
An Experimental Study on Hyper-heuristics and Exam
Timetabling

Burak Bilgin, Ender Özcan, Emin Erkan Korkmaz

Artificial Intelligence Laboratory (ARTI)
Yeditepe University, Department of Computer Engineering,

34755 Kadıköy/İstanbul, Turkey
{bbilgin, eozcan, ekorkmaz}@cse.yeditepe.edu.tr

Abstract. Hyper-heuristics are proposed as a higher level of abstraction as
compared to the metaheuristics. Hyper-heuristic methods deploy a set of simple
heuristics and use only nonproblem-specific data, such as, fitness change or
heuristic execution time. A typical iteration of a hyper-heuristic algorithm
consists of two phases: heuristic selection method and move acceptance. In this
paper, heuristic selection mechanisms and move acceptance criteria in hyper-
heuristics are analyzed in depth. Seven heuristic selection methods, and five
acceptance criteria are implemented. The performance of each selection and
acceptance mechanism pair is evaluated on fourteen well-known benchmark
functions and twenty-one exam timetabling problem instances.

1   Introduction

The term hyper-heuristic refers to a recent approach used as a search methodology [2,
3, 5, 11, 21]. It is a higher level of abstraction than metaheuristic methods. Hyper-
heuristics involve an iterative strategy that chooses a heuristic to apply to a candidate
solution of the problem at hand, at each step. Cowling et al. discusses properties of
hyper-heuristics in [11]. An iteration of a hyper-heuristic can be subdivided into two
parts; heuristic selection and move acceptance. In the hyper-heuristic literature, sev-
eral heuristic selection and acceptance mechanisms are used [2, 3, 5, 11, 21]. How-
ever, no comprehensive study exists that compare the performances of these different
mechanisms in depth.

Timetabling problems are real world constraint optimization problems. Due to
their NP complete nature [16], traditional approaches might fail to generate a solution
to a timetabling problem instance. Timetabling problems require assignment of time-
slots (periods) and possibly some other resources to a set of events, subject to a set of
constraints. Numerous researchers deal with different types of timetabling problems
based on different types of constraints utilizing variety of approaches. Employee
timetabling, course timetabling and examination timetabling are the research fields
that attract the most attention. In this paper, seven heuristic selection methods and
five different acceptance criteria are analyzed in depth. Their performance is meas-
ured on well-known benchmark functions. Moreover, thirty-five hyper-heuristics
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generated by coupling all heuristic selection methods and all acceptance criteria with
each other, are evaluated on a set of twenty-one exam timetabling benchmark prob-
lem instances, including Carter’s benchmark [10] and Ozcan’s benchmark [25].

The remainder of this paper is organized as follows. In Section 2 background is
provided including hyper-heuristics, benchmark functions and exam timetabling.
Experimental settings and results for benchmarks are given in Section 3. Hyper-
heuristic experiments on exam timetabling are presented in Section 4. Finally, con-
clusions are discussed in Section 5.

2   Preliminaries

2.1 Hyper-heuristics

Hyper-heuristic methods are described by Cowling et al. [11] as an alternative
method to meta-heuristics. Metaheuristics are ‘problem-specific’ solution methods,
which require knowledge and experience about the problem domain and properties.
Metaheuristics are mostly developed for a particular problem and require fine tuning
of parameters. Therefore, they can be developed and deployed only by experts who
have the sufficient knowledge and experience on the problem domain and the meta-
heuristic search method. Hyper-heuristics, on the other hand are developed to be
general optimization methods, which can be applied to any optimization problem
easily. Hyper-heuristics can be considered as black box systems, which take the
problem instance and several low level heuristics as input and which can produce the
result independent of the problem characteristics. In this concept, hyper-heuristics use
only non problem-specific data provided by each low level heuristic in order to select
and apply them to candidate solution [3, 5, 11].

The selection mechanisms in the hyper-heuristic methods were emphasized in the
initial phases of the research period. Cowling et al. [11] proposed three types of low
level heuristic selection mechanisms to be used in hyper-heuristics; which are Simple,
Greedy and Choice Function. There are four types of Simple heuristic selection
mechanisms. Simple Random mechanism chooses a low level heuristic at a time ran-
domly. Random Descent mechanism chooses a low level heuristic randomly and
applies it repeatedly as long as it produces improving results. Random Permutation
mechanism creates an initial permutation of the low level heuristics and at each itera-
tion applies the next low level heuristic in the permutation. Random Permutation
Descent mechanism is the same as Random Permutation mechanism, except that it
applies the low level heuristic in turn repeatedly as long as it produces improving
results. Greedy method calls each low level heuristic at each iteration and chooses the
one that produces the most improving solution. Choice Function is the most complex
one. It analyzes both the performance of each low level heuristic and each pair of low
level heuristics. This analysis is based on the improvement and execution time. This
mechanism also considers the overall performance. It attempts to focus the search as
long as the improvement rate is high and broadens the search if the improvement rate
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is low. For each of these low level heuristic selection mechanisms two simple accep-
tance criteria are defined. These are AM, where all moves are accepted and OI where
only improving moves are accepted [11].

