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Abstract. Hyper-heuristics are proposed as a higher levehlstraction as

compared to the metaheuristics. Hyper-heuristicous deploy a set of simple
heuristics and use only nonproblem-specific dat@hsas, fithess change or
heuristic execution time. A typical iteration of leyper-heuristic algorithm

consists of two phases: heuristic selection mettrmtimove acceptance. In this
paper, heuristic selection mechanisms and moveptawee criteria in hyper-

heuristics are analyzed in depth. Seven heurigiecion methods, and five
acceptance criteria are implemented. The performariceach selection and
acceptance mechanism pair is evaluated on foumegiknown benchmark

functions and twenty-one exam timetabling problestances.

1 Introduction

The term hyper-heuristic refers to a recent approaell as a search methodology [
3, 5, 11, 21]. It is a higher level of abstractitian metaheuristic methods. Hyper
heuristics involve an iterative strategy that clesoa heuristic to apply to a candidat
solution of the problem at hand, at each step. @owét al. discusses properties o
hyper-heuristics in [11]. An iteration of a hypegthistic can be subdivided into twa
parts; heuristic selection and move acceptancéhdrhyper-heuristic literature, sev-
eral heuristic selection and acceptance mecharasensised [2, 3, 5, 11, 21]. How-
ever, no comprehensive study exists that compar@enformances of these differen
mechanisms in depth.

Timetabling problems are real world constraint optation problems. Due to
their NP complete nature [16], traditional apprazcmight fail to generate a solutior
to a timetabling problem instance. Timetabling peo$ require assignment tiine-
slots(periods) and possibly some other resources & afevents, subject to a set o
constraints. Numerous researchers deal with diffetyges of timetabling problems
based on different types of constraints utilizingriety of approachesEmployee
timetabling course timetablingand examination timetablingre the research fields
that attract the most attention. In this papergeseheuristic selection methods an
five different acceptance criteria are analyzediépth. Their performance is meas
ured on well-known benchmark functions. Moreovdrirty-five hyper-heuristics
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generated by coupling all heuristic selection mdshand all acceptance criteria witt
each other, are evaluated on a set of twenty-oaendimetabling benchmark prob-
lem instances, including Carter’'s benchmark [1@ &zcan’s benchmark [25].

The remainder of this paper is organized as folldwsSection 2 background is
provided including hyper-heuristics, benchmark fiows and exam timetabling.
Experimental settings and results for benchmarksgaren in Section 3. Hyper-
heuristic experiments on exam timetabling are preskin Section 4. Finally, con-
clusions are discussed in Section 5.

2 Preliminaries

2.1 Hyper-heuristics

Hyper-heuristic methods are described by Cowlingalet[11] as an alternative
method to meta-heuristics. Metaheuristics are ‘lgmbspecific’ solution methods,
which require knowledge and experience about tieblpm domain and properties.
Metaheuristics are mostly developed for a particptablem and require fine tuning
of parameters. Therefore, they can be developeddaplbyed only by experts who
have the sufficient knowledge and experience orptbblem domain and the meta
heuristic search method. Hyper-heuristics, on ttierohand are developed to b
general optimization methods, which can be appleéedgny optimization problem
easily. Hyper-heuristics can be considered as blaok systems, which take the
problem instance and several low level heuristcgiput and which can produce the
result independent of the problem characterishicghis concept, hyper-heuristics usi
only non problem-specific data provided by each level heuristic in order to select
and apply them to candidate solution [3, 5, 11].

The selection mechanisms in the hyper-heuristic auttwere emphasized in the
initial phases of the research period. Cowlinglefld] proposed three types of low
level heuristic selection mechanisms to be usdy/jrer-heuristics; which afsimple,
Greedy and Choice Function There are four types dbimple heuristic selection
mechanismsSimple Randormechanism chooses a low level heuristic at a tane
domly. Random Descentechanism chooses a low level heuristic randomlg a
applies it repeatedly as long as it produces impgvesults.Random Permutation
mechanism creates an initial permutation of the llwel heuristics and at each itera
tion applies the next low level heuristic in thermatation. Random Permutation
Descentmechanism is the same Random Permutatiomechanism, except that it
applies the low level heuristic in turn repeatedfylong as it produces improving
results.Greedymethod calls each low level heuristic at eaclatten and chooses the
one that produces the most improving solutiBhoice Functioris the most complex
one. It analyzes both the performance of each émellheuristic and each pair of lown
level heuristics. This analysis is based on the awpment and execution time. This
mechanism also considers the overall performanatdmpts to focus the search a
long as the improvement rate is high and broademsearch if the improvement rate
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is low. For each of these low level heuristic setgcmechanisms two simple accep
tance criteria are defined. These AM, where all moves are accepted @idwhere
only improving moves are accepted [11].

Burke et al. [5] proposed Babu-Searchheuristic selection method. This meche
nism ranks low level heuristics. At the beginnirfgttte run each heuristic starts the
execution with the minimum ranking. Every time a tigic produces an improving
movement its rank is increased by a positive reaggment rate. The rank of the heu
ristics cannot exceed a predetermined maximum vallleenever a heuristic canno:
make an improving move; its rank is decreased hggative reinforcement learning
rate. Similarly the rank of a heuristic cannot leeréased to a value less than a pr
determined minimum value. In the case of worsenmimayes, the heuristic is also
added to the tabu list. Another parameter is the @uration which sets the maxi-
mum number of iterations a low level heuristic ctay in the tabu list. The tabu list
is emptied every time there is a change in thesisnof the candidate solution [5].

