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Abstract. The university timetabling, examination and couese known to be
highly constrained optimization problems. Metahstiziapproaches, and their
hybrids, have successfully been applied to sole ploblems.This paper
presents three artificial immune algorithms, thgoathms inspired by the
immune system, for university timetabling; clonalextion, immune network
and negative selection. The main objective is asthat the algorithms may
be tailored for educational timetabling. The exmemtal results have shown
that all algorithms have effectively produced goguhlity timetables.The
clonal selection and negative selection are mdextfe than immune network
in producing good quality examination timetablegjle/for course timetabling,
the immune network and negative selection are naffective than clonal
selection. A comparison with other published reshias significantly shown
the effectiveness of these algorithms. The mairraipes in artificial immune
algorithms are cloning and mutation. For future kydhese algorithms will be
improved by considering other cloning and mutatperators.

Keywords: Examination Timetabling; Course Timetabling; Artiic Immune
Algorithms.

1 Introduction

The constructions ofexamination and course (lecture) timetablesare common
problems for all institutions of higher educatidssually it involves modifying the
previous semester’s timetable so it will work fbetnew semester. The examinatio
and course timetabling are known to be highly aams¢d combinatorial optimization
problems. Metaheuristic approaches such as sindukt@ealing (SA), tabu searct
(TS), evolutionary algorithms (EA), and their hybritiave successfully been applie
to solve the problems.

Artificial immune systenfAlS), a new branch of Artificial Intelligence [4is a
new intelligent problem-solving technique that lgeinsed in optimization and
scheduling. The AIS algorithms are more efficiehtirt the classical heuristic
scheduling algorithms such as SA, TS, and gendgiarithm (GA) [12]. AlSs have
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been more successful than GA and other methodspplications of pattern
recognition, computer and network security, andagiyic tasks scheduling due to thi
applicability features of natural immune systemgttrermore, the solutions producet
by the AIS are observed to bebustthan solutions produced by a GA [1Bhere are
three algorithms that have widely been applied in At®nal selection algorithm
(CSA),immune network algorithrifiNA), andnegative selection algorithgiNSA).

This paper presents three artificial immune algargtfor examination and course
timetabling. The main objective is to show that #igorithms may be tailored for
educational timetabling, and also to compare tfecgfeness of the three algorithm:
on examination and course datasets. Twé€laeter datasets (examination) and thre
Schaerfdatasets (course) have been used in the implernmntahe experimental
results have significantly shown the effectivenedsthe three algorithms; all
algorithms have effectively produced good qualiigw( fithess) examination and
course timetables in most of the datasébe CSA and NSA are more effective tha
INA on examination datasets, and on course datagetsINA and NSA are more
effective than CSA. However, based on CPU time, INiAs faster than CSA and
NSA on examination datasets, and CSA runs faser tNA and NSA on course
datasets. A comparison with other published reddiee significantly shown that the
three algorithms are capable of producing good iyuaxamination and course
timetables as good as other optimization algorithms

The main operators in artificial immune algorithnie eloning and mutation For
future work, these algorithms will be improved bgnsidering other cloning and
mutation operators so that the fitness values mayubther minimized. And also,
especially for course datasets, a further studyeipuired to solve timetabling
problems with 100% occupancy by considering dumimegslots and/or rooms.

2 University Timetabling Problems

University timetabling problems can be divided ibt main categories: exam anc
course. The main difference is that in course titoktg there cannot be more thai
one course per room, but in exam timetabling tkarebe more than one exam.

Examination timetabling problem (ETP) is a specifisecaf the more general
timetabling problem. The examination timetabling anety the scheduling for the
exams of a set of university courses, avoiding lapeof exams of courses having
common students, and spreading the exams for tidersts as much as possible [7
Given is a set of exams, a set of timeslots, aoBatudents, and a set of studer
enroliments to exams, the problem is to assign exanimeslots subject to a variety
of hard andsoft constraints. The ETP can be seen as consistihgassubproblems:
(1) assigning exams to timeslots, and (2) assigexgms to rooms. For real-life
situations, these two subproblems can be solvearaggby.