Burke et al. [5] proposed a Tabu-Search heuristic selection method. This mecha-
nism ranks low level heuristics. At the beginning of the run each heuristic starts the
execution with the minimum ranking. Every time a heuristic produces an improving
movement its rank is increased by a positive reinforcement rate. The rank of the heu-
ristics cannot exceed a predetermined maximum value. Whenever a heuristic cannot
make an improving move; its rank is decreased by a negative reinforcement learning
rate. Similarly the rank of a heuristic cannot be decreased to a value less than a pre-
determined minimum value. In the case of worsening moves, the heuristic is also
added to the tabu list. Another parameter is the tabu duration which sets the maxi-
mum number of iterations a low level heuristic can stay in the tabu list. The tabu list
is emptied every time there is a change in the fitness of the candidate solution [5].

Burke et al. [8] introduce a simple generic hyper-heuristic which utilizes construc-
tive heuristics (graph coloring heuristics) to tackle timetabling problems. A tabu-
search algorithm chooses among permutations of constructive heuristics according to
their ability to construct complete, feasible and low cost timetables. At each iteration
of the algorithm, if the selected permutation produces a feasible timetable, a deepest
descent algorithm is applied to the obtained timetable. Burke et al. used this hyper-
heuristic method in exam and university course timetabling problem instances. The
proposed method worked well on the related benchmark problem instances [8].

Burke et al. [9] proposed a case based heuristic selection approach. A knowledge
discovery method is employed to find the problem instances and situations where a
specific heuristic has a good performance. The proposed method also explores the
similarities between the problem instance and the source cases, in order to predict the
heuristic that will perform best. Burke et al. applied Case-Based Heuristic Selection
Approach to the exam and university course timetabling [9].

Ayob and Kendall [2] emphasized the role of the acceptance criterion in the hyper-
heuristic. They introduced the Monte Carlo Hyper-heuristic which has a more com-
plex acceptance criterion than AM or OI criteria. In this criterion, all of the improving
moves are accepted and the non-improving moves can be accepted based on a prob-
abilistic framework. Ayob and Kendall defined three probabilistic approaches to
accept the non-improving moves. First approach, named as Linear Monte Carlo
(LMC), uses a negative linear ratio of the probability of acceptance to the fitness
worsening. Second approach named as, Exponential Monte Carlo (EMC), uses a
negative exponential ratio of the probability of acceptance to the fitness worsening.
Third approach, named as Exponential Monte Carlo with Counter (EMCQ), is an
improvement over Exponential Monte Carlo. Again, the probability of accepting
worsening moves decreases as the time passes. However if no improvement can be
achieved over a series of consecutive iterations then this probability starts increasing
again. As the heuristic selection mechanism, they all use simple random mechanism
[2].

Kendall and Mohamad [21] introduced another hyper-heuristic method which also
focuses on acceptance criterion rather than selection method. They used the Great
Deluge Algorithm as the acceptance criterion and Simple Random as heuristic selec-
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tion method. In the Great Deluge Algorithm initial fitness is set as initial level. At
each step, the moves which produce fitness values less than the level are accepted. At
each step the level is also decreased by a factor [21].

Gaw et al. [17] presented a research on the choice function hyper-heuristics, gen-
eralized low-level heuristics, and utilization of parallel computing environments for
hyper-heuristics. An abstract low level heuristic model is proposed which can be
easily implemented to be a functional low level heuristic tackling a specific problem
type. The choice function hyper-heuristic and the low-level heuristics are improved to
evaluate a broader range of the data. Two types of distributed hyper-heuristic ap-
proaches are introduced. The first approach is a single hyper-heuristic, multiple low-
level heuristics which are executed on different nodes and focus on different areas of
the timetable. The second approach utilizes multiple hyper-heuristics each of which
work on a different node. In this approach, hyper-heuristics collaborate during the
execution [17].

According to this survey it is concluded that several heuristic selection methods
and acceptance criteria are introduced for hyper-heuristics framework. Each pair of
the heuristic selection and acceptance mechanism can be used as a different hyper-
heuristic method. Despite this fact, such combinations have not been studied in the
literature. In this study, seven heuristic selection mechanisms, which are Simple Ran-
dom, Random Descent, Random Permutation, Random Permutation Descent, Choice-
Function, Tabu-Search, Greedy heuristic selection mechanisms, are implemented. For
each heuristic selection method five acceptance criteria: AM, OI, IE, a Great Deluge
and a Monte Carlo are used. As a result a broad range of hyper-heuristic variants are
obtained. These variants are tested on mathematical objective functions and exam
timetabling Problems.