Burke et al. [8] introduce a simple generic hypettistic which utilizes construc-
tive heuristics (graph coloring heuristics) to feckimetabling problems. A tabu-
search algorithm chooses among permutations oftreatise heuristics according to
their ability to construct complete, feasible aod Icost timetables. At each iteratior
of the algorithm, if the selected permutation prekia feasible timetable, a deepe
descent algorithm is applied to the obtained tifsletaBurke et al. used this hyper-
heuristic method in exam and university course ti@nkéng problem instances. The
proposed method worked well on the related benckimablem instances [8].

Burke et al. [9] proposed a case based heurisigctien approach. A knowledge
discovery method is employed to find the problestances and situations where
specific heuristic has a good performance. The megpanethod also explores the
similarities between the problem instance and thece cases, in order to predict th
heuristic that will perform best. Burke et al. @pgl Case-Based Heuristic Selectiol
Approach to the exam and university course timetglp].

Ayob and Kendall [2] emphasized the role of theeptance criterion in the hyper-
heuristic. They introduced tHdonte Carlo Hyper-heuristievhich has a more com-
plex acceptance criterion th&M or Ol criteria. In this criterion, all of the improving
moves are accepted and the non-improving movedeatcepted based on a prot
abilistic framework. Ayob and Kendall defined thrpeobabilistic approaches to
accept the non-improving moves. First approach, etamasLinear Monte Carlo
(LMC), uses a negative linear ratio of the probabitifyacceptance to the fithess
worsening. Second approach named Egjonential Monte CarldEMC), uses a
negative exponential ratio of the probability otegtance to the fitness worsening
Third approach, named @&xponential Monte Carlo with CountdEMCQ), is an
improvement overExponential Monte CarloAgain, the probability of accepting
worsening moves decreases as the time passes. EioWwaw improvement can be
achieved over a series of consecutive iteratioan this probability starts increasing
again. As the heuristic selection mechanism, tHeysa simple random mechanisir
[2].

Kendall and Mohamad [21] introduced another hypaiurtstic method which also
focuses on acceptance criterion rather than sefectiethod. They used thereat
Deluge Algorithmas the acceptance criterion arich@e Randonas heuristic selec-
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tion method. In theGreat Deluge Algorithminitial fitness is set as initial level. At
each step, the moves which produce fithess va@sssthan the level are accepted. /
each step the level is also decreased by a fa&ir |

Gaw et al. [17] presented a research on the cHoietion hyper-heuristics, gen-
eralized low-level heuristics, and utilization dadrpllel computing environments for
hyper-heuristics. An abstract low level heuristiodal is proposed which can be
easily implemented to be a functional low level tigic tackling a specific problem
type. The choice function hyper-heuristic and the-level heuristics are improved to
evaluate a broader range of the data. Two typesstfitdited hyper-heuristic ap-
proaches are introduced. The first approach is glesimyper-heuristic, multiple low-
level heuristics which are executed on differerde®and focus on different areas ¢
the timetable. The second approach utilizes mulfiglger-heuristics each of which
work on a different node. In this approach, hypewfstics collaborate during the
execution [17].

According to this survey it is concluded that seVdreuristic selection methods
and acceptance criteria are introduced for hyparisiics framework. Each pair of
the heuristic selection and acceptance mechanisnbeaused as a different hyper
heuristic method. Despite this fact, such combamstihave not been studied in th
literature. In this study, seven heuristic selectioechanisms, which are Simple Rar
dom, Random Descent, Random Permutation, RandomuPagion Descent, Choice-
Function, Tabu-Search, Greedy heuristic selectiochargisms, are implemented. Fo
each heuristic selection method five acceptander@i AM, Ol, IE, aGreat Deluge
and aMonte Carloare used. As a result a broad range of hyper4teuxiariants are
obtained. These variants are tested on mathematijattive functions and exam
timetabling Problems.

2.2 Benchmark Functions

Well-defined problem sets are useful to measurepérormance of optimization
methods such as genetic algorithms, memetic algosit and hyper-heuristics.
Benchmark functions which are based on mathemdtioations or bit strings can be
used as objective functions to carry out such teBke characteristics of these
benchmark functions are explicit. The difficulty &ds of most benchmark functions
are adjustable by setting their parameters. Inghidy, fourteen different benchmarl
functions are chosen to evaluate the hyper-hecsisti

The benchmark functions presented in Tabéelcontinuous functions, aibyal
RoadFunction Goldberg’'s 3 bit Deceptive Functidi8], [19] andWhitley’s 4 bit
Deceptive Functiorj31] are discrete functions. Their deceptive naiardue to the
large Hamming Distance between the global optimumeh the local optima. To in-
crease the difficulty of the problemdimensions of these functions can be combin
by a summation operator.

The candidate solutions to all the continuous fuumgiare encoded as bit string
using gray code. The properties of the benchmarktimms are presented in Tab. 1
The modality property indicates the number of optimahe search space (i.e. be
tween bounds). Unimodal benchmark functions hasegle optimum. Multimodal
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benchmark functions contain more than one optimantheir search space. Suct
functions contain at least one additional locairaptn in which a search method cat

get stuck.

Tab. 1. Properties of benchmark functions, indicates the lower boundib indicates the
upper bound of the search spaggtindicates the global optimum in the search space

Function,[ Sourcé Ib ub opt Continuity Modality
Sphere, [13] -5.12 512 0 Continuous Unimodal
Rosenbrock, [13] -2.048 2.048 0 Continuous Unimodal
Step, [13] -5.12 5.12 0 Continuous Unimodal
Quartic, [13] -1.28 128 1 Continuous Multimodal
Foxhole, [13] -65.536 65.536 0  Continuous Multimodal
Rastrigin, [28] -5.12 5.12 0 Continuous Multimodal
Schwefel, [29] -500 500 0 Continuous Multimodal
Griewangk, [19] -600 600 0 Continuous Multimodal
Ackley, [1] -32.768 32768 0 Continuous Multimodal
Easom, [15] -100 100 -1 Continuous Unimodal
Rotated Hyperellipsoid,[13] -65.536 65.536 0 Continuous intddal
Royal Road, [23] - - 0 Discrete -
Goldberg, [17, 18] - - 0 Discrete -
Whitley, [30] - - 0 Discrete -

