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Abstract. Scheduling exams at universities can be formulated as a com-
binatorial optimization problem. Given a planning horizon with a fixed
number of periods the objective is to avoid situations, or at least to
minimize them, when a student is enrolled in two exams that are sched-
uled for the same period. Ant colony approaches have been proven to
be a powerful solution approach for various combinatorial optimization
problems. In this paper a Max-Min and a ANTCOL approach will be
presented. Its performance is compared with other approaches presented
in the literature and with modified graph coloring algorithms.
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1 Introduction

The exam timetabling problem faces the problem of scheduling exams within a
limited number of available periods. As students plan to write different exams,
setting up a conflict free timetable is not a trivial task due to limited resources
like periods, examination rooms and teacher availability. The main objective is
to balance out student’s workload and to distribute the exams evenly within the
planning horizon. In particular, it should be avoided that a student has to write
two exams in the same period. Such situations will be referred to as conflicts of
order 0 in the sequel. Additionally, as few students as possible have to attend x
exams within y consecutive periods. Such conflicts can either be totally forbidden
by constraints or penalized in the objective function. For example, Carter et
al. proposed in [1] a cost function that imposes penalties Pω for a conflict of
order ω, i.e. whenever one student has to write two exams scheduled within
ω + 1 consecutive periods. In the literature ω normally runs from 1 to 5 with
P1 = 16, P2 = 8, P3 = 4, P4 = 2, P5 = 1.

Solving practical exam timetabling problems requires that additional con-
straints have to be considered, e.g. some exams have to be written before other
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exams or some exams can not be written within specific periods. References [2–4]
give comprehensive lists of possible hard and soft constraints.

The exam timetabling problem can be formulated as a graph coloring prob-
lem. Each node represents one exam. Undirected arcs connect two nodes if at
least one student is enrolled in both corresponding exams. Weights on the arcs
represent the number of student enrolled in both exams. The objective is to find
a coloring where no adjacent nodes are marked with the same color or to mini-
mize the weighted sum of the arcs that connect two nodes marked with the same
color. The exam timetabling problem is a generalization of the graph coloring
problem as in the objective function also conflicts of higher orders are penalized.

To solve exam timetabling problems, several algorithms have recently been
developed. In [1] Carter et al. applied some well known graph coloring heuristics
which they combined with backtracking.

In recent time various heuristical approaches have been developed. Most of
them use local search like tabu search, simulated annealing, great deluge or
adaptive search methods [5, 6, 1, 7, 8, 2, 9–11]. A comprehensive survey on the
literature on exam timetabling problems can be found in [4].

The aim of this paper is twofold: Originally, this research was motivated by
the need for a software tool for solving a practical exam timetabling problem.
As ant colony approaches have been proven to be a powerful tool for various
combinatorial optimization problems (c.f. the survey in [12]), it is apparent to
adapt this solution approach to the exam timetabling problem. In the literature
different variants of ant colony approaches have been presented. We will compare
some of these strategies with respect to their suitability for our problem.

This paper is organized as follows: In section 2 a detailed problem formu-
lation will be presented. Section 3 will give an introduction into ant colony
systems. The next sections will present a solution approach and test results for
some benchmark problems that were taken from the literature. Finally, section
6 summarizes the results and suggests discussion for future work.

2 Problem formulation

Before stating the problem formally, we introduce some notation.
R index set of rooms
I index set of exams
T index set of periods
Ω index set of order of conflicts
Krt capacity of room r in period t
cij number of students enrolled in exam i as well as in exam j
Ei number of students enrolled in exam i
Pω penalty imposed if one student has to write two exams

within ω + 1 periods
yit binary variable equal to 1 if exam i is scheduled in period t

and 0 otherwise
pirt number of students of exam i assigned to room r in period t
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Using this notation, the exam timetabling problem can be formulated as
follows:

min
∑

ω∈Ω

∑

i,j∈I,i 6=j

∑

t∈T,t>ω

Pωcijyityj(t−ω) (1)

s.t.
∑

t∈T

yit = 1 ∀i ∈ I (2)

pirt ≤ yitKrt ∀i ∈ I, ∀r ∈ R, ∀t ∈ T (3)