2.2    Benchmark Functions

Well-defined problem sets are useful to measure the performance of optimization
methods such as genetic algorithms, memetic algorithms and hyper-heuristics.
Benchmark functions which are based on mathematical functions or bit strings can be
used as objective functions to carry out such tests. The characteristics of these
benchmark functions are explicit. The difficulty levels of most benchmark functions
are adjustable by setting their parameters. In this study, fourteen different benchmark
functions are chosen to evaluate the hyper-heuristics.

The benchmark functions presented in Table 1 are continuous functions, and Royal
Road Function, Goldberg’s 3 bit Deceptive Function [18], [19] and Whitley’s 4 bit
Deceptive Function [31] are discrete functions. Their deceptive nature is due to the
large Hamming Distance between the global optimum and the local optima. To in-
crease the difficulty of the problem n dimensions of these functions can be combined
by a summation operator.

The candidate solutions to all the continuous functions are encoded as bit strings
using gray code. The properties of the benchmark functions are presented in Tab. 1.
The modality property indicates the number of optima in the search space (i.e. be-
tween bounds). Unimodal benchmark functions have a single optimum. Multimodal
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benchmark functions contain more than one optimum in their search space. Such
functions contain at least one additional local optimum in which a search method can
get stuck.

Tab. 1. Properties of benchmark functions, lb indicates the lower bound, ub indicates the
upper bound of the search space, opt indicates the global optimum in the search space

Function, [Source] lb ub opt Continuity Modality
Sphere, [13] -5.12 5.12 0 Continuous Unimodal
Rosenbrock, [13] -2.048 2.048 0 Continuous Unimodal
Step, [13] -5.12 5.12 0 Continuous Unimodal
Quartic, [13] -1.28 1.28 1 Continuous Multimodal
Foxhole, [13] -65.536 65.536 0 Continuous Multimodal
Rastrigin, [28] -5.12 5.12 0 Continuous Multimodal
Schwefel, [29] -500 500 0 Continuous Multimodal
Griewangk, [19] -600 600 0 Continuous Multimodal
Ackley, [1] -32.768 32.768 0 Continuous Multimodal
Easom, [15] -100 100 -1 Continuous Unimodal
Rotated Hyperellipsoid,[13] -65.536 65.536 0 Continuous Unimodal
Royal Road, [23] - - 0 Discrete -
Goldberg, [17, 18] - - 0 Discrete -
Whitley, [30] - - 0 Discrete -

2.3 Exam Timetabling

Burke et al. [4, 6] applied a light or a heavy mutation, randomly selecting one, fol-
lowed by a hill climbing method. Investigation of various combinations of Constraint
Satisfaction Strategies with GAs for solving exam timetabling problems can be found
in [22]. Paquete et. al. [27] applied a multiobjective evolutionary algorithm (MOEA)
based on pareto ranking for solving exam timetabling problem in the Unit of Exact
and Human Sciences at University of Algarve. Two objectives were determined as to
minimize the number of conflicts within the same group and the conflicts among
different groups. Wong et. al. [32] used a GA utilizing a non-elitist replacement strat-
egy to solve a single exam timetabling problem at École de Technologie Supérieure.
After genetic operators were applied, violations were fixed in a hill climbing proce-
dure.

Carter et. al. [10] applied different heuristic orderings based on graph coloring.
Their experimental data became one of the commonly used exam timetabling bench-
marks. Gaspero and Schaerf [14] analyzed tabu search approach using graph coloring
based heuristics. Merlot et al. [23] explored a hybrid approach for solving the exam
timetabling problem that produces an initial feasible timetable via constraint pro-
gramming. The method, then applies simulated annealing with hill climbing to im-
prove the solution. Petrovic et al. [28] introduced a case based reasoning system to
create initial solutions to be used by great deluge algorithm.  Burke et al. [7] proposed
a general and fast adaptive method that arranges the heuristic to be used for ordering
exams to be scheduled next. Their algorithm produced comparable results on a set of
benchmark problems with the current state of the art. Ozcan and Ersoy [25] used a
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violation directed adaptive hill climber within a memetic algorithm to solve exam
timetabling problem.  A Java tool named FES is introduced by Ozcan in [26] which
utilizes XML as input/output format.

Exam timetabling problem can be formulated as a constraint optimization problem
by a 3-tuple (V, D, C). V is a finite set of examinations, D is a finite set of domains of
variables, and C is a finite set of constraints to be satisfied. In this representation a
variable stands for an exam schedule of a course. Exam timetabling involves a search
for a solution, where values from domains (timeslots) are assigned to all variables
while satisfying all the constraints.