2.3 Exam Timetabling

Burke et al. [4, 6] applied a light or a heavy ntigta, randomly selecting one, fol-
lowed by a hill climbing method. Investigation ainous combinations of Constraint
Satisfaction Strategies with GAs for solving exammetabling problems can be founc
in [22]. Paquete et. al. [27] applied a multiobjeetevolutionary algorithm (MOEA)

based on pareto ranking for solving exam timetabpnoblem in the Unit of Exact
and Human Sciences at University of Algarve. Twaeotiyes were determined as tc
minimize the number of conflicts within the sammwup and the conflicts among
differentgroups Wong et. al. [32] used a GA utilizing a non-sliieplacement strat-
egy to solve a single exam timetabling problem atl&de Technologie Supérieure
After genetic operators were applied, violationgaviixed in a hill climbing proce-

dure.

Carter et. al. [10] applied different heuristic erehgs based on graph coloring
Their experimental data became one of the commasdy exam timetabling bench-
marks. Gaspero and Schaerf [14] analyzed tabutseg@mroach using graph coloring
based heuristics. Merlot et al. [23] explored arid/lapproach for solving the exam
timetabling problem that produces an initial felsibimetable via constraint pro-
gramming. The method, then applies simulated ammpalith hill climbing to im-
prove the solution. Petrovic et al. [28] introducedase based reasoning system
create initial solutions to be used by great dekigerithm. Burke et al. [7] proposed
a general and fast adaptive method that arrangeketristic to be used for ordering
exams to be scheduled next. Their algorithm prodeossparable results on a set o
benchmark problems with the current state of the@zcan and Ersoy [25] used ¢
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violation directed adaptive hill climber within aemetic algorithm to solve exam
timetabling problem. A Java tool named FES is uhticed by Ozcan in [26] which
utilizes XML as input/output format.

Exam timetabling problem can be formulated as atcaing optimization problem
by a 3-tuple ¥, D, Q. Vs a finite set of examinationB, is a finite set of domains of
variables, and C is a finite set of constraintdeosatisfied. In this representation
variable stands for an exam schedule of a courseamHinetabling involves a searct
for a solution, where values from domains (timeglare assigned to all variable:
while satisfying all the constraints.

The set of constraints for exam timetabling probt#ffers from institution to in-
stitution. In this study, three constraints arardsf and used as described in [25]:

(i) A student cannot be scheduled to two examkeasame time slot.

(ii) If a student is scheduled to two exams in shene day, these should not be a
signed to consecutive timeslots.

(i) The total capacity for a timeslot cannot beeaded.

3 Hyper-heuristics for Benchmark Functions

3.1 Benchmark Function Heuristics

Six heuristics were implemented to be used withemheuristics on benchmark
functions. Half of these are hill-climbing methoatsd the remaining half are muta
tional operators combined with a hill climber.

Next Ascent Hill Climbemakes number of bits times iterations at eachistaur
call. Starting from the most significant bit, atchateration it inverts the next bit in
the bit string. If there is a fithess improvemeiie modified candidate solution is
accepted as the current candidate solution [24¥is’ Bit Hill Climberis the same as
Next Ascent Hill Climber but it does not modify thé sequentially but in the se-
quence of a randomly determined permutation [R2glndom Mutation Hill Climber
chooses a bit randomly and inverts it. Again thalifired candidate solution become:
the current candidate solution, if the fithessnglioved. This step is repeated for tot:
number of bits in the candidate solution timesaatheheuristic call [24].

Mutational heuristics ar8wap DimensignDimensional Mutatiorand Hypermu-
tation. Swap Dimensiomeuristic randomly chooses two different dimensianthe
candidate solution and swaps the@imensional Mutationheuristic randomly
chooses a dimension and inverts each bit in tmgedsion with the probability 0.5.
Hypermutationrandomly inverts each bit in the candidate sotutigth the probabil-
ity 0.5. To improve the quality of candidate sola8aobtained from these mutationa
heuristics, Davis’ Bit Hill Climbing is applied.
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3.2 Experimental Settings

The experiments are performed on Pentium 1V, 2 Ghimximachines with 256 Mb
memory. Fifty runs are performed for each hyperriséia and problem instance pair.
For each problem instance, a set of fifty randoitiainconfigurations are created.
Each run in an experiment is performed starting ftbexsame initial configuration.
The experiments are allowed to run for 600 CPU s#xoli the global optimum of
the objective function is found before the timeitiia exhausted, then the experimer
is terminated.

The candidate solutions are encoded as bit strifilgs. continuous functions in
benchmark set are encoded in Gray Code. The distnetdons have their own di-
rect encoding. Foxhole Function has default dimansif 2. The default number of
bits per dimension parameter is set to 8, 3, afat 4he Royal Road, Goldberg, anc
Whitley Functions respectively. The rest of the tiors have 10 dimensions and 3(
bits are used to encode the range of a variable.

3.3 Experimental Results

The experimental results of performance comparidoB5oheuristic selection — ac-
ceptance criteria combinations on 14 different bemark functions are statistically
evaluated. For each benchmark function the combimatare sorted according tc
their performance. The average number of fitnesfuatians needed to converge t
global optimum is used as the performance critefiwrthe experiments with 100%
success rate. The average best fitness reacheddsfarsthe experiments with suc-
cess rates lower than 100%. The performances ahead®@d statistically using t-test.
Each combination has been given a ranking. Confelémerval is set to 95% in t-
test to determine significant performance variafite combinations that do not have
significant performance variances are grouped tegeand have been given the san
ranking. The average rankings of heuristic selecti@thods and move acceptanc
criteria are calculated to reflect their performanin Table 2, average rankings fo
the heuristic selection methods are provided om gmoblem. The averages are ok
tained by testing the selection methods on eackpaaoce criteria. In Table 3, aver:
age rankings of acceptance criteria are given whiegeaverages are obtained b
testing acceptance criteria on each selection rdethis time. Lower numbers in
these tables denote a higher placement in thengrad indicate better performance
The average ranking of each selection method oaofalie functions is depicted in
Fig. 1, and the average ranking of each acceptaiitegion on all of the functions in
Fig. 2.