∑

r∈R

∑

t∈T

pirt = Ei ∀i ∈ I (4)

∑

i∈I

pirt ≤ Krt ∀r ∈ R, ∀t ∈ T (5)

∑

t∈T

cijyityjt = 0 ∀i, j ∈ I, i 6= j (6)

yit ∈ {0, 1} ∀i ∈ I,∀t ∈ T (7)

pirt ∈ N0 ∀i ∈ I, ∀r ∈ R, ∀t ∈ T (8)

The objective function (1) balances out students’ workload by minimizing the
weighted sum of all conflicts. Constraint (2) states that each exam is assigned
to exactly one period. If an exam is not assigned within a period, then no seats
should be reserved for that period in any room. This is imposed by constraint
(3). Constraints (4) and (5) assure that the number of seats reserved for an exam
will be equal to the number of students who are enrolled in that exam and that
the room capacities are not exceeded. Finally, constraint (6) avoids conflicts of
order 0, i.e. that a student has to write two exams in the same period.

The exam timetabling problem is a generalization of the graph coloring prob-
lem, which is known to be NP-hard [13]. Therefore, solution approaches try to
decompose the problem in order to solve it within a reasonable amount of time
[14]. One way is to split up the problem into the two following subproblems,
which can be solved sequentially:

Problem I: Scheduling of exams, i.e. assign exams to periods in order to bal-
ance out students’ workload as pursued by the objective function (1). Instead
of considering capacity constraints for the single rooms, only the total ca-
pacity of all available exam rooms within a period is considered. In the IP
formulation stated above this can be accomplished by replacing the set of
rooms by a artificial single room. For this problem a solution approach will
be presented in the next sections.
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Problem II: Room planning, i.e. distribute the exams of one period among the
available examination rooms. Finding a feasible room plan is not difficult if
the exams can take place in more than one room and if more than one exam
can take place in one room at the same time, provided that the room capacity
is not exceeded. If exams are split up into different rooms one could consider
the campus layout and try to generate a room plan where these exams are
only assigned to rooms not too far from each other in order to minimize
walking distances. We will not consider this problem in the following.

3 Ant algorithms

Ant colony optimization algorithms represent special solution approaches for
combinatorial optimization problems derived from the field of swarm intelligence.
They were first introduced by Colorni, Dorigo and Maniezzo in the early nineties
[15]. See [12] for an in depth introduction into ant systems.

Ant algorithms were inspired by the observation of how real ant colonies find
shortest paths between food sources and their nest. This observation was first
implemented in algorithms for solving the traveling salesperson problem (TSP).
This type of ant colony optimization algorithm is known in the literature as ant
systems (AS). We will briefly describe the basic principle of AS algorithms by
means of the TSP. This solution approach to the TSP will be adopted to solving
the exam timetabling problem in the next section.

The solution approach consists of n cycles. In each of these cycles first each
of the m ants constructs a feasible solution. In AS each ant builds a complete
tour that visits all nodes. Obviously, this solution neither has to be optimal nor
must it be even close to the (unknown) optimal value. Improved solutions can
be obtained if the knowledge gathered by other ants in the past on how good
solutions can be obtained is incorporated into the ant’s decision. Assume that an
ant is located in a node i. To choose the next node j that has not yet been visited
by that ant one may apply one of the following two randomized strategies:

Strategy I: Constructive heuristic. Apply one priority rule like randomized
nearest neighbor. Decision values for all nodes j are determined by the in-
verse of the distance from node i to that node j. The next node the ant
moves to is then randomly chosen according to the probabilities determined
by those decision values. Consequently, if node j1 is closer to i than node j2
it is more likely to choose node j1. The decision values of the constructive
heuristic will be later referred to as ηij .