The set of constraints for exam timetabling problem differs from institution to in-
stitution. In this study, three constraints are defined and used as described in [25]:

(i) A student cannot be scheduled to two exams at the same time slot.
(ii) If a student is scheduled to two exams in the same day, these should not be as-

signed to consecutive timeslots.
(iii) The total capacity for a timeslot cannot be exceeded.

3 Hyper-heuristics for Benchmark Functions

3.1 Benchmark Function Heuristics

Six heuristics were implemented to be used with hyper-heuristics on benchmark
functions. Half of these are hill-climbing methods and the remaining half are muta-
tional operators combined with a hill climber.

Next Ascent Hill Climber makes number of bits times iterations at each heuristic
call. Starting from the most significant bit, at each iteration it inverts the next bit in
the bit string. If there is a fitness improvement, the modified candidate solution is
accepted as the current candidate solution [24]. Davis’ Bit Hill Climber is the same as
Next Ascent Hill Climber but it does not modify the bit sequentially but in the se-
quence of a randomly determined permutation [12]. Random Mutation Hill Climber
chooses a bit randomly and inverts it. Again the modified candidate solution becomes
the current candidate solution, if the fitness is improved. This step is repeated for total
number of bits in the candidate solution times at each heuristic call [24].

Mutational heuristics are Swap Dimension, Dimensional Mutation and Hypermu-
tation. Swap Dimension heuristic randomly chooses two different dimensions in the
candidate solution and swaps them. Dimensional Mutation heuristic randomly
chooses a dimension and inverts each bit in this dimension with the probability 0.5.
Hypermutation randomly inverts each bit in the candidate solution with the probabil-
ity 0.5. To improve the quality of candidate solutions obtained from these mutational
heuristics, Davis’ Bit Hill Climbing is applied.
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3.2 Experimental Settings

The experiments are performed on Pentium IV, 2 GHz Linux machines with 256 Mb
memory. Fifty runs are performed for each hyper-heuristic and problem instance pair.
For each problem instance, a set of fifty random initial configurations are created.
Each run in an experiment is performed starting from the same initial configuration.
The experiments are allowed to run for 600 CPU seconds. If the global optimum of
the objective function is found before the time limit is exhausted, then the experiment
is terminated.

The candidate solutions are encoded as bit strings. The continuous functions in
benchmark set are encoded in Gray Code. The discrete functions have their own di-
rect encoding. Foxhole Function has default dimension of 2. The default number of
bits per dimension parameter is set to 8, 3, and 4 for the Royal Road, Goldberg, and
Whitley Functions respectively. The rest of the functions have 10 dimensions and 30
bits are used to encode the range of a variable.

3.3 Experimental Results

The experimental results of performance comparison of 35 heuristic selection – ac-
ceptance criteria combinations on 14 different benchmark functions are statistically
evaluated. For each benchmark function the combinations are sorted according to
their performance. The average number of fitness evaluations needed to converge to
global optimum is used as the performance criterion for the experiments with 100%
success rate. The average best fitness reached is used for the experiments with suc-
cess rates lower than 100%. The performances are evaluated statistically using t-test.
Each combination has been given a ranking. Confidence interval is set to 95% in t-
test to determine significant performance variance. The combinations that do not have
significant performance variances are grouped together and have been given the same
ranking. The average rankings of heuristic selection methods and move acceptance
criteria are calculated to reflect their performance. In Table 2, average rankings for
the heuristic selection methods are provided on each problem. The averages are ob-
tained by testing the selection methods on each acceptance criteria. In Table 3, aver-
age rankings of acceptance criteria are given where the averages are obtained by
testing acceptance criteria on each selection method this time. Lower numbers in
these tables denote a higher placement in the ranking and indicate better performance.
The average ranking of each selection method on all of the functions is depicted in
Fig. 1, and the average ranking of each acceptance criterion on all of the functions in
Fig. 2.

No heuristic selection and acceptance criterion couple came out to be a winner on
all of the benchmark functions. Choice Function performs well on Sphere and
Griewangk functions. Simple Random performs well on Sphere Function. Random
Descent and Random Permutation Descent perform well on Rotated Hyperellipsoid
Function. Greedy performs well on Rosenbrock Function. The performance variances
of heuristic selection methods on remaining functions were not as significant as these
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cases. Choice Function performs slightly better than remaining selection methods on
average. IE acceptance criterion performs well on Rastrigin, Schwefel, Easom, Ro-
tated Hyperellipsoid, and discrete deceptive functions. OI acceptance criterion per-
forms well on Rosenbrock Function. MC acceptance criterion performs well on Fox-
hole Function. IE acceptance criterion indicates significantly a better performance
than the remaining acceptance criteria on average.

Tab. 2. Average ranking of each selection method on each problem; CF stands for Choice
Function, SR for Simple Random, RD for Random Descent, RP for Random Permutation, RPD
for Random Permutation Descent, Tabu for Tabu Search, GR for Greedy.