Course timetabling problem (CTP) is another spedifise of the more genera
timetabling problem. At its simplest, course tiniditag is the problem of scheduling
a set of events (lectures, tutorials or labs) s®iaof classrooms in a set of timeslot
within a week, and taught by a set of teachersh ¢hat no student or teacher it
expected to be in more than one room at the saneeand that there is enough spac
in each classroom for the number of students eggeict be there. The CTP can b
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seen as consisting tiree subproblems; ‘course-teacher assignment’, ‘eviemgsiot
assignment’, and ‘event-room assignment’. In ‘cettesacher assignment’, the
teachers are scheduled to a number of events iroalises; in ‘event-timeslot
assignment’, all events for all courses are scheetlinito a fixed number of timeslots;
and in ‘event-room assignment’, these events asigred to a fixed number of
rooms. Hence, arassignmentis an ordered 4-tuplea( b, ¢, ¢, and has the
straightforward general interpretation: ‘evenstarts at timeslob in roomc, and is
taught by teached’. For some institutions, the allocation of coursesteachers is
carried out manually, and the allocation of evanta given timeslot to rooms is a
secondary problem. These three subproblems can\malseparately.

Hard constraints must be satisfied in order to peedafeasibletimetable. Any
timetable fails to satisfy these constraints isnaee to benfeasible Soft constraints
are generally more numerous and varied, and fae mependent on the needs of th
individual problem than the more obvious hard caists. The violation of soft
constraints should be minimized; it is the soft staaints which effectively define
how good a given feasible solution is so that défifi solutions can be compared an
improved via an objectivdi{nes9 function.

3 Artificial Immune System and Artificial Immune Algorithms

The ‘artificial immune system’ is an approach whigded the natural immune syster
as a metaphor for solving computational problemeg,modeling the immune system
[21]. The main application domains of AIS are angmeeétection [16], pattern
recognition [23], computer security [14], fault@échnce [1], dynamic environments
[18], robotics [19], data mining [20], optimizati¢22], and scheduling [12].

The ‘immune system’ (IS) can be considered to bemarkably efficient and
powerful information processing system which opegain a highly parallel and
distributed manner [11]. It contains a number dtdees which potentially can be
adapted in computer systems; recognition, featuteaion, diversity, learning,
memory, distributed detection, self-regulationegirold mechanism, co-stimulation
dynamic protection, and probabilistic detectionisltunnecessary to replicaédl of
these aspects of the IS in a computer model, raltegr should be used as gener:
guidelines in designing a system.

There are a number of different algorithms that lsarapplied to many domains,
from data analysis to autonomous navigation [5].sEhanmune algorithms were
inspired by works on theoretical immunology andesal/processes that occur withir
the IS. The AlSs lead to the development of diffetenhniques, each one mapping
different mechanism of the system. For examplesAttificial Imnmune Networksis
proposed by Farmer et al. [9], tdonal Selection Algorithnproposed by de Castro
and Von Zuben [6], and thdegative Selection Algorithintroduced by Forrest et al.
[10]. Immune network models are suitable to dedahvdynamic environments and
optimization problems, algorithms based upon thenal selection principle are
adequate to solve optimization and scheduling prob| and the negative selectio
strategies are successfully applied to anomalyctete
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3.1 Clonal Selection Algorithmsfor University Timetabling

The clonal selection algorithm (CSA) is inspiredthg immunological processes o
clonal selectiorandaffinity maturation When an antigen is detected, those antibod
that best recognize this antigen will proliferatg ddoning. This process is called
clonal selection principld6]. The clonal selection principle is used to explhow

the IS ‘fights’ against an antigen. When a bactarinvades our organism, it starts
multiplying and damaging our cells. One form the fifuind to cope with this
replicating antigen was by replicating the immued#iscsuccessful in recognizing anc
fighting against this disease-causing element. Thoses reproduce themselves
asexually in a way proportional to their degreeeafognition: the better the antigenic
recognition, the higher the number of clones (affgy) generated. During the proces
of cell division (reproduction), individual cellsiffer a mutation that allows them to
become more adapted to the antigen recognizediginer the affinity of the parent
cell, the lower the mutation they suffer. Figurshbws the CSA for exam or course.