Strategy II: Pheromone trails. This strategy is mainly inspired by the way real
ants find shortest paths. While commuting between two places on different
possible pathes ants deposit a chemical substance called pheromone. The
shorter the path is the more often the ant will use this path within a limited
period of time and, consequently, the larger the amount of pheromone will
be on that path. Thus, whenever an ant has to choose between different
available paths it will prefer the one with higher amount of pheromone.
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To adapt these observations to the TSP, the amount of pheromone is stored
in a matrix τ which is initialized with 0 for all arcs (i, j). After an ant has
completed a tour, the values of the cells that belong to the arcs the ant has
chosen are updated by the inverse of the obtained objective function value,
i.e. the length of the tour. The amount of pheromone trail τij associated to
arc (i, j) is intended to represent the learned desirability of choosing node
j when in node i. Consequently, arcs belonging to good solutions receive a
high amount of pheromone.

AS algorithms combine these two strategies. The probability that an ant ν
located in node i chooses the next node j is determined by the following formula:

pν
ij =

{
(τij)

α(ηij)
βP

k∈Nν
i

(τik)α(ηik)β if j ∈ Nν
i

0 otherwise
(9)

α and β are a given weighting factors and Nν
i is the set of nodes that have

not yet been visited by ant ν currently located in node i.
Excepting the TSP, AS algorithms have been implemented for various com-

binatorial optimization problems, such as the quadratic assignment problem or
the sequential ordering problem. Different variants of AS algorithms have been
suggested in the literature, like e.g. ant colony systems (ACS) or Max-Min ant
systems (MMAS), which obtained much better results than AS (c.f. [12]). In par-
ticular, MMAS, which was first proposed by Stützle and Hoos [16], generated
significantly better solutions for the TSP than AS. Socha et al. [17] compared
the MMAS variant with ACS and found out that MMAS outperformed the ACS
approach for the considered timetabling problem.

The main modification of MMAS are related to the way how the matrix τ
is initialized and how pheromone values are updated. Additionally, MMAS uses
local search to improve the solutions found by the ants. Details will be discussed
in the next section.

As far as the author is aware, ant colony algorithms to scheduling problems
have only been applied by Colorni et al. [15] and by Socha et al. [17]. The
former article focuses on the job shop scheduling problem, the latter one on
the timetabling problems for university classes, which are slightly different from
the exam timetabling problem considered here. Finally, Costa and Hertz [18]
used an ant colony approach to solve assignment type problems, in particular
graph coloring problems. Recently, Dowsland and Thomson as well as Vesel and
Zerovnik modified and improved in [19, 20] this graph coloring algorithm with
respect to the examination scheduling problem.

4 An ant algorithm for the exam scheduling problem

4.1 General modifications for the exam timetabling problem

Like in AS, the solution approach consists of n cycles. In each of these cycles first
each of the m ants constructs a feasible solution using therefore the constructive
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heuristic and the pheromone trails. These exam schedules are then evaluated
according to the given objective function and the experience accumulated during
the cycle is used to update the pheromone trails.

Depending on the choice of a constructive heuristic and the way the pheromone
values are used, there are different ways how this basic solution approach can
be adapted to the exam timetabling problem.

– At each stage of the construction process in the AS approach of Costa and
Hertz [18] called ANTCOL the ant chooses first a node i and then a feasible
color according to a probability distribution equivalent to (9). The matrix
τ provides information on the objective function value, i.e. the number of
colors required to color the graph, which was obtained when nodes i and j
are colored with the same color.
In contrast to elite strategies where only the ant that found the best tour from
the beginning of the trial deposits pheromone, all ants deposit pheromone
on the paths they have chosen. According to [12] this strategy is called ant
cycle strategy.
Different priority rules were tested as constructive heuristic. Among those
chosen in each step, the node with the highest degree of saturation, i.e. the
number of different colors already assigned to adjacent nodes, achieved the
best results with respect to solution quality and computation times.