Name CF SR RD RP RPD TABU GR
Sphere 7.0 7.0 24.5 14.0 24.5 24.5 24.5
Rosenbrock 20.2 22.0 16.0 23.8 16.0 16.0 12.0
Step 17.7 17.7 17.7 18.9 17.7 17.7 18.6
Quartic w/ noise 17.9 17.9 17.9 17.9 17.9 17.9 18.6
Foxhole 15.7 15.7 15.7 19.3 15.7 15.7 28.2
Rastrigin 17.9 17.5 18.5 17.3 18.5 17.7 18.6
Schwefel 17.0 17.0 18.8 17.0 18.8 18.8 18.6
Griewangk 11.8 17.2 17.2 17.2 17.2 17.2 28.2
Ackley 16.5 16.5 16.5 23.5 16.5 16.5 20.0
Easom 16.0 16.0 21.7 16.0 21.7 21.7 12.9
Rotated Hyperellipsoid 20.4 21.2 13.4 21.6 14.8 19.8 15.6
Royal Road 16.8 17.6 17.1 17.4 17.1 17.8 22.2
Goldberg 18.6 19.3 16.6 19.4 17.4 16.1 18.6
Whitley 17.9 17.9 17.9 17.9 17.9 17.9 18.6
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Fig. 1. Average ranking of each selection method on all problem instances

In Fig. 3 average number of evaluations to converge to global optimum by a selected
subset of hyper-heuristics is depicted on a subset of benchmark functions, which are
Sphere, Ackley and Goldberg’s Functions. Fig. 3 (a), (c), and (e) visualize the per-
formance comparison of the heuristic selection methods using IE acceptance criterion
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for Sphere, Ackley and Goldberg’s Functions respectively and Fig. 3 (b), (d), and (f)
the performance comparison of the acceptance criteria using Choice Function heuris-
tic selection method for Sphere, Ackley and Goldberg’s Functions respectively.
Lower average number of evaluations intends faster convergence to the global opti-
mum and indicates better performance.

Table 3. Average ranking of each acceptance criterion on each problem; AM stands for All
Moves Accepted, OI for Only Improving Moves Accepted, IE for Improving and Equal Moves
Accepted, MC for Monte Carlo Acceptance Criterion, and GD for Great Deluge Acceptance
Criterion.

Name AM OI IE MC GD
Sphere 19.5 17.0 17.0 17.0 19.5
Rosenbrock 23.8 12.0 16.0 23.8 16.0
Step 29.1 18.6 17.7 18.9 17.7
Quartic w/ noise 29.1 17.4 14.5 14.5 14.5
Foxhole 12.4 27.7 26.5 11.1 12.4
Rastrigin 29.1 10.6 7.6 23.9 18.8
Schwefel 29.1 10.6 7.6 22.6 20.1
Griewangk 11.9 27.7 26.5 11.9 11.9
Ackley 19.0 19.0 16.5 16.5 19.0
Easom 23.3 11.6 8.5 23.3 23.3
Rotated Hyperellipsoid 25.1 11.7 8.8 22.4 22.6
Royal Road 28.1 10.6 7.6 23.0 20.7
Goldberg 29.1 10.6 7.6 22.4 20.4
Whitley 23.9 10.6 7.6 23.9 23.9

0
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10

15

20

25

AM OI IE MC GD

Fig. 2. Average ranking of each acceptance criterion on all problem instances

For Sphere Model, distinct performance variances are observed between heuristic
selection methods in Fig. 3 (a) on the other side the difference is not so prominent
between acceptance criteria in Fig. 3 (b). Fig. 3 (a) shows that Random Permutation
and Choice Function heuristic selection methods achieved faster convergence than
remaining selection methods. In Fig. 3 (c) and (d) it can be observed that Choice
Function heuristic selection method and IE acceptance criterion accomplished a faster
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convergence to global optimum on Ackley Function. Fig. 3 (e) and (f) show that
Choice Function heuristic selection method and IE acceptance criterion performed
best on Goldberg’s Function. Fig. 3 (f) shows that the performance variances be-
tween different acceptance criteria are enormous on the same function. Also AM
acceptance criterion cannot reach the global optimum on Goldberg’s Function and no
average number of evaluations to converge to global optimum value is depicted for
this criterion in the same figure.
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Fig. 3. Average number of evaluations to converge to global optimum of hyper-heuristics
consisting of all heuristic selection methods using IE acceptance criterion on (a) Sphere Model
function, (c) Ackley Function (e) Goldberg Function, and average number of evaluations to
converge to global optimum of hyper-heuristics consisting of Choice Function heuristic selec-
tion method and all acceptance criteria on (b) Sphere Model function, (d) Ackley Function (f)
Goldberg Function.
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4 Hyper-heuristics for Solving Exam Timetabling Problems

4.1 Exam Timetabling Problem Instances and Settings

Carter’s Benchmark [10] and Yeditepe University Faculty of Architecture and Engi-
neering [25] data sets are used for the performance comparison of hyper-heuristics.
The characteristics of as illustrated in Tab. 4.