No heuristic selection and acceptance criteriorpaame out to be a winner or
all of the benchmark functionsChoice Functionperforms well onSphereand
Griewangkfunctions. Simple Randonperforms well onSphereFunction Random
Descentand Random Permutation Descepérform well onRotated Hyperellipsoid
Function Greedyperforms well orRosenbrock FunctionThe performance variances
of heuristic selection methods on remaining fumiavere not as significant as thes
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cases. Choice Function performs slightly betten tfteanaining selection methods ot
averagelE acceptance criterion performs well &astrigin Schwefel Easom, Ro-
tated Hyperellipsoidand discrete deceptivinctions. Ol acceptance criterion per-
forms well onRosenbrock FunctiorMC acceptance criterion performs well Box-
hole Function IE acceptance criterion indicates significantly atdreperformance
than the remaining acceptance criteria on average.

Tab. 2. Average ranking of each selection method on eacbhlgm; CF stands forChoice
Function SRfor Simple RandonRD for Random DescenRP for Random PermutatiQrRPD
for RandomPermutation DescenTabufor Tabu SearchGRfor Greedy

Name CF SR RD RP RPD TABU GR
Sphere 7.0 7.0 24.5 14.0 245 24.5 24.!
Rosenbrock 20.2 22.0 16.0 23.8 16.0 16.0 12.
Step 17.7 17.7 17.7 18.9 17.7 17.7 18.¢
Quarticw/ noise 17.9 17.9 17.9 17.9 17.9 17.9 18.6
Foxhole 15.7 15.7 15.7 19.3 15.7 15.7 28.:
Rastrigin 17.9 17.5 18.5 17.3 18.5 17.7 18.¢
Schwefel 17.0 17.0 18.8 17.0 18.8 18.8 18.1
Griewangk 11.8 17.2 17.2 17.2 17.2 17.2 28..
Ackley 16.5 16.5 16.5 235 16.5 16.5 20.C
Easom 16.0 16.0 21.7 16.0 21.7 21.7 12
Rotated Hyperellipsoid 20.4 21.2 134 21.6 14.8 19.8 15
Royal Road 16.8 17.6 17.1 17.4 17.1 17.8 22.
Goldberg 18.6 19.3 16.6 19.4 17.4 16.1 18.1
Whitley 17.9 17.9 17.9 17.9 17.9 17.9 18.€
20
19.5

19
18.5
18

17.5

17
16.5

16
15.5 +

15 4
14.5 + T T

SR RD RP RPD

CF

TABU GR

Fig. 1. Average ranking of each selection method on albfem instances

In Fig. 3 average number of evaluations to convéogglobal optimum by a selectec
subset of hyper-heuristics is depicted on a sutfsbenchmark functions, which are
Sphere, Ackley and Goldberg’'s FunctioRgg. 3 (a), (c), and (e) visualize the pet
formance comparison of the heuristic selection mdthusing IE acceptance criterior
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for Sphere, Ackley and Goldberg’'s Functiomspectively and Fig. 3 (b), (d), and (f
the performance comparison of the acceptanceieriising Choice Function heuris-
tic selection method foSphere, Ackley and Goldberg’s Functiorsspectively.
Lower average number of evaluations intends fasiavergence to the global opti-
mum and indicates better performance.

Table 3. Average ranking of each acceptance criterion orh gaoblem;AM stands forAll
Moves AcceptedDl for Only Improving Moves AcceptelE for Improving and Equal Moves
Accepted MC for Monte Carlo Acceptance Criteripand GD for Great Deluge Acceptance
Criterion.

Name AM Ol IE MC GD
Sphere 19.5 17.0 17.0 17.0 19.5
Rosenbrock 23.8 12.0 16.0 23.8 16.0
Step 29.1 18.6 17.7 18.9 17.7
Quarticw/ noise 29.1 17.4 14.5 14.5 14.5
Foxhole 12.4 27.7 26.5 11.1 12.4
Rastrigin 29.1 10.6 7.6 23.9 18.8
Schwefel 29.1 10.6 7.6 22.6 20.1
Griewangk 11.9 27.7 26.5 11.9 11.9
Ackley 19.0 19.0 16.5 16.5 19.0
Easom 23.3 11.6 8.5 23.3 23.3
Rotated Hyperellipsoid 25.1 11.7 8.8 22.4 22.6
Royal Road 28.1 10.6 7.6 23.0 20.7
Goldberg 29.1 10.6 7.6 22.4 20.4
Whitley 23.9 10.6 7.6 23.9 23.9

25

20

15 -

10 +

5

0 4

AM Ol IE MC GD

Fig. 2. Average ranking of each acceptance criterion opralblem instances

For Sphere Modeldistinct performance variances are observed ltviieuristic
selection methods in Fig. 3 (a) on the other sidedifference is not so prominen
between acceptance criteria in Fig. 3 (b). FigaBshows that Random Permutatio
and Choice Function heuristic selection methodseael faster convergence thai
remaining selection methods. In Fig. 3 (c) and i{d)an be observed that Choice
Function heuristic selection method and |IE accepgtaniterion accomplished a faste
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convergence to global optimum dkckley Function Fig. 3 (e) and (f) show that
Choice Function heuristic selection method and IEeptance criterion performed
best onGoldberg’s Function Fig. 3 (f) shows that the performance variances
tween different acceptance criteria are enormoughensame function. Also AM
acceptance criterion cannot reach the global optiran Goldberg’s Functiorand no
average number of evaluations to converge to gloptimum value is depicted for
this criterion in the same figure.