– In Socha et al. [17] a pre-ordered list of events is given. Each ant chooses
the color for a given node probabilistically similar to the formula (9). The
pheromone trail τij contains information on how good the solution was, when
node i was colored by color t. The constructive heuristic employed in their
approach is not described.

For the exam timetabling problem the way the information in matrix τ is
used in both approaches is not meaningful. Due to the conflicts of higher orders
the quality of a solution does not depend on how a pair of exams is scheduled
nor on the specific period an exam is assigned to. For example, assigning two
exams i and j with cij = 0 to the same period can either result in a high or in
a low objective function value as the quality of the solution strongly depends
on when the remaining exams are scheduled. In the following we implemented a
two step approach.

Step I: Determine the sequence according to the exams is scheduled. Like for
the TSP we assume that an ant located in a node, corresponding to an
exam, has to visit all other nodes, i.e. it has to construct a complete tour.
The sequence according to this ant constructs the tour corresponds to the
sequence in which the exams are scheduled.

Step II: Find the most suitable period for an exam which should be scheduled.
Therefore, all admissible periods are evaluated according to the given penalty
function.

Following this two step approach probabilities pν
ij for choosing the next node

j that has to be scheduled are computed according to (9). Pheromone values τij
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along the ants’ paths are updated by the inverse of the objective function value.
For the heuristic value ηij the following simple priority rule for graph coloring
was implemented. The exam with the smallest number of available periods is
selected. A period would not be available for an exam if it caused a conflict of
order 0 with another exam that has already been scheduled. This priority rule
corresponds to the saturation degree rule (SD) which was tested in [1]. The value
ηij is chosen to be the inverse of the saturation degree.

4.2 MMAS specifications

MMAS approaches mainly differ from AS algorithms in the way they use the
existing information (c.f. [16]):

– Pheromone trails are only updated by the ant that generated the best solu-
tion in a cycle. The corresponding values τij are updated by ρτij + 1/f best

where f best is equal to the best objective function value found so far. For
all other arcs (i, j) that are not chosen by the best ant τij is updated by
(1 − ρ)τij . ρ ∈ [0, 1] represents the pheromone evaporation factor, i.e. the
percentage of pheromone that decays within a cycle.

– Pheromone trail values are restricted to the interval [τmin, τmax], i.e. when-
ever after a trail update τij < τmin or τij > τmax then τij is set to τmin or
τmax, respectively. The rationale behind this are that if the differences be-
tween some pheromone values were too large, all ants would almost always
generate the same solutions. Thus, stagnation is avoided.

– Pheromone trails are initialized to their maximum values τmax. This type of
pheromone trail initialization increases the exploration of solutions during
the first cycle.

The solution quality of ant colony algorithms can be considerably improved
when it is combined with additional local search. In hybrid MMAS only the best
solution within one cycle is improved by local search. For the exam timetabling
problem a hill climber procedure has been implemented. Within an iteration of
the hill climber two sub-procedures are carried out in succession. The hill climber
is stopped if no improvement can be found within an iteration.

Within the first sub-procedure of the hill climber for all exams the most
suitable period is examined. Beginning with the exam that causes the biggest
contribution to the objective function value, all feasible periods are checked and
the exam is assigned to its best period. The first sub-procedure is stopped if
all exams have been checked without finding an improvement. Otherwise the
contributions to the objective function value are recalculated and the process is
repeated.

The second sub-procedure tries to decrease the objective function value by
swapping all exams within two periods, i.e. all exams assigned to period t′ are
moved to period t′′ and the exams of that period are moved to period t′. There-
fore all pairs of periods are examined and the first exchange that leads to an
improvement is carried out. Again, the process is repeated as long as the objec-
tive function value is decreased.
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Finally, the use of a so called candidate list has been proven to reduce re-
quired computational times as well as to improve solution quality at the same
time (c.f. [12]). Such a list provides additional local heuristic information as it
contains preferred nodes to be visited from a given node. Instead of scanning
all other exams only the exams in the candidate list are examined and only in
case all exams in this list have already been scheduled, the remaining exams are
considered.