1. Initialization: initialize a population of antibodies (feasible &tables
for each antibody (timetable)
randomly select event (exam/course) one by one
assign event to random selected timeslots and r¢satisfying hard constraints)
if no identical antibodies (duplicate timetables)
add antibody (timetable) to the population
else eliminate antibody
2. Population loop: for each generation of antibodies (feasible tahéts)
for each antibody do
2.1 Affinity evaluation: determine the affinityaftibody via an affinity function (affinity = 1ffiess)
2.2 Selection: calculate the selection probabi(igte of cloning) using affinity
(selection probability = affinity/total affinities)
randomly select an antibody (timetable) based decsien probability
(using roulette wheel selection method)
2.3 Genetic variation: Cloning: clone copies of #@ected antibody
(number of clones = population siz&umulative selection probability)
Mutation: for each generated clone, do (mutatiotera 1 - selection probability)
if a random probability <= mutation rate, mutatienfailure
while mutation = failure, select an event at random
reassign event to random timeslot and room (satigfgll hard constraints)
if all hard constraints are satisfied and no duplie timetables
determine the affinity of the new clone
if the affinity (new clone) >= the affinity (origat clone)
mutation = success

2.4 Population update: if the affinity (new clomeininimum affinity (population), say antibody X
then X = new clone
3. Cycle: repeat (Step 2) until stopping criteria are r

Fig. 1. Clonal Selection Algorithm for University Timetaij

The main operators in CSA aselection cloning andmutation A timetable (high
affinity) is randomly selected for cloning using tkette Wheel selection method anc
on average, a number of clones that equal to Hfidifeopopulation size are generatec
Almost all clones will be mutated to produce newsible timetables for the next
generation since ‘1- selection probability’ woulivey a high mutation rate for eact
clone. But only new timetables with high affinityilbe selected to replace the low
affinity timetables in the current population. Theogess (selection, cloning anc
mutation) will be repeated until the stopping aideare met.
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3.2 Immune Network Algorithmsfor University Timetabling

The immune network algorithm (INA) is based &erne’s idiotypic network theory
[15]. According to this theory, immune cells hawtpns of their receptor molecules
that can be recognized by other immune cells irag similar to the recognition of an
invading antigen. This results in a network of igration between immune cells.
When an immune cell recognizes an antigen or andatimaune cell, it is stimulated.
On the other hand, when an immune cell is recognimeanother immune cell, it is
suppressed. The sum of the stimulation and suppressceived by the network cells,
plus the stimulation by the recognition of an amtigcorresponds to the stimulatior
level Sof a cell. Figure 2 shows the INA for examinat@rcourse timetabling.

1. Initialization: initialize a network (population) of immune cellsgsible timetable
for each immune cell (timetable)
randomly select event one by one
assign event to random timeslot and room (satigfgilhhard constraints)
if no identical immune cells (duplicate timetables)
add immune cell to the population
else eliminate immune cell
2. Population loop: for each network (generation/population) of immwells (feasible timetables)
2.1 Network interactions and Stimulation:
for each immune cell
determine the fitness of immune cell via a fitrfeastion
calculate the stimulation level of immune cellr(atiation level = 1/fitness)
determine the total stimulation of the network (plapion)
calculate the stimulation probability for each immeucell
(stimulation probability = stimulation/total stimation)
2.2 Metadynamics (Antigens and Genetic variations):
for each immune cell
cloning — generate a number of clones
(number of clones = population sizestimulation probability)
for each clone
determine the mutation rate (mutation rate = 1 imsilation probability)
generate a random probability
if a random probability <= mutation rate
mutation = failure
while mutation = failure
select an event at random
reassign event to random timeslot and best room
if all hard constraints are satisfied and no duplie timetables
mutation = success
determine the fitness of the new clone
if the fithness (new clone) > the fitness (origickine)
mutation = failure, and reset the reassignment
else (no mutation) assign a zero stimulation (lafigeess) to immune cell
2.3 Network dynamics (immune cells and antigens interactions, and population update):
gather all immune cells (current population andred timetables)
sort immune cells according to stimulation leved{dending order)
select the best (high stimulation) immune cellagitele timetables)
(number of selected immune cells = network or paipaoih size)
update the network (population) of immune cellfwhie selected cells
3. Cycle: repeat Step 2 until a given convergence or stoppiitgrion is met.