1.00E+04 1.00E+04
1.00E+03
& & & || oomios
<& ¥ CFAM CFOlI CFIE CFMC CFGD
@ (b)
1.00E+05 1.00E+04
1.00E+04 T
1.00E+03+
& QS)\Q/ @Q\(o & @‘5\@ & || LooEwos
T K¥ CFAM CFOlI CFIE CFMC CFGD
(c) (d)
1.00E+06 1.00E+09
1.00E+08
1.00E+07
1.00E+05 1.00E+06
é(\‘o 4& QQ\Q/ Qg\‘</ QOQ’ Q)o\“/ c§<§/ 1.00E+05-
<& s CFAM CFOI CFIE CFMC CFGD
(e) ®

Fig. 3. Average number of evaluations to converge to dlamimum of hyper-heuristics
consisting of all heuristic selection methods udlgcceptance criterion on (8phere Model
function, (c)AckleyFunction (e) Goldberg Functionand average number of evaluations t
converge to global optimum of hyper-heuristics dstiveg of Choice Function heuristic selec-
tion method and all acceptance criteria on§phere Modefunction, (d)AckleyFunction (f)
Goldberg Function
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4 Hyper-heuristicsfor Solving Exam Timetabling Problems

4.1 Exam Timetabling Problem I nstances and Settings

133

Carter's Benchmark [10] and Yeditepe University tHgcof Architecture and Engi-
neering [25] data sets are used for the performanogparison of hyper-heuristics.
The characteristics of as illustrated in Tab. 4.

Tab. 4. Parameters and properties of the exam timetabliolglgm instances

Instance Exams Students Enrollment Density Days Capac
Carf92 543 18419 54062 0.14 12 200(
Cars91l 682 16925 59022 0.13 17 155
Earf83 181 941 6029 0.27 8 350
Hecs92 81 2823 10634 0.20 6 65(
Kfus93 486 5349 25118 0.06 7 195¢
Lsef9l 381 2726 10919 0.06 6 63¢
Purs93 2419 30032 120690 0.03 10 500
Ryes93 486 11483 45051 0.07 8 205!
Staf83 139 611 5539 0.14 4 3024
Tres92 261 4360 14901 0.18 10 65¢
Utas92 622 21267 58981 0.13 12 2801
Utes92 184 2749 11796 0.08 3 124(
Yorf83 190 1125 8108 0.29 7 300
Yue20011 140 559 3488 0.14 6 45(
Yue20012 158 591 3706 0.14 6 45(
Yue20013 30 234 447 0.19 2 15C
Yue20021 168 826 5757 0.16 7 55(C
Yue20022 187 896 5860 0.16 7 55(C
Yue20023 40 420 790 0.19 2 15C
Yue20031 177 1125 6716 0.15 6 55(
Yue20032 210 1185 6837 0.14 6 55(

Hyper-heuristics

consisting @dimple Random, Random Descent, Tabu Sear

Choice Function, and Greedyeuristic selection mechanisms and all the acceptai
criteria, described in Section 2.1 are tested wilbh benchmark exam timetabling
problem instance. The fitness function used foviaglthe exam timetabling prob-
lem takes a weighted average of the number of mnstviolations. The fitness

function is multiplied by -1 to make the problermaimizing problem.

F(T)

1
1+ wg(T)

@
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In the equatior{1), w; indicates the weight associated to ifheonstraintg indicates
the number of violations af" constraint for a given schedule The value 0.4 is
used as the weight for the first and the third t@mst and 0.2 for the second con
straint as explained in Section 2.3.

4.1 Heuristicsfor Exam Timetabling

Candidate solutions are encoded as an array oflttsewhere each locus represen
an exam to be scheduled. Four heuristics are ingrlezd to be used with the hyper
heuristics for solving an exam timetabling problérhree of these heuristics utilize
tournament strategy for choosing a timeslot tolvedale a given exam to improve ¢
candidate solution based on a constraint type,enthié last one is a mutation opere
tor. Heuristics for the constraints (i) and (ii) skasimilarly. Each improving heuristic
targets a different conflict. Both heuristics ramdp choose a predetermined numbe
of exams and select the exam with the highest nurobéargeted conflict among
these. Also a predetermined number of timeslotsardomly chosen and the numbe
of targeted conflicts are checked when the exams@gned to that timeslot. The
timeslot with the minimum number of targeted catfiis then assigned to the se
lected exam.

The heuristic which targets the capacity conflidi$ andomly chooses a prede-
termined number of timeslots and selects the tiotesith the maximum capacity
conflict among these. A predetermined number ofrex¢hat are scheduled to this
timeslot are chosen randomly and the exam thath®snost attendants is selecte
among them. Again a group of timeslots are choaedamly and the timeslot with
the minimum number of attendants is assigned tséfected exam. Mutational heu
ristic passes over each exam in the array andrassigandom timeslot to the exan
with a predetermined probabilit¢foumber of coursés

4.2 Experimental Results

The experimental results of performance comparisoSimple Random, Random
Descent, Tabu Search, Choice Function, and Greedlystie selection method and
all acceptance criteria combinations on 21 differexam timetabling problem in-
stances are statistically evaluated. Each pair kas lssigned to a ranking. Confi
dence interval is set to 95% in t-test to determires significant performance vari-
ance. Similar to the previous experiments, the doations that do not have signifi-
cant performance variances are assigned to the isarkieg.