5 Computational experiments

The proposed Max-Min algorithm was implemented in Borland Delphi 7.0. It
will be referred to as MMAS-ET in the sequel. Test runs were carried out on a
computer with 3.2 GHz clock under Windows XP.

5.1 Test cases

To benchmark algorithms test cases of twelve practical examination problems can
be found on the site of Carter (c.f. [21]). Table 1 summarizes some characteristics
of these problems. To make a comparison meaningful all algorithms must use the
same objective function. Therefore, Carter proposed weighting conflicts accord-
ing to the following penalty function: P1 = 16, P2 = 8, P3 = 4, P4 = 2, P5 = 1,
where Pω is the penalty for the constrain violation of order ω. The cost of each
conflict is multiplied by the number of students involved in both exams. The ob-
jective function value represents the costs per student. As the proposed MMAS-
ET algorithm does not guarantee that no conflicts of order 0 occur, additionally,
the penalty P0 was imposed and set to 10000.

Table 1. Test cases from Cater et al. [1, 21, 22]

test case # exams # students # student exams problem density # periods

car-f-92 543 18419 55522 13.8 % 32
car-s-91 682 16925 56877 12.8 % 35
ear-f-83 190 1125 8109 26.7 % 24
hec-s-92 81 2823 10632 42.0 % 18
kfu-s-93 461 5349 25113 5.6 % 20
lse-f-91 381 2726 10918 6.3 % 18
pur-s-93 2419 30032 120681 2.9 % 43
rye-f-92 486 11483 45051 7.5 % 23
sta-f-83 139 611 5751 14.4 % 13
tre-s-92 261 4360 14901 5.8 % 23
uta-s-92 622 21267 58979 12.6 % 35
ute-s-92 184 2750 11793 8.5 % 10
yor-f-83 181 941 6034 28.9 % 21
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5.2 Adjustment of the parameters

The required parameters were specified as follows. The number of cycles was
set to 50. Within each cycle 50 ants were employed to construct solutions. The
candidate list contained the 20% of exams with the lowest number of available
periods. Several test runs were carried out in order to determine the required
parameters appropriately:

– The evaporation rate ρ was set to 0.3. Like in [16] it turned out that this
parameter is quite robust, i.e. the parameter ρ does not clearly influence the
performance.

– For the restrictions of the pheromone interval values to strategies were tested.
Setting τmax = 1/ρ obtained slightly better results than in the case of vari-
able τmax and τmin as proposed in [16].

– Different values for the weighting factors α and β were tested. It turned out
that the approach performed best when α was set to one and β was chosen
high. Best results were obtained for β equal to 24. But the difference was on
the average less than one percent when β was bigger than eight. A high β
forces that exams which can be scheduled, due to zero order conflicts, only in
a few remaining periods are scheduled first as they are given a much higher
probability in (9). Remember that ηij is the inverse of the saturation degree
as explained in section 4.1. Thus, a high β value has the same effect like a
candidate list. This could be a reason why the use of the candidate list did
not improve the solutions. Whereas, for small values of β, i.e. values lower
than 5, solutions with zero order conflicts could not always be avoided.

– As the approach is non-deterministic each test case was solved twenty times.

After determining the parameters in such a way, it turned out that less than
2 % of the solutions were generated more than once. Thus, stagnation, that is
caused by the fact that many ants generate almost the same solutions, could not
be observed.

5.3 Test results for the MMAS-ET approach

Table 2 displays the results for different approaches. For each approach the
minimal objective function value and the average result after twenty test runs
are given. Results of the proposed MMAS-ET approach are given in the second
column.

In order to find out how much the hill climber contributes to the solution
the MMAS-ET approach was also tested without making use of the hill climber.
Comparing the results in the second and in the third column it is obvious that
the hill climber considerably improves the solutions.