Fig. 2. Immune Network Algorithm for University Timetabtn

The main operators in INA amoning and mutation All timetables are selected
for cloning and, on average, one clone is generfiieéach timetableAlmost all
clones will be mutated to produce new feasible titbies since ‘1- stimulation
probability’ would give a high mutation rate forabaclone.All feasible timetables,
current population and mutated clones, are gathérddnly the timetables with high
stimulation will be selected to form a new populatifor the next generation. The
process (cloning and mutation) will be repeated th stopping criteria are met.
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3.3 Negative Selection Algorithmsfor University Timetabling

The negative selection algorithm (NSA) is the momtely used techniques in AlSs.
The NSA is based on the principles of self-nonssifrimination [10]. The algorithm
was inspired by the thymic negative selection psedbat intrinsic to natural immune
systems, consisting of screening and deletingrealftive T-cells, i.e. those T-cells
that recognize self cells. Figure 3 shows the N®A €xamination or course
timetabling.

1. Initialization: initialize a population of candidate detectors jai feasible timetable:
for each candidate detector (timetable)
randomly select event one by one
assign event to random timeslot and room (satigfgihhard constraints)
if no identical candidate detectors (duplicate tiaiges)
add candidate detector to the initial population
else eliminate candidate detector
2. Population loop: for each generation (population) of detectorsible timetables)
2.1 Censoring: for each detector (timetable) in the current popida
determine the fitness value via a fitness funofsmit constraints)
determine the average fitness for the current patoh
for each detector
if the fitness >= average, eliminate the detector
if all fitness values are equal, eliminate only geeond half of the detectors
2.2 Monitoring: while the number of detectors (timetables) < popiatasize
randomly select a detector according to fithessgsobulette wheel
clone the detector, mutation = failure
while mutation = failure, randomly select an event
reassign event to random timeslot and best room
if all hard constraints are satisfied and no idesati detectors
mutation = success
determine the fitness of new clone
if the fitness of the new clone > average fitneésthe population
mutation = failure
eliminate the new clone, and reset the reassignment
else add the new clone to the new population
3. Cycle: repeat population loop until a given convergengeeton is met.

Fig. 3. Negative Selection Algorithm for University Timétang

The main operators in NSA areegative deletion(censoring),cloning and
mutation The timetables (current population) with fitheggater than or equal to
average fitness are eliminated or deleted fromctireent population. A timetable is
randomly selected from the remaining timetables dlmning and mutation using
Roulette Wheel selection method (based on fitnesls)clones will be mutated to
produce new feasible timetables. For each new (eulitaimetable, if the fitness is
less than or equal to average, the timetable wikidded to the new population for th
next generation; otherwise, it will be deleted. Thenitoring process (cloning and
mutation) will be repeated until the number of fbkes timetables in the new
population is equal to population size. Finallye thptimization process (censoring
and monitoring) will be repeated until the stoppanigeria are met.
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4 Benchmark Datasets

The benchmark datasetsqrter andSchaerf used in the implementation of theee
immune algorithms are available from ftp://ftp.rat@ronto.ca/pub/carter/testprob,
and http://www.diegm.uniud.it/schaerf/projects/cs®it/, respectively. These datase
provide reasonable benchmark problems for comparisb the three different
artificial immune algorithms. The datasets are showhable 1 and Table 2.