Tab. 4. Parameters and properties of the exam timetabling problem instances

Instance Exams Students Enrollment Density Days Capacity
Carf92 543 18419 54062 0.14 12 2000
Cars91 682 16925 59022 0.13 17 1550
Earf83 181 941 6029 0.27 8 350
Hecs92 81 2823 10634 0.20 6 650
Kfus93 486 5349 25118 0.06 7 1955
Lsef91 381 2726 10919 0.06 6 635
Purs93 2419 30032 120690 0.03 10 5000
Ryes93 486 11483 45051 0.07 8 2055
Staf83 139 611 5539 0.14 4 3024
Tres92 261 4360 14901 0.18 10 655
Utas92 622 21267 58981 0.13 12 2800
Utes92 184 2749 11796 0.08 3 1240
Yorf83 190 1125 8108 0.29 7 300
Yue20011 140 559 3488 0.14 6 450
Yue20012 158 591 3706 0.14 6 450
Yue20013 30 234 447 0.19 2 150
Yue20021 168 826 5757 0.16 7 550
Yue20022 187 896 5860 0.16 7 550
Yue20023 40 420 790 0.19 2 150
Yue20031 177 1125 6716 0.15 6 550
Yue20032 210 1185 6837 0.14 6 550

Hyper-heuristics consisting of Simple Random, Random Descent, Tabu Search,
Choice Function, and Greedy heuristic selection mechanisms and all the acceptance
criteria, described in Section 2.1 are tested with each benchmark exam timetabling
problem instance.  The fitness function used for solving the exam timetabling prob-
lem takes a weighted average of the number of constraint violations. The fitness
function is multiplied by -1 to make the problem a minimizing problem.

∑
∀

+
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)(1

1
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In the equation (1), wi indicates the weight associated to the ith constraint, gi indicates
the number of violations of ith constraint for a given schedule T.  The value 0.4 is
used as the weight for the first and the third constraint and 0.2 for the second con-
straint as explained in Section 2.3.

4.1 Heuristics for Exam Timetabling

Candidate solutions are encoded as an array of timeslots where each locus represents
an exam to be scheduled. Four heuristics are implemented to be used with the hyper-
heuristics for solving an exam timetabling problem. Three of these heuristics utilize
tournament strategy for choosing a timeslot to reschedule a given exam to improve a
candidate solution based on a constraint type, while the last one is a mutation opera-
tor. Heuristics for the constraints (i) and (ii) work similarly. Each improving heuristic
targets a different conflict. Both heuristics randomly choose a predetermined number
of exams and select the exam with the highest number of targeted conflict among
these. Also a predetermined number of timeslots are randomly chosen and the number
of targeted conflicts are checked when the exam is assigned to that timeslot. The
timeslot with the minimum number of targeted conflict is then assigned to the se-
lected exam.

The heuristic which targets the capacity conflicts (iii) randomly chooses a prede-
termined number of timeslots and selects the timeslot with the maximum capacity
conflict among these. A predetermined number of exams that are scheduled to this
timeslot are chosen randomly and the exam that has the most attendants is selected
among them. Again a group of timeslots are chosen randomly and the timeslot with
the minimum number of attendants is assigned to the selected exam. Mutational heu-
ristic passes over each exam in the array and assigns a random timeslot to the exam
with a predetermined probability (1/number of courses).

4.2 Experimental Results

The experimental results of performance comparison of Simple Random, Random
Descent, Tabu Search, Choice Function, and Greedy heuristic selection method and
all acceptance criteria combinations on 21 different exam timetabling problem in-
stances are statistically evaluated. Each pair has been assigned to a ranking. Confi-
dence interval is set to 95% in t-test to determine the significant performance vari-
ance. Similar to the previous experiments, the combinations that do not have signifi-
cant performance variances are assigned to the same ranking.

Average best fitness values for best performing heuristic selection-acceptance cri-
terion combination are provided in Table 5. If several hyper-heuristics share the same
ranking, than only one of them appears in the table, marked with *. Seven combina-
tions that have the top average rankings are presented in Fig. 4. According to the
results, Choice Function heuristic selection combined with Monte Carlo acceptance
criterion has the best average performance on exam timetabling problems. The hyper-
heuristic combinations with acceptance criteria AM and OI do not perform well on
any of the problem instances.
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Tab. 5. Average best fitness values for best performing heuristic selection-acceptance criterion
combinations on each problem instance; AM stands for All Moves Accepted, OI for Only Im-
proving Moves Accepted, IE for Improving and Equal Moves Accepted, MC for Monte Carlo
Acceptance Criterion, GD for Great Deluge Acceptance Criterion.