Thus, one could ask how much the ants contribute to the solution or if solu-
tions of the same quality could also be achieved by applying only the hill climber
on a random starting solution. Therefore a third version of the MMAS-ET ap-
proach was implemented where each ant constructs an exam timetable without
interacting with the other ants, i.e. the matrix τ is not updated at all. This
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approach can be seen as a randomized greedy heuristic. As in MMAS-ET with
50 ants and 50 cycles 2500 exam timetables were generated. The best solutions
of this approach are displayed in the last column of table 2.

As the MMAS-ET approach without ants generates the worst solutions it is
obvious, that the ant colony has a positive impact on the diversification of the
solution space, i.e. the ants guide the search process into promising regions of
the solution space where the hill climber can find good solutions.

Increasing the number of ants and the number of cycles to 100 in the MMAS-
ET approach did not result in achieving better solutions. Neither the average
value of all twenty iterations was improved nor were better solutions found during
the twenty iterations.

Table 2. Results for three different variants of the MMAS-ET approach for twenty
test runs

MMAS-ET MMAS-ET MMAS-ET
without hill climber without ants

test case best avg. best avg. best avg.

car-f-92 4.8 4.9 7.8 8.0 10.9 13.3
car-s-91 5.7 5.9 9.3 9.5 11.9 13.9
ear-f-83 36.8 38.6 50.4 53.0 49.5 62.4
hec-s-92 11.3 11.5 14.8 15.8 11.6 15.5
kfu-s-93 15.0 15.5 23.9 24.6 19.5 22.0
lse-f-91 12.1 12.7 19.3 19.8 16.7 25.4
pur-s-93 5.4 5.6 12.2 12.5 11.7 14.6
rye-s-93 10.2 10.4 18.0 18.7 12.2 14.2
sta-f-83 157.2 157.5 160.6 161.9 157.3 157.7
tre-s-92 8.8 9.1 12.4 12.8 9.2 13.1
uta-s-92 3.8 3.8 6.2 6.3 8.2 9.9
ute-s-92 27.7 28.6 33.6 34.5 27.7 30.1
yor-f-83 39.6 40.3 50.5 51.3 62.9 73.0

5.4 Comparison with other exam timetabling approaches

The proposed MMAS-ET approach was compared with the following approaches:

– LD, SD, LDW and LE: Carter et al. compared in [1] four different priority
rules largest degree (LD), saturation degree (SD), largest weighted degree
(LWD) and largest enrollment (LE).

– Wal: Tabu search approach with longer-term memory proposed by White et
al. in [11].

– GS: Tabu search approach proposed by Di Gaspero and Schaerf in [2].
– Cal: Local search approach of Caramia et al. [6].
– BN: Great deluge local search approach developed by Burke and Newall [5].
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– Mal: Simulated annealing approach of Merlot et al. [9].
– Ga: Multi-neighborhood search approach presented by Di Gaspero [8]
– PS: Tabu search approach of Paquete and Stützle [10].
– CT: Randomized adaptive search algorithm of Casey and Thomson [7].

The results of the benchmarks are taken from the literature [11] and from
the internet (c.f. the timetabling database at the University of Melbourne [22]).
Table 3 displays the best solution and the average solution achieved when each
test case was solved twenty times. The results of table 3 can be summarized as
follows:

Table 3. Best (b.) and average (a.) solution after twenty test runs for the benchmark
test cases from Carter et al.[1, 21, 22]

test LD SD LWD LE Wal GS Cal BN Mal Ga PS CT MMAS
case -ET

car b. 7.6 6.6 6.6 6.2 4.6 5.2 6.0 4.0 4.3 - - 4.4 4.8
-f-92 a. 7.6 6.6 6.6 6.2 4.7 5.6 6.0 4.1 4.4 - - 4.7 4.9