Table 1. Examination Datasets and Characteristics (Carteadat)

Code University No. of | No. of No. of Timeslpt
Exams | Students| Enroliments | Capacity

car-f-92 Carleton University 1992 543 18419 55522 0®0
car-s-91 Carleton University 1991 682 16925 56877 5015
ear-f-83 Earl Haig Collegiate 1983 190 112h 8109 35D
hec-s-92 | Ecole des Hautes Etudes CorB 81 2823 10632 650
kfu-s-93 King Fahd University 1993 461 5349 25113 953
Ise-f-91 London Sch. of Econ. 1991 381 2726 10918 35 6
rye-s-93 Ryerson University 1993 484 11483 4505]L 5520
sta-f-83 St. Andrews High 1983 139 611 5751 465
tre-s-92 Trent University 1992 261 436( 14901 655
uta-s-92 | Uni. of Torontdrts & Scienced2 622 21266 58979 2800
ute-s-92 Uni. of Toronto, Engineering 92 184 2730 1793 1240
yor-f-83 York Mills Collegiate 1983 181 941 6034 300

Each of the datasets come in two files, one &itmi(se data filecontains the list of
courses and the othestydent data file contains a list of student-course selection
The courses and student-course selections are $o@sdending order.

Table 2. Course Datasets and Characteristics (Schaerf Dstaset

No. of No. of .NO' of Timeslots Total No. of | Occupancy
Instance Courses Rooms | Timeslots per day lectures Teachers| (L/(RxT))
R) M L
1 46 12 20 4 207 39 86.25%
2 52 12 20 4 223 49 92.92%
3 56 13 20 4 252 51 96.92%
4 55 10 25 5 250 51 100%

Each of the datasets comediire files; course.datcontains the information about
the coursesperiods.datcontains the list of timeslots of the timetablingriaon,
curricula.dat contains the information about groups of coursed fnare common
studentsconstraint.datcontains additional constraints about timeslot @ailabilities,
and room.dat contains information about rooms. The ‘occupancyidates the
percentage of timeslot-room required to schedulthallectures.

However, the dataset ‘Instance 4’ was not consitjet®0% occupancy would
make the mutation process impossible, and perlaapsmy timeslots and rooms
would solve the problem. This requires more time #&umrther study, and will be
included in the future work.
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5 Comparing Artificial Immune Algorithms on Exam Datasets

The three artificial immune algorithms (CSA, INA, Nhave been implemented or
the twelve examination datasets (Carter datas&fs).main objective is to compare
the effectiveness of the three algorithms on exatimn datasets.

Three hard constraints were considered for each of #tasets: (1) no students
must be assigned to two different exams at the sameslot, (2) timeslot capacity
must not be exceeded, and (3) each exam must lgmedso exactly one timeslot.
The fitness value(soft constraint violations) is the minimum numbafr students
having two exams in adjacent (consecutive) timeslot

The following (Table 3) are the experimental resfdtsexamination datasets using
the three artificial immune algorithms. Each aldoritwas run on each dataset fa
five trials, and the maximum number of generations "30s used as the stopping
criterion. The best fitness, the average fithessthe average CPU time (in second:
for each algorithm on each of the datasets, basdd®trials, have been recorded.