Average best fitness values for best performingibta selection-acceptance cri-
terion combination are provided in Table 5. If savéwyper-heuristics share the sam
ranking, than only one of them appears in the fabkrked with *. Seven combina-
tions that have the top average rankings are pteden Fig. 4. According to the
results, Choice Function heuristic selection combimwith Monte Carlo acceptance
criterion has the best average performance on ¢ixaaabling problems. The hyper-
heuristic combinations with acceptance criteria Akt Ol do not perform well on
any of the problem instances.
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Tab. 5. Average best fitness values for best performingikga selection-acceptance criterion
combinations on each problem instand®j stands forAll Moves Accepteddl for Only Im-
proving Moves AcceptetE for Improving and Equal Moves AcceptddC for Monte Carlo
Acceptance CriterionGD for Great Deluge Acceptance Criterion

Instance (Av. B. Fit., Std. Dev). H.Heuristic Alg.
Carf92 (-1.02E-02, 1.18E-03) TABU_IE *
Cars91l (-1.93E-01, 1.20E-01) TABU_IE *
Earf83 (-7.27E-03, 4.94E-04) CF_MC
Hecs92 (-2.19E-02, 2.43E-03) CF_MC*
Kfus93 (-3.40E-02, 4.30E-03) SR_GD
Lsef9l (-1.42E-02, 1.38E-03) CF_MC
Purs93 (-1.41E-03, 6.98E-05) SR_IE
Ryes93 (-1.08E-02, 1.37E-03) CF_MC
Staf83 (-2.68E-03, 1.04E-05) SR_MC *
Tres92 (-6.79E-02, 1.08E-02) SR_GD
Utas92 (-1.87E-02, 1.79E-03) TABU_IE *
Utes92 (-2.27E-03, 8.64E-05) CF_MC
Yorf83 (-8.32E-03, 4.57E-04) CF_MC
Yue20011 (-9.02E-02, 1.07E-02) SR_GD
Yue20012 (-7.54E-02, 9.38E-03) SR_GD
Yue20013 (-2.50E-01, 0.00E+00) SR_MC *
Yue20021 (-3.45E-02, 4.55E-03) SR_GD
Yue20022 (-1.26E-02, 9.08E-04) CF_MC
Yue20023 (-1.52E-02, 2.69E-04) CF_MC*
Yue20031 (-1.59E-02, 1.65E-03) CF_MC
Yue20032 (-5.42E-03, 3.68E-04) CFE_MC

Tab. 6. The performance rankings of each heuristic seleeitceptance criterion on all prob-
lem instances. Lower rankings indicate better parémce.

(@)
H.-h. Carf92 Cars91 Earf83 Hecs92  Kfus93  Lsef9l Purs9:
SR_AM 30.5 26.5 26 26 26 26 26
SR_OI 19.5 19 12.5 16 19 16 8
SR_IE 7.5 7.5 12.5 16 9 11.5 1
SR_MC 15 15 7 7.5 15 11.5 23
SR_GD 7.5 6 8 7.5 1 4.5 9
RD_AM 30.5 315 30 31 31 29.5 31.5
RD_OlI 19.5 19 20 16 19 20 125
RD_IE 7.5 3 12.5 16 9 11.5 4
RD_MC 7.5 11.5 35 4.5 9 4.5 20.5
RD_GD 30.5 31.5 30 31 31 29.5 315
RP_AM 30.5 315 34.5 31 31 34.5 345
RP_OI 195 19 20 16 19 20 125
RP_IE 7.5 3 12.5 16 9 11.5 4
RP_MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RP_GD 30.5 31.5 34.5 31 31 34.5 34.5
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RPD_AM 30.5 315 30 31 31 29.5 315
RPD_OI 19.5 19 20 16 19 20 12,5
RPD_IE 7.5 3 12.5 16 9 11.5 4
RPD_MC 7.5 11.5 35 4.5 9 4.5 20.5
RPD_GD 30.5 315 30 31 31 29.5 31.5
CF_AM 30.5 26.5 30 31 31 335 27
CF_Ol 19.5 19 20 16 19 20 12.5
CF_IE 7.5 3 12.5 16 9 11.5 4
CF_MC 7.5 9 1 1.5 3 1 16.5
CF_GD 19.5 19 20 16 19 20 12,5
TABU_AM 30.5 31.5 30 31 31 29.5 28.5
TABU_OI 19.5 19 20 16 19 20 12.5
TABU_IE 7.5 3 12.5 16 9 11.5 4
TABU_MC 7.5 11.5 35 45 9 45 20.5
TABU_GD 30.5 315 30 31 31 29.5 28.5
GR_AM 24.5 24.5 24 24.5 24.5 24.5 24.5
GR_OI 19.5 23 20 16 23 20 16.5
GR_IE 7.5 7.5 12.5 16 9 11.5 7
GR_MC 7.5 14 6 15 2 45 18
GR_GD 24.5 24.5 25 24.5 24.5 24.5 24.5
(b)
H.-h. Ryes93 Staf83 Tres92 Utas92 Utes92 Yorf83
SR_AM 26 31 26 26 26 26
SR_Ol 19.5 16 19.5 15 16 19.5
SR_IE 8 16 8.5 3.5 16 12
SR_MC 15 4.5 15 19 7 7
SR_GD 8 4.5 1 9 8 8
RD_AM 31 31 31 325 31 29.5
RD_OI 19.5 16 19.5 19 16 19.5
RD_IE 8 16 8.5 35 16 12
RD_MC 8 4.5 8.5 11.5 4 35
RD_GD 31 31 31 32.5 31 29.5
RP_AM 31 31 31 325 31 34.5
RP_OI 19.5 16 19.5 19 16 19.5
RP_IE 8 16 8.5 3.5 16 12
RP_MC 8 4.5 8.5 11.5 4 35
RP_GD 31 31 31 32.5 31 34.5
RPD_AM 31 31 31 325 31 29.5
RPD_OI 19.5 16 19.5 19 16 19.5
RPD_IE 8 16 8.5 3.5 16 12
RPD_MC 8 4.5 8.5 11.5 4 35
RPD_GD 31 31 31 32.5 31 29.5
CF_AM 31 26 31 27 31 33
CF_Ol 19.5 16 19.5 19 16 19.5
CF_IE 8 16 8.5 35 16 12
CF_MC 1 4.5 2 8 1 1
CF_GD 19.5 16 19.5 19 16 19.5
TABU_AM 31 31 31 28.5 31 29.5
TABU_OI 19.5 16 19.5 19 16 19.5
TABU_IE 8 16 8.5 35 16 12
TABU_MC 8 4.5 8.5 11.5 4 3.5
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TABU_GD 31 31 31 28,5 31 29.5
GR_AM 245 245 245 24.5 245 245
GR_OI 19.5 16 19.5 23 16 19.5
GR_IE 8 16 8.5 7 16 12
GR_MC 8 4.5 8.5 14 4 6
GR_GD 24.5 24.5 24.5 24.5 24.5 24.5