car b. 7.9 7.1 7.4 7.6 5.7 6.2 6.6 4.6 5.1 5.7 - 5.4 5.7
-s-91 a. 7.9 7.1 7.4 7.6 5.8 6.5 6.6 4.7 5.2 5.8 - 5.6 5.9

ear b. 36.4 46.5 37.3 42.3 45.8 45.7 29.3 36.1 35.1 39.4 40.5 34.8 36.8
-f-83 a. 36.4 46.5 37.3 42.3 46.4 46.7 29.3 37.1 35.4 43.9 45.8 35.0 38.6

hec b. 10.8 12.7 15.8 15.9 12.9 12.4 9.2 11.3 10.6 10.9 10.8 10.8 11.3
-s-92 a. 10.8 12.7 15.8 15.9 13.4 12.6 9.2 11.5 10.7 11.4 12.0 10.9 11.5

kfu b. 14.0 15.9 22.1 20.8 17.1 18.0 13.8 13.7 13.5 - 16.5 14.1 15.0
-s-93 a. 14.0 15.9 22.1 20.8 17.8 19.5 13.8 13.9 14.0 - 18.3 14.3 15.5

lse b. 12.0 12.9 13.1 10.5 14.7 15.5 9.6 10.6 10.5 12.6 13.2 14.7 12.1
-f-91 a. 12.0 12.9 13.1 10.5 14.8 15.9 9.6 10.8 11.0 13.0 15.5 15.0 12.7

pur b. 4.4 4.1 5.0 3.9 - - 3.7 - - - - - 5.4
-s-93 a. 4.4 4.1 5.0 3.9 - - 3.7 - - - - - 5.6

rye b. 7.3 7.4 10.0 7.7 11.6 - 6.8 - 8.4 - - - 10.2
-s-93 a. 7.3 7.4 10.0 7.7 11.7 - 6.8 - 8.7 - - - 10.4

sta b. 162.9 165.7 161.5 161.5 158.0 161.0 158.2 168.3 157.3 157.4 158.1 134.9 157.2
-f-83 a. 162.9 165.7 161.5 161.5 158.0 167.0 158.2 168.7 157.4 157.7 159.3 135.1 157.5

tre b. 11.0 10.4 9.9 9.6 8.9 10.0 9.4 8.2 8.4 - 9.3 8.7 8.8
-s-92 a. 11.0 10.4 9.9 9.6 9.2 10.5 9.4 8.4 8.6 - 10.2 8.8 9.1

uta b. 4.5 3.5 5.3 4.3 4.4 4.2 3.5 3.2 3.5 4.1 - - 3.8
-s-92 a. 4.5 3.5 5.3 4.3 4.5 4.5 3.5 3.2 3.6 4.3 - - 3.8

ute b. 38.3 31.5 26.7 25.8 29.0 29.9 24.4 25.5 25.1 - 27.8 25.4 27.7
-s-92 a. 38.3 31.5 26.7 25.8 29.1 31.3 24.4 25.8 25.2 - 29.4 25.5 28.6

yor b. 49.9 44.8 41.7 45.1 42.3 41.0 36.2 36.8 37.4 39.7 38.9 37.5 39.6
-f-83 a. 49.9 44.8 41.7 45.1 42.5 42.1 36.2 37.3 37.9 40.6 41.7 38.1 40.3

Although, the MMAS-ET approach does not generate outstanding results
its performance is comparable with other approaches. Beside the graph coloring
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heuristics of Carter et al. it also finds better solutions than the Wal, the GS, the
PS, the Ga and the CT approach for most test cases.

In addition, it is striking that no approach outperforms all other approaches
for all test cases. Thus, there are some test cases where MMAS-ET outperforms
the approaches Cal, BN and CT, although one must confirm that these three
approaches generate better solutions for most of the test cases. For example,
MMAS-ET found better solutions than the Ca approach in four out of the 13
test cases, i.e. for the test cases car-f-92,car-s-91, sta-f-83 and tre-s-92.