Table 3. Comparing Three Atrtificial Immune Algorithms on Emation Datasets

Fitness Values
o No. of No. of CSA INA NSA
Institution | = | Timeslots Average Average Average
Best | Fitness | Best | Fitness | Best | Fitness
(CPU time) (CPU time) (CPU time)
carf92 | 543 31 | 285 (g‘f&i) 406 (ng’g-s)z 386 (ggngs)
car-s91 | 682 40 | 535 (gfz? éi) 554 |- ?ggég 439 f&g
earf83 | 190 | 24 | 17 (7‘5‘?45) 65 (523 74 (}3;2')8
hec-s-921 81 19 3 (1%.125) (2(7)1) (353) 5 (ff.fs)
kiu-s-93 | 461 20 35 (132.'25) 16 (2322.'53) 2 (2}136.625)
sefol | 381 | 18 | 45| 12%.%15) 4 | 123‘25) 115 éf:;';
rye-s93 | 486 | 24 | 143 (22343?_'825) 217 (234?33) 180 (33327.2163)
sta-f-83 | 139 14 (186) (120.23) (125) (1%.13) (120) (9.%5)
res92 | 261 | 25 | 27 (ii'oi) 58 (577%25) 56 | 1739‘1;5)
ua-s92 | 622 | 32 | 436 (;f;_ '265) 374 (30‘;_3% 165 (234;7'2)
ute-s-92 | 184 10 (322) (3?1'25) (4(5)4) (22225) 1 (32.'25)
yorf83 | 181 | 22 3 (65 s | (3%%) 1 (GZ'ZS)
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The number of timeslotsised for all datasets were imposed according tsethi
given in Carter’s resultddowever, the number of timeslots for all datasets/ rhe
further reduced if necessary. Based on five trifals the best fithessboth CSA and
NSA have achieved the first positionfine datasets, while INA has achieved the fire
position in onlytwo datasets. The best fithess values for CSA haveergad to ‘0’
in two datasets, INA irthree datasets, and NSA ione dataset. For thaverage
fithess both CSA and NSA has achieved the first positinsix datasets, and INA in
only one dataset. Finally, for thaverage CPU timeINA has achieved the first
position innine datasets, onltwo for CSA andonefor NSA.

Hence, it may be concluded that CSA and NSA aralggaffective in producing
good quality (low fitness) examination timetablasd both are more effective thar
NSA. Based on CPU time, INA runs faster than CSA BISA. The results from 12
different examination datasets have significantligven the effectiveness of the thre:
algorithms. All algorithms have effectively proddceyood quality examination
timetables in most of the datasets.

A comparison with other published results was asnducted. This is to acces:
the effectiveness of the three algorithms agaittstrooptimization algorithms. Only
five datasets were considered; car-f-92, car-s-91s¥dG; tre-s-92, and uta-s-9the
following are the authors and metaheuristic apgreaaised in the published results:
(A) Burke et al[2] — Memetic Algorithm.

(B) Di Gaspero and Schaerf [7] — Tabu Search.

(C) Caramia et a[3] — A set of heuristics: Greedy Assignment, Siag Heuristic.

(D) Merlot et al. [17] — Hybrid Algorithm: ConstrainProgramming, Simulated
Annealing, Hill-climbing.

All authors had considered the same hard and softtrints, hence a comparisol
based on the fitness values (number of studentindnawo exams in adjacent
timeslots) may be carried out. The main goal ishiowsthat the immune algorithms
can produce good quality examination timetableggasd as other methods. The
number of timeslots used for all datasets were sagaccording to the papers of th
published results. The maximum number of none-imgmeent generations ‘25’ was
considered as the stopping criterion. Table 4 sunzemthe results.

Table 4. Comparison with Other Solution Methods

. . Fitness Values
Code (TS”:Sessig;t:) 'g;r;)zscli%t/ A B c D Average Fitness
CSA INA NSA
car-f-92 31 2000 331 424 268 158 75.7 97.3 154.3
car-s-91 51 1550 81 88 74 31 330 73.721.7
kfu-s-93 20 1995 974 517 91p 247 5.8 12.0 5.0
tre-s-92 35 655 3 4 2| O 7.7 13.0 8.0
uta-s-92 38 2800 772 554 680 334 24.7 81.712.7

The results of other solution methods are available Internet from
http://www.or.ms.unimelb.edu.au/timetabling/ttfrafiten| ?ttexp3.html. Hence, basec
on five trials, and five datasets, the three aréfiimmune algorithms have effectively
produced good quality examination timetables, aglgts other solution methods.
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6 Comparing Artificial Immune Algorithms on Cour se Datasets

The three artificial immune algorithms (CSA, INA, Nhave been implemented or
the three course datasets (Schaerf datasets). Timeofm@ctive is to compare the
effectiveness of the algorithms on course datasets.