©

H.-h. Y011l Y012 Y013 Y021 Y022 Y023 Y031 Y032
SR_AM 26 26 225 26 26 9.5 26 28.5
SR_Ol 19.5 19.5 315 195 16 175 16 175
SR_IE 12 115 14 12 12 175 16 9
SR_MC 6 115 4 8 7.5 3.5 7.5 6.5
SR_GD 1 1 8 1 7.5 7 7.5 8
RD_AM 31 31 225 03 29.5 9.5 30 28.5
RD_OI 19.5 19.5 315 195 20 175 16 175
RD_IE 12 115 14 12 12 175 16 175
RD_MC 6 5 4 4.5 4 15 4 3.5
RD_GD 31 31 225 30 29.5 9.5 30 285
RP_AM 31 31 225 34.5 34.5 34.5 34.5 34.5
RP_OI 195 195 315 195 20 28 16 175
RP_IE 12 115 14 12 12 175 16 175
RP_MC 6 5 4 4.5 4 25 4 3.5
RP_GD 31 31 225 34.5 34.5 34.5 34.5 34.5
RPD_AM 31 31 225 30 29.5 315 30 28.5
RPD_OI 195 195 315 195 20 28 16 17.5
RPD_IE 12 115 14 12 12 175 16 175
RPD_MC 6 5 4 4.5 4 25 4 3.5
RPD_GD 31 31 225 30 29.5 315 30 325
CF_AM 31 31 225 30 33 9.5 30 325
CF_Ol 19.5 19.5 315 195 20 175 16 175
CF_IE 12 115 14 12 12 175 16 175
CF_MC 3 5 4 4.5 1 15 1 1
CF_GD 19.5 19.5 315 195 20 175 16 175
TABU_AM 31 31 225 30 29.5 315 30 28.5
TABU_OI 195 195 315 195 20 28 16 175
TABU_IE 12 115 14 12 12 175 16 175
TABU_MC 6 5 4 4.5 4 25 4 3.5
TABU_GD 31 31 225 30 29.5 315 30 285
GR_AM 245 245 9.5 24.5 24.5 5.5 245 175
GR_OI 19.5 19.5 315 195 20 175 16 175
GR_IE 12 115 14 12 12 175 16 175
GR_MC 2 2 4 4.5 4 3.5 4 6.5
GR_GD 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5
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Fig. 4. Top seven heuristic selection method-acceptaniterion combinations considering
the average ranking over all problem instances.

5 Conclusion

An empirical study on hyper-heuristics is providedthis paper. As an iterative
search strategy, a hyper-heuristic is combined withove acceptance strategy. Dil
ferent such pairs are experimented on a set ofimeawk functions. According to the
outcome, experiments are expanded to cover a sexasf timetabling benchmark
problem instances.

The experimental results denote that no combinatibheuristic selection and
move acceptance strategy can dominate over thesatheall of the benchmark func-
tions used. Different combinations might perfornttéreon different objective func-
tions. Despite this fact, IE heuristic acceptandteon yielded better average per
formance. Considering heuristic selection metho@soice Functionyielded a
slightly better average performance, but the dififee between performance o
Choice Functio and other heuristic selection methods were ndigsficant as it
was between acceptance criteria. The experimengalltseon exam timetabling
benchmark indicated th&hoice Functiorheuristic selection method combined witl
MC acceptance criterion performs superior than teeakthe hyper-heuristic combi-
nations.

Acknowledgement

This research is funded by TUBITAK (The Scientific aheichnological Research
Council of Turkey) under grant number 105E027.



Hyper-heuristics and Exam Timetabling [...] 139

References

10.

11.

12.

13.

14.

15.

16

17.

18.

19.

Ackley, D.: An Empirical Study of Bit Vector FunctiocOptimization. Genetic Algorithms
and Simulated Annealing, (1987) 170-215

Ayob, M. and Kendall, G.A Monte Carlo Hyper-Heuristic To Optimise Componen
Placement Sequencing For Multi Head Placement MachProceedings of the Interna-
tional Conference on Intelligent Technologies, InT@8, Chiang Mai, Thailand, Dec 17-
19 (2003) 132-141

Burke, E.K., Kendall, G., Newall, J., Hart, E., Ro8&s, and Schulenburg, S.: Hyper-
heuristics: an Emerging Direction in Modern Seafelthnology. Handbook of Metaheu-
ristics (eds Glover F. and Kochenberger G. A.) @067-474

Burke, E., Newall, J. P., and Weare, R.F.: A Memadtigorithm for University Exam
Timetabling. Lecture Notes in Computer Science 1(18®6) 241-250

Burke, E.K., Kendall, G., and Soubeiga, E: A Tabat8k Hyper-heuristic for Timetabling
and Rostering. Journal of Heuristics Vol 9, No. 602) 451-470