Instance (Av. B. Fit., Std. Dev.) H.Heuristic Alg.
Carf92 (-1.02E-02, 1.18E-03) TABU_IE *
Cars91 (-1.93E-01, 1.20E-01) TABU_IE *
Earf83 (-7.27E-03, 4.94E-04) CF_MC
Hecs92 (-2.19E-02, 2.43E-03) CF_MC *
Kfus93 (-3.40E-02, 4.30E-03) SR_GD
Lsef91 (-1.42E-02, 1.38E-03) CF_MC
Purs93 (-1.41E-03, 6.98E-05) SR_IE
Ryes93 (-1.08E-02, 1.37E-03) CF_MC
Staf83 (-2.68E-03, 1.04E-05) SR_MC *
Tres92 (-6.79E-02, 1.08E-02) SR_GD
Utas92 (-1.87E-02, 1.79E-03) TABU_IE *
Utes92 (-2.27E-03, 8.64E-05) CF_MC
Yorf83 (-8.32E-03, 4.57E-04) CF_MC
Yue20011 (-9.02E-02, 1.07E-02) SR_GD
Yue20012 (-7.54E-02, 9.38E-03) SR_GD
Yue20013 (-2.50E-01, 0.00E+00) SR_MC *
Yue20021 (-3.45E-02, 4.55E-03) SR_GD
Yue20022 (-1.26E-02, 9.08E-04) CF_MC
Yue20023 (-1.52E-02, 2.69E-04) CF_MC *
Yue20031 (-1.59E-02, 1.65E-03) CF_MC
Yue20032 (-5.42E-03, 3.68E-04) CF_MC

Tab. 6. The performance rankings of each heuristic selection-acceptance criterion on all prob-
lem instances. Lower rankings indicate better performance.

(a)
H.-h. Carf92 Cars91 Earf83 Hecs92 Kfus93 Lsef91 Purs93
SR_AM  30.5 26.5 26 26 26 26 26
SR_OI 19.5 19 12.5 16 19 16 8
SR_IE 7.5 7.5 12.5 16 9 11.5 1
SR_MC 15 15 7 7.5 15 11.5 23
SR_GD 7.5 6 8 7.5 1 4.5 9
RD_AM 30.5 31.5 30 31 31 29.5 31.5
RD_OI 19.5 19 20 16 19 20 12.5
RD_IE 7.5 3 12.5 16 9 11.5 4
RD_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RD_GD 30.5 31.5 30 31 31 29.5 31.5
RP_AM 30.5 31.5 34.5 31 31 34.5 34.5
RP_OI 19.5 19 20 16 19 20 12.5
RP_IE 7.5 3 12.5 16 9 11.5 4
RP_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RP_GD 30.5 31.5 34.5 31 31 34.5 34.5
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RPD_AM 30.5 31.5 30 31 31 29.5 31.5
RPD_OI 19.5 19 20 16 19 20 12.5
RPD_IE 7.5 3 12.5 16 9 11.5 4
RPD_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RPD_GD 30.5 31.5 30 31 31 29.5 31.5
CF_AM 30.5 26.5 30 31 31 33.5 27
CF_OI 19.5 19 20 16 19 20 12.5
CF_IE 7.5 3 12.5 16 9 11.5 4
CF_MC 7.5 9 1 1.5 3 1 16.5
CF_GD 19.5 19 20 16 19 20 12.5
TABU_AM 30.5 31.5 30 31 31 29.5 28.5
TABU_OI 19.5 19 20 16 19 20 12.5
TABU_IE 7.5 3 12.5 16 9 11.5 4
TABU_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
TABU_GD 30.5 31.5 30 31 31 29.5 28.5
GR_AM 24.5 24.5 24 24.5 24.5 24.5 24.5
GR_OI 19.5 23 20 16 23 20 16.5
GR_IE 7.5 7.5 12.5 16 9 11.5 7
GR_MC 7.5 14 6 1.5 2 4.5 18
GR_GD 24.5 24.5 25 24.5 24.5 24.5 24.5

