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1 Introduction

Tabu Search (TS) is a well known local search method [11] which has been widely
used for solving timetabling problems. Different versions of TS have been pro-
posed in the literature, and many features of TS have been considered and tested
experimentally. They range from long-term tabu, to dynamic cost functions, to
strategic oscillation, to elite candidate lists, to complex aspiration criteria, just
to mention some (see [10] for an overview).

The feature that is included in virtually all TS variants is the so called (short-
term) tabu list. The tabu list is indeed recognized as the basic ingredient for the
effectiveness of a TS-based solution, and its behaviour is a crucial issue of TS.

Unfortunately, despite the fact that the importance of a correct empirical
analysis has been recognised in the general context of heuristic methods [1,12]
and even in the specific case of TS [15], the definition of the parameters associated
with the tabu list remains in most research work still a handcrafted activity.

Often, the experimental work behind the parameter setting remains hidden
or is condensed in a few lines of text reporting only the final best configuration.
Even the recently introduced racing methodology for the tuning of algorithms
[3] only allows to determine the best possible configuration. This procedures
are certainly justified from a practical point of view, but a description of the
behavior of the algorithm with respect to its different factors and parameters is
surely of great interest in the research field.

In this work, we aim at determining which factors of basic TS are important
and responsible for the good behaviour of the algorithm. Instead of the one-
factor-at-a-time approach used in [15], our approach uses experimental design
techniques [14] combining the racing methodology for the definition of quanti-
tative factors and the analysis of variance for the study of qualitative factors.
We focus our analysis on the Examination Timetabling problem, for which
there is a consistent literature and many benchmark instances. In particular,
we consider the formulation proposed by Burke et al [5], which considers first
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and second order conflicts (exams in adjacent periods of the same day), but no
capacity of rooms.

We plan to extend the analysis to other formulations, and to other timetabling
problems so as to have a more general picture of the outcome.

2 Tabu Search Basic Features

At each iteration, TS explores the full neighborhood and selects as the new
current state the neighbor that gives the best value of the cost function, in-
dependently of whether its cost is less or greater than the current one. This
selection allows the search to escape from local minima, but creates the risk of
cycling among a set of states. In order to prevent cycling, TS uses a prohibition
mechanism based on the tabu list. This list stores the most recently accepted
moves, so that the inverses of the moves in the tabu list are forbidden (i.e., the
moves that are leading again towards the just visited local minimum). The two
main features related to the tabu list are the following:

Prohibition power: The prohibition power determines which moves are pro-
hibited by the fact that a move is in the tabu list. A move is normally
composed of several attributes; depending on the power, the prohibition can
be applied only to the move with the same values for all attributes or to the
set of moves that have one or more attribute equal to it.

List dynamics: The list dynamics determines for how many iterations a move
remains in the tabu list. This can be either a fixed value, or a value selected
randomly in an interval, or value selected adaptively on the basis of the
current state of the search.

For the Examination Timetabling problem, we consider the search space
and the neighborhood relation as defined in [8]. That is, we create one variable
per exam with domain equal to the set of periods, and change the value of one
single exam at a time. In this setting, a local search move m has three attributes:
an exam e, its old period o and its new period n. We identify m with the triple
〈e, o, n〉.

For the prohibition power, assuming that the move 〈e, o, n〉 is in the tabu
list, we consider the following three alternatives (where the underscore means
“any value”):

Strong: All moves of the form 〈e, , 〉 are prohibited.
Medium: All moves of the form 〈e, , o〉 are prohibited
Weak: Only the single move 〈e, n, o〉 is prohibited

Intuitively, in the first case, it is not possible to move the exam anywhere in
the tabu iterations. In the second case, it is not possible to move the exam back
to the old period. In the third case it is not possible only to make the reverse of
the tabu move.

For the list dynamics we also consider three possibilities:
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Fixed: The tabu list is a queue of fixed size t. At each iteration, the accepted
move gets in and the oldest one gets out. All moves remain in the list for
exactly t iterations.

Dynamic: The size of the list can vary within the range [tm, tM ]. Each accepted
move remains in the list for a number t of iterations equal toRandom(tm, tM ),
where Random(a, b) is the uniform integer-valued random distribution in
[a, b]

Adaptive: The value t depends on the current state. We use the formula (pro-
posed in [9] for graph coloring) t = bRandom(0, tb) + α ∗ cc where tb and
α (real value) are parameters, and c is the number of conflicts in the current
state.

3 Experimental Methodology and Results

There are two types of factors present in the analysis: quantitative and qualita-
tive. The two qualitative factors are the prohibition power and the list dynamics,
and consist each of three levels. The quantitative factors are the numerical pa-
rameters of the list dynamics strategy and may assume an unlimited number of
values. There are two issues that complicate the factorial design: (i) the quali-
tative parameters do not cross with all other factors (for example, there is no
α parameter with fixed list dynamics); (ii) the importance of each of the two
qualitative factors strongly depends on the values assigned to the underlying
quantitative parameters.