5.5 Comparison with the approach of Costa and Hertz

Finally, the results of MMAS-ET were compared with a modified version of the
ANTCOL algorithm of Costa and Hertz [18], which originally was developed for
solving graph coloring problems. This approach will be called ANTCOL-ET in
the sequel. Within that approach the ANT DSATUR(1) procedure was used as
a constructive method as described in [18]. The objective function was modified
in order to consider conflicts of higher order too. Test runs were carried out to
adjust the parameters appropriately. The parameter α was set to 1, β to 35. ρ
was set equal to 0.3. Again, each test case was solved twenty times.

Table 4 shows the results for the thirteen test cases and compares them with
the MMAS-ET approach. Surprisingly, the simple AS like approach ANTCOL-
ET outperformed the MMAS-ET for some test cases. In particular, this result is
contrary to other results presented in the literature where MMAS algorithms ob-
tained better results for various combinatorial optimization problems by avoiding
stagnation (c.f. [12, 16]).

Thus, ANTCOL-ET was modified by implementing additionally the hill climber
already incorporated in the MMAS-ET approach. This modified version of the
Costa and Hertz approach provided on the average better solutions than the
MMAS-ET approach and

Like the MMAS-ET approach the ANTCOL-ET approach in particular im-
proves the test cases that already achieved the best solutions. For example, it
again outperformed the approach of Caramia et al. in the test cases car-f-92,
car-s-91, sta-f-83 and tre-s-92. White et al. argued in [11] that these test cases
seem to be in a way easier.

Computing times for the MMAS-ET approach lay in the range of 10 seconds
for the smallest test cases, i.e. hec-s-92, to 2.5 hours for the pur-s-93 problem.
Compared to the MMAS-ET approach the computing time of the ANTCOL-ET
combined with the hill climber was on the average 80 % higher. Thus, one can
conclude that ANTCOL-ET takes more time but gets a better solution quality
than MMAS-ET. Please note that the same stopping stopping criteria was used
for both algorithms, namely, 2500 solutions.

6 Conclusion

In this paper different strategies for solving exam timetabling problems were
tested. Ant colony approaches are capable of solving large real world exam
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Table 4. Comparison between different ant colony approaches.

test case MMAS-ET ANTCOL-ET ANTCOL-ET
without hill climber with hill climber

car-f-92 best 4.8 4.5 4.3
avg. 4.9 4.6 4.4

car-s-91 best 5.7 5.3 5.2
avg. 5.9 5.4 5.2

ear-f-83 best 36.8 40.3 36.8
avg. 38.6 41.4 38.3

hec-s-92 best 11.3 12.2 11.1
avg. 11.5 12.6 11.4

kfu-s-93 best 15.0 15.4 14.5
avg. 15.5 15.8 14.9

lse-f-91 best 12.1 11.9 11.3
avg. 12.7 12.2 11.7

pur-s-93 best 5.4 4.8 4.6
avg. 5.6 4.9 4.6

rye-s-93 best 10.2 10.2 9.8
avg. 10.4 10.7 10.0

sta-f-83 best 157.2 158.2 157.3
avg. 157.5 159.3 157.5

tre-s-92 best 8.8 8.8 8.6
avg. 9.1 9.0 8.7

uta-s-92 best 3.8 3.6 3.5
avg. 3.8 3.7 3.5

ute-s-92 best 27.7 28.9 26.4
avg. 28.6 29.4 27.0

yor-f-83 best 39.6 42.2 39.4
avg. 40.3 43.7 40.4

timetabling problems. The implemented algorithms generated comparable re-
sults like other high performance algorithms from the literature.

Unlike for other combinatorial optimization problems like the TSP or the
QAP for the exam timetabling problem the MMAS approach did not outperform
the simpler AS strategy. Of course, it goes without saying but proper adjusting
parameters can improve the performance of an algorithm considerably.

A self-evident extension would be to incorporate additional constraints and
requirements like e.g. scarce room resources or precedence constraints between
exams.
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