Burke, E., Elliman, D., Ford, P., and Weare, B.: Ekation Timetabling in British Uni-
versities- A Survey. Lecture Notes in Computer SzgerSpringer-Verlag, vol. 1153 (1996)
76-90

Burke, E.K. and Newall, J.P. : Solving Examinatiimetabling Problems through Adap-
tion of Heuristic Orderings: Models and Algorithfies Planning and Scheduling Problems
Annals of Operations Research, vol. 129 (2004) 1®7-1

Burke, E.K., Meisels, A., Petrovic, S. and Qu, R..Ghaph-Based Hyper Heuristic for
Timetabling Problems. Accepted for publication e tEuropean Journal of Operationa
Research (2005)

Burke E.K., Petrovic, S. and Qu, R.: Case Based HeuBsfection for Timetabling Prob-
lems. Accepted for publication in the Journal ofi&tuling, Vol.9 No2. (2006)

Carter, M. W, Laporte, G., and Lee, S.T.: Examimafiametabling: Algorithmic Strategies
and Applications. Journal of the Operational Rede&aciety, 47 (1996) 373-383

Cowling P., Kendall G., and Soubeiga E.: A Hyperfigtic Approach to Scheduling a
Sales Summit. Proceedings of In LNCS 2079, Practiw Theory of Automated Time-
tabling Il : Third International Conference, PATAZ000, Konstanz, Germany, selecte:
papers (eds Burke E.K. and Erben W) (2000) 176-190

Davis, L.: Bit Climbing, Representational Bias, andtT&gite Design, Proceeding of the
4th International conference on Genetic Algoritht®91) 18-23

De Jong, K.: An Analysis of the Behaviour of a Cla§$senetic Adaptive Systems. PhD
thesis, University of Michigan (1975)

Di Gaspero, L. and Schaerf, A.: Tabu Search Teclmsgfor Examination Timetabling.
Lecture Notes In Computer Science, selected papems the Third International Confer-
ence on Practice and Theory of Automated Timetg2®00) 104 - 117.

Easom, E. E.: A Survey of Global Optimization Teiques. M. Eng. thesis, Univ. Louis-
ville, Louisville, KY (1990)

.Even, S., ltai, A., and Shamir, A.: On the Complexif Timetable and Multicommodity

Flow Problems. SIAM J. Comput., 5(4):691-703 (1976)

Gaw, A., Rattadilok P., and Kwan R. S. K.: Distrilmi@hoice Function Hyperheuristics
for Timetabling and Scheduling. Proc. of the 5ttetnational Conference on the Practic
and Theory of Automated Timetabling (2004) 495-498

Goldberg, D. E.: Genetic Algorithms and Walsh Figng: Part |, A Gentle Introduction.
Complex Systems (1989) 129-152

Goldberg, D. E.: Genetic Algorithms and Walsh Fiord: Part 1, Deception and Its
Analysis. Complex Systems (1989) 153-171



140  B. Bilgin et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

Griewangk, A.O.: Generalized Descent of Global @ptation. Journal of Optimization
Theory and Applications, 34: 11.39 (1981)

Kendall G. and Mohamad MChannel Assignment in Cellular Communication Using
Great Deluge Hyper-heuristic, in the Proceedingthef2004 IEEE International Confer-
ence on Network (ICON2004)

Marin, H. T.: Combinations of GAs and CSP Strated@sSolving Examination Time-
tabling Problems. Ph. D. Thesis, Instituto Tecnmog de Estudios Superiores de Monter
rey (1998)

Merlot, L.T.G., Boland, N., Hughes, B. D., and Stucke.J.: A Hybrid Algorithm for the
Examination Timetabling Problem. Proc. of the 4tkeinational Conference on the Prac
tice and Theory of Automated Timetabling (2002) -3¥4

Mitchell, M., and Forrest, S.: Fitness Landscagegyal Road Functions. Handbook of
Evolutionary Computation, Baeck, T., Fogel, D., Milehvaz, Z., (Ed.), Institute of Physics
Publishing and Oxford University (1997)

Ozcan, E., and Ersoy, E.: Final Exam Scheduler S,F&oc. of 2005 IEEE Congress or
Evolutionary Computation, vol. 2, (2005) 1356-1363

Ozcan, E., Towards an XML based standard for Tibietg Problems: TTML,
Multidisciplinary Scheduling: Theory and Applicati®, Springer Verlag, (2005) 163 (24)
Paquete, L. F. and Fonseca, C. M.: A Study of Exatiin Timetabling with Multiobjec-
tive Evolutionary Algorithms. Proc. of the 4th Mbgaristics International Conference
(MIC 2001) 149-154

Petrovic, S., Yang, Y., and Dror, M.: Case-basedidlisation for Examination Time-
tabling. Proc. of 1st Multidisciplinary Intl. Conén Scheduling: Theory and Applications
(MISTA 2003), Nottingham, UK, Aug 13-16 (2003) 1334

Rastrigin, L. A.: Extremal Control Systemiy Theoretical Foundations of Engineering
Cybernetics Series, Moscow, Nauka, Russian (1974)

Schwefel, H. P.: Numerical Optimization of Computéwdels, John Wiley & Sons (1981),
English translation of Numerische Optimierung vonn@ater-Modellen mittels der
Evolutionsstrategie (1977)

Whitley, D.: Fundamental Principles of DeceptionGenetic Search. In G. J. E. Rawlins
(Ed.), Foundations of Genetic Algorithms, Morgarukaann, San Matco, CA (1991)
Wong, T., Cété, P. and Gely, P.: Final Exam TimetaplA Practical Approach. Proc. of
IEEE Canadian Conference on Electrical and ComputgmEgring, Winnipeg, CA, May
12-15, vol. 2 (2002) 726-731