In order to understand the relative influence of the qualitative tabu list fea-
tures a possible way is to split the analysis in two phases. This approach allows
to maximise the fairness in the analysis, although perhaps it is not the most
economical in terms of number of experiments.

In the first phase, for each combination of qualitative factors, we tune the
numerical parameters: 〈t〉, 〈tm, tM 〉, or 〈tb, α〉. We tested the following values
for the parameters: t ∈ {5, 10, 15, 20, 25}, tm ∈ {5, 10, 15, 20, 25}, tM ∈ {t|t =
tm + 5 ∨ t = tm + 10}, tb ∈ {5, 10, 20, 30}, and α ∈ {0.3, 0.5, 0.8}.

We perform this task by means of the RACE algorithm developed by Bi-
rattari [4]. All experiments are run on 7 instances employed in [5] and each
configuration was granted 120 seconds of CPU time on an AMD Athlon 1.5GHz
computer running Linux. A t-test (p < 0.05) is used to discriminate between the
configurations. The best parameter settings found across the tested instances
are reported in Table 1. Further details on the racing process will be provided
in the forthcoming full paper.

In the second phase, after the values of the parameters have been determined,
we perform another experiment whose aim is to understand whether there are
main effects or interactions between the two factors, list dynamics and prohi-
bition power, and how these affect the performances of the algorithm. To this
aim, we run a full factorial design with 25 replicates per instance and perform an
analysis of variance [14]. Each experimental unit exploits a different combination
of list dynamics, prohibition power and test instance. In the analysis the test in-
stances are then treated as blocks and hence their influence on the performance
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Weak Medium Strong

Fixed t = 15 t = 10 t = 5

Dynamic tm = 20, tM = 25 tm = 5, tM = 10 tm = 5, tM = 10

Adaptive α = 0.3, tb = 30 α = 0.3, tb = 30 α = 0.5, tb = 10

Table 1. Best parameter settings for the various combinations of features

of the algorithms, though recognised, is not taken into account (this entails that
the results of the analysis are robust with respect to the set of instances).

Specifically, for the analysis of the 3 × 3 × 25 ({Strong, Medium, Weak} ×
{Fixed, Dynamic, Adaptive} × replicates) combinations we used two statistical
tests. The well known parametric ANOVA, through the F ratio, and the non-
parametric Friedman two ways analysis of variance by ranks. Though based on
less assumptions, the Friedman test is not able to recognise interaction between
the two factors [7]. On the other hand, the F ratio can detect also interactions
and is apparently robust even in cases of deviation from the assumptions. In the
parametric case we transformed each numerical result, expressed in terms of cost
violation of the solution, by standardization of the value within the results per
instance. In the non-parametric case the results are instead ranked within the
instances, as usual in the Friedman test procedure.

Surprisingly both tests indicated the absence of a significant influence of both
main and interaction effects (technically, the F ratio gave a p-value of 0.98 and
the Friedman test gave p-value = 0.54).
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Figure 1. Results of the 9 configurations for the qualitative features (W = Weak, M
= Medium, S = Strong, F = Fixed, D = Dynamic, A = Adaptive)
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The results are shown in Figure 1 by means of box-and-whiskers plots. A
closer insight in the numerical results revealed that indeed there is no important
difference in the results. The conclusion is that, if the quantitative parameters
are tuned by means of a statistically sound procedure, all configurations of the
qualitative parameters perform equally well.

In the future, we plan to investigate the difference in the robustness of the
qualitative features, by analysing the sensitivity of the tuning of the quantitative
parameters for different configurations. A response surface approach as suggested
in [2] would be more appropriate for the selection of quantitative parameters
(although it can be computationally more expensive).

We conclude by comparing, in Table 2, our overall best results (in bold) with
the currently published ones. From the table we first see that we improved signif-
icantly w.r.t. our previous best results ([8]). In addition, although our results are
still far from the best ones of Merlot et al [13], they are in most cases the second
best ones. This improvement is achieved mainly thanks to our statistically sound
parameter tuning.

Instance p W/A W/D W/F M/A M/D M/F S/A S/D S/F DS [8] BNW [5] CDI [6] MBHS [13]

car-f-92 40 271 292 265 263 278 275 297 224 242 424 331 268 158
car-s-91 51 46 38 38 53 54 32 37 40 33 88 81 74 31
kfu-s-93 20 1148 1027 1103 1047 914 984 1172 1104 932 512 974 912 247
nott 23 112 89 109 103 106 69 109 112 73 123 269 — 7
nott 26 17 17 17 7 15 15 16 13 20 11 53 — —
tre-s-92 35 0 0 0 0 0 0 0 0 0 4 3 2 0
uta-s-92 38 534 544 526 584 572 507 565 537 567 554 772 680 334

Table 2. Best results found for each configuration and comparison with the best known
results.
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