’s results. However, the number of timeslots for all datasets may be 
further reduced if necessary. Based on five trials, for the best fitness, both CSA and 
NSA have achieved the first position in five datasets, while INA has achieved the first 
position in only two datasets. The best fitness values for CSA have converged to ‘0’ 
in two datasets, INA in three datasets, and NSA in one dataset. For the average 
fitness, both CSA and NSA has achieved the first position in six datasets, and INA in 
only one dataset. Finally, for the average CPU time, INA has achieved the first 
position in nine datasets, only two for CSA and one for NSA.  

Hence, it may be concluded that CSA and NSA are equally effective in producing 
good quality (low fitness) examination timetables, and both are more effective than 
NSA. Based on CPU time, INA runs faster than CSA and NSA. The results from 12 
different examination datasets have significantly shown the effectiveness of the three 
algorithms. All algorithms have effectively produced good quality examination 
timetables in most of the datasets.   

A comparison with other published results was also conducted. This is to access 
the effectiveness of the three algorithms against other optimization algorithms. Only 
five datasets were considered; car-f-92, car-s-91, kfu-s-93, tre-s-92, and uta-s-92. The 
following are the authors and metaheuristic approaches used in the published results: 
(A) Burke et al. [2] – Memetic Algorithm. 
(B) Di Gaspero and Schaerf [7] – Tabu Search. 
(C) Caramia et al. [3] – A set of heuristics: Greedy Assignment, Spreading Heuristic. 
(D) Merlot et al. [17] – Hybrid Algorithm: Constraint Programming, Simulated 

Annealing, Hill-climbing. 
All authors had considered the same hard and soft constraints, hence a comparison 

based on the fitness values (number of students having two exams in adjacent 
timeslots) may be carried out. The main goal is to show that the immune algorithms 
can produce good quality examination timetables as good as other methods. The 
number of timeslots used for all datasets were imposed according to the papers of the 
published results. The maximum number of none-improvement generations ‘25’ was 
considered as the stopping criterion. Table 4 summarizes the results. 

Table 4. Comparison with Other Solution Methods 

Fitness Values 
Average Fitness Code 

Timeslots 
(Sessions) 

Timeslot 
Capacity A B C D 

CSA INA NSA 
car-f-92 31 2000 331 424 268 158 75.7 97.3 154.3 
car-s-91 51 1550 81 88 74 31 33.0 73.7 21.7 
kfu-s-93 20 1995 974 512 912 247 5.3 12.0 5.0 
tre-s-92 35 655 3 4 2 0 7.7 13.0 8.0 
uta-s-92 38 2800 772 554 680 334 24.7 81.7 12.7 
 
The results of other solution methods are available on Internet from 

http://www.or.ms.unimelb.edu.au/timetabling/ttframe.html?ttexp3.html. Hence, based 
on five trials, and five datasets, the three artificial immune algorithms have effectively 
produced good quality examination timetables, as good as other solution methods.  
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6 Comparing Artificial Immune Algorithms on Course Datasets 

The three artificial immune algorithms (CSA, INA, NSA) have been implemented on 
the three course datasets (Schaerf datasets). The main objective is to compare the 
effectiveness of the algorithms on course datasets.  

Five hard constraints were considered for all datasets: (1) all lectures of all courses 
must be scheduled, (2) two distinct lectures cannot take place in the same room in the 
same timeslot, (3) lectures of courses of the same group must be all scheduled at 
different timeslots, (4) lectures of courses taught by the same teacher must be 
scheduled at different timeslots, and (5) lectures of some courses must not be assigned 
to certain timeslots. The fitness value (soft constraint violations) is the number of 
students without a seat, plus the number of courses that assigned to less than the 
minimum number of days multiply by 5, and plus the number of gaps between 
lectures of the same group on the same day multiply by 2. 

The following (Table 5) are the experimental results for course datasets using the 
three artificial immune algorithms. Each algorithm was run on each dataset for five 
trials, and the maximum number of generations 1000 was used as the stopping 
criterion. The best fitness, the average fitness, and the average CPU time (in seconds) 
for each algorithm on each of the datasets, based on five trials, have been recorded. 

Table 5. Comparing Three Artificial Immune Algorithms on Course Datasets 

Fitness Values 
CSA INA NSA 

Instance 
No. of  
Courses 

Best Ave 
Ave 
CPU 

Best Ave 
Ave 
CPU 

Best Ave 
Ave 
CPU 

Di Gaspero 
& Schaerf 

(2003) 

1 46 284 297 1560s 265 296 3976s 263 298 1583s 200 

2 52 21 46 347s 11 21 1190s 21 36 525s 13 

3 56 69 98 1617s 50 72 5873s 48 74 2254s 55 

 
The results have significantly shown the effectiveness of the three algorithms. All 

algorithms have effectively produced good quality course timetables with low fitness 
values in all datasets. For the best fitness, NSA has achieved the first position in two 
datasets, while INA in one dataset. For the average fitness, INA has achieved the first 
position in all datasets. Finally, for the average CPU time, CSA has achieved the first 
position in all datasets. It may be concluded that, based on three datasets and five 
trials, NSA and INA are more effective than CSA in producing good quality course 
timetables; however, CSA runs faster than INA and NSA.  

There is only one published result available on these datasets, by Di Gaspero and 
Schaerf [8], as shown on the right-hand side of Table 5; available from 
http://www.diegm.uniud/satt/projects/EduTT/. The artificial immune algorithms have 
achieved the first position in two datasets (Instances 2 and 3). However, no results 
have been produced by artificial immune algorithms for Instance 4; 100% occupancy 
in Instance 4 requires dummy timeslots and/or rooms for the mutation process. This 
requires more effort and time and will be considered in the future work.  
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7 Conclusion and Future Work 

This paper has presented and compared three artificial immune algorithms for the 
university timetabling problems; CSA, INA and NSA. The experimental results using 
twelve Carter datasets (examination) and three Schaerf datasets (course) have 
significantly shown the effectiveness of these algorithms on university timetabling 
datasets. All algorithms have efficiently produced good quality examination and 
course timetables with low fitness values in most of the datasets. For examination 
datasets, CSA and NSA are both more effective than INA in producing good quality 
timetables; while for course datasets, NSA and INA are more effective than CSA. 
Based on CPU time, INA runs faster than CSA and NSA on examination datasets, and 
CSA runs faster than INA and NSA on course datasets. 

All artificial immune algorithms show great promise in the area of educational 
timetabling, particularly in its ability to consider, solve, and optimize the wide variety 
of different examination and course timetabling problems. The algorithms can handle 
the hard constraints and soft constraints very well. The experimental results have 
shown that the algorithms can successfully be applied to solve various kinds of 
examination and course timetabling problems. These algorithms may be accepted as 
new members of evolutionary algorithms for solving timetabling problems.  

The most important operators in artificial immune algorithms are cloning and 
mutation. For future work, these algorithms will be improved by considering other 
operators, especially mutation, so that the fitness values may be further minimized. 
However, different timetabling problems may require different operators. A good 
cloning or mutation operator for one problem is not necessarily a good operator for 
other problems. For the course timetabling, the three algorithms were not designed to 
handle timetabling problems with 100% occupancy as in Instance 4 of Schaerf 
datasets. Perhaps the use of dummy timeslots and/or rooms will solve the problems. 
This will be the first priority in our future research. 
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