Five hard constraints were considered for all dataggjsall lectures of all courses
must be scheduled, (2) two distinct lectures cataia place in the same room in th
same timeslot, (3) lectures of courses of the sgmap must be all scheduled a
different timeslots, (4) lectures of courses taubkit the same teacher must b
scheduled at different timeslots, and (5) lectafesome courses must not be assigne
to certain timeslots. Thétness value(soft constraint violations) is the number o
students without a seat, plus the number of coutts@isassigned to less than th
minimum number of days multiply by 5, and plus thember of gaps between
lectures of the same group on the same day muliip.

The following (Table 5) are the experimental restdtscourse datasets using tht
three artificial immune algorithms. Each algorithrasmun on each dataset fire
trials, and the maximum number of generations 10@8 used as the stoppin¢
criterion. The best fitness, the average fitnesd,the average CPU time (in second:
for each algorithm on each of the datasets, basdid@trials, have been recorded.

Table 5. Comparing Three Artificial Immune Algorithms on CeerDatasets

Fitness Values

No. of CSA INA NSA Di Gaspero

Instancq Course Ave Ave Ave & Schaerf
2003
Best Ave .~ |Best Ave .o Best Ave 5 (2003)

1 46 284 . 297:1560s| 265 296 :3976s| 263 : 298 :1583s 200

2 52 21 46 | 347s| 11 = 21 1190s| 21 36 | 525s 13

3 56 69 98 11617s| 50 | 72 {5873s| 48 74 2254s 55

The results have significantly shown the effectivwmnef the three algorithms. All
algorithms have effectively produced good qualiyrse timetables with low fithess
values in all dataset&or thebest fitnessNSA has achieved the first positiontimo
datasets, while INA imnedataset. For thaverage fithesdNA has achieved the first
position inall datasets. Finally, for theverage CPU timeCSA has achieved the first
position inall datasets. It may be concluded that, based on thatssets and five
trials, NSA and INA are more effective than CSApimducing good quality course
timetables; however, CSA runs faster than INA aisAN

There is only one published result available ondhdetasets, by Di Gaspero an
Schaerf [8], as shown on the right-hand side of dabl available from
http://www.diegm.uniud/satt/projects/EduTT/. The &iifl immune algorithms have
achieved the first position in two datasets (Instan2 and 3). However, no result
have been produced by artificial immune algoritforsinstance 4; 100% occupancy
in Instance 4 requires dummy timeslots and/or rofonghe mutation process. This
requires more effort and time and will be considerethe future work.
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7 Conclusion and Future Work

This paper has presented and compared three aitifimimune algorithms for the
university timetabling problems; CSA, INA and NSPhe experimental results using
twelve Carter datasets (examination) and three e3thdatasets (course) have
significantly shown the effectiveness of these athms on university timetabling
datasets. All algorithms have efficiently producgdod quality examination and
course timetables with low fitness values in mdsthe datasets-or examination

datasets, CSA and NSA are both more effective tN&nin producing good quality

timetables; while for course datasets, NSA and &t& more effective than CSA.
Based on CPU time, INA runs faster than CSA and M8A&xamination datasets, ani
CSA runs faster than INA and NSA on course datasets

All artificial immune algorithms show great promige the area of educational
timetabling, particularly in its ability to considesolve, and optimize the wide variety
of different examination and course timetablinglpeans. The algorithms can handl
the hard constraints and soft constraints very.wille experimental results have
shown that the algorithms can successfully be agptd solve various kinds of
examination and course timetabling problems. Thégarithms may be accepted a:
new members of evolutionary algorithms for solvimgetabling problems.

The most important operators in artificial immungaaithms are cloning and
mutation. For future work, these algorithms will imeproved by considering other
operators, especially mutation, so that the fitnedaes may be further minimized.
However, different timetabling problems may requiiferent operators. A good
cloning or mutation operator for one problem is netessarily a good operator fo
other problems. For the course timetabling, thedtalgorithms were not designed t
handle timetabling problems with 100% occupancyiradnstance 4 of Schaerf
datasets. Perhaps the use of dummy timeslots arabiors will solve the problems.
This will be the first priority in our future reseér.
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