(b)
H.-h. Ryes93 Staf83 Tres92 Utas92 Utes92 Yorf83
SR_AM 26 31 26 26 26 26
SR_OI 19.5 16 19.5 15 16 19.5
SR_IE 8 16 8.5 3.5 16 12
SR_MC 15 4.5 15 19 7 7
SR_GD 8 4.5 1 9 8 8
RD_AM 31 31 31 32.5 31 29.5
RD_OI 19.5 16 19.5 19 16 19.5
RD_IE 8 16 8.5 3.5 16 12
RD_MC 8 4.5 8.5 11.5 4 3.5
RD_GD 31 31 31 32.5 31 29.5
RP_AM 31 31 31 32.5 31 34.5
RP_OI 19.5 16 19.5 19 16 19.5
RP_IE 8 16 8.5 3.5 16 12
RP_MC 8 4.5 8.5 11.5 4 3.5
RP_GD 31 31 31 32.5 31 34.5
RPD_AM 31 31 31 32.5 31 29.5
RPD_OI 19.5 16 19.5 19 16 19.5
RPD_IE 8 16 8.5 3.5 16 12
RPD_MC 8 4.5 8.5 11.5 4 3.5
RPD_GD 31 31 31 32.5 31 29.5
CF_AM 31 26 31 27 31 33
CF_OI 19.5 16 19.5 19 16 19.5
CF_IE 8 16 8.5 3.5 16 12
CF_MC 1 4.5 2 8 1 1
CF_GD 19.5 16 19.5 19 16 19.5
TABU_AM 31 31 31 28.5 31 29.5
TABU_OI 19.5 16 19.5 19 16 19.5
TABU_IE 8 16 8.5 3.5 16 12
TABU_MC 8 4.5 8.5 11.5 4 3.5
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TABU_GD 31 31 31 28.5 31 29.5
GR_AM 24.5 24.5 24.5 24.5 24.5 24.5
GR_OI 19.5 16 19.5 23 16 19.5
GR_IE 8 16 8.5 7 16 12
GR_MC 8 4.5 8.5 14 4 6
GR_GD 24.5 24.5 24.5 24.5 24.5 24.5

(c)
H.-h. Y011 Y012 Y013 Y021 Y022 Y023 Y031 Y032
SR_AM 26 26 22.5 26 26 9.5 26 28.5
SR_OI 19.5 19.5 31.5 19.5 16 17.5 16 17.5
SR_IE 12 11.5 14 12 12 17.5 16 9
SR_MC 6 11.5 4 8 7.5 3.5 7.5 6.5
SR_GD 1 1 8 1 7.5 7 7.5 8
RD_AM 31 31 22.5 03 29.5 9.5 30 28.5
RD_OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5
RD_IE 12 11.5 14 12 12 17.5 16 17.5
RD_MC 6 5 4 4.5 4 1.5 4 3.5
RD_GD 31 31 22.5 30 29.5 9.5 30 28.5
RP_AM 31 31 22.5 34.5 34.5 34.5 34.5 34.5
RP_OI 19.5 19.5 31.5 19.5 20 28 16 17.5
RP_IE 12 11.5 14 12 12 17.5 16 17.5
RP_MC 6 5 4 4.5 4 25 4 3.5
RP_GD 31 31 22.5 34.5 34.5 34.5 34.5 34.5
RPD_AM 31 31 22.5 30 29.5 31.5 30 28.5
RPD_OI 19.5 19.5 31.5 19.5 20 28 16 17.5
RPD_IE 12 11.5 14 12 12 17.5 16 17.5
RPD_MC 6 5 4 4.5 4 25 4 3.5
RPD_GD 31 31 22.5 30 29.5 31.5 30 32.5
CF_AM 31 31 22.5 30 33 9.5 30 32.5
CF_OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5
CF_IE 12 11.5 14 12 12 17.5 16 17.5
CF_MC 3 5 4 4.5 1 1.5 1 1
CF_GD 19.5 19.5 31.5 19.5 20 17.5 16 17.5
TABU_AM 31 31 22.5 30 29.5 31.5 30 28.5
TABU_OI 19.5 19.5 31.5 19.5 20 28 16 17.5
TABU_IE 12 11.5 14 12 12 17.5 16 17.5
TABU_MC 6 5 4 4.5 4 25 4 3.5
TABU_GD 31 31 22.5 30 29.5 31.5 30 28.5
GR_AM 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5
GR_OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5
GR_IE 12 11.5 14 12 12 17.5 16 17.5
GR_MC 2 2 4 4.5 4 3.5 4 6.5
GR_GD 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5
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Fig. 4. Top seven heuristic selection method-acceptance criterion combinations considering
the average ranking over all problem instances.

5   Conclusion

An empirical study on hyper-heuristics is provided in this paper. As an iterative
search strategy, a hyper-heuristic is combined with a move acceptance strategy.  Dif-
ferent such pairs are experimented on a set of benchmark functions. According to the
outcome, experiments are expanded to cover a set of exam timetabling benchmark
problem instances.

The experimental results denote that no combination of heuristic selection and
move acceptance strategy can dominate over the others on all of the benchmark func-
tions used. Different combinations might perform better on different objective func-
tions. Despite this fact, IE heuristic acceptance criterion yielded better average per-
formance. Considering heuristic selection methods, Choice Function yielded a
slightly better average performance, but the difference between performance of
Choice Function and other heuristic selection methods were not as significant as it
was between acceptance criteria. The experimental results on exam timetabling
benchmark indicated that Choice Function heuristic selection method combined with
MC acceptance criterion performs superior than the rest of the hyper-heuristic combi-
nations.
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