
Computational Complexity Issues in
University Interview Timetabling

Yuuki Kiyonari1, Eiji Miyano1?, and Shuichi Miyazaki2??

1Department of Systems Innovation and Informatics,
Kyushu Institute of Technology, Fukuoka 820-8502, Japan

{kiyonari@theory., miyano@}ces.kyutech.ac.jp
2Academic Center for Computing and Media Studies,

Kyoto University, Kyoto 606-8501, Japan
shuichi@media.kyoto-u.ac.jp

1 Introduction

In the Department of Intelligence Science and Technology, Graduate School of
Informatics, Kyoto University, there are approximately 20 professors, and 40
graduate course students in each year. In the final year of the course, every stu-
dent submits a research thesis, and presents his/her work in twenty minutes to
obtain a master degree. Presentation meeting is scheduled for two days, and in
general, all professors attend the meeting and listen to all students’ presenta-
tion. For each student, three professors (usually from the same department) are
assigned as a referee basically according to the presentation topic and profes-
sors’ research fields, and it is mandatory for referees to attend and evaluate the
assigned students’ presentation.

This presentation meeting used to be scheduled in one room, and there have
been no serious problems. However, because of the increased number of graduate
students, it became difficult to hold the meeting in two days this year, and
we adopted a parallel session using two rooms. Then, there arises two major
restrictions: (1) Two students evaluated by the same referee must be assigned to
different timeslots. (2) Professors want to minimize the number of movements
between rooms. Restriction (1) is a hard constraint, and the problem requires
to decide if a feasible schedule exists. It is easy to see that this problem can be
solved in polynomial time, and hence in this paper we focus on restriction (2),
which is a soft constraint: We want to find a feasible schedule which minimizes
the total number of movements of all professors.

To understand the problem, consider the following small example: There are
six students s1 through s6 and six professors p1 through p6. The assignment
of professors to students is illustrated in Fig. 1: Student s1 is evaluated by
two professors p1 and p2, and so on. One example of the schedule, say C1, is
illustrated in Fig. 2. In C1, students s1 through s3, and students s4 through s6

? Supported in part by Scientific Research Grant, Ministry of Japan, 16092223
?? Supported in part by Scientific Research Grant, Ministry of Japan, 16092215 and

17700015

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 448–453. ISBN 80-210-3726-1.



are scheduled to rooms r1 and r2, respectively, in this order of timeslots. Then
the cost of p1 in the schedule C1 is 2 since p1 has to move twice, from r1 to r2

and then from r2 to r1. The costs of p2 and p3 are 1 and 0, respectively. As a
result, the cost of the schedule C1 is 2 + 1 + 0 + 1 + 0 + 0 = 4.

Student s1 s2 s3 s4 s5 s6

Assigned professors p1, p2 p2, p3 p1, p4 p4, p5 p1, p6 p2, p6

Fig. 1. Example of referee-assignment

r1 r2 r1 r2 r1 r2

t1 s1 s4 t1 s1 s4 t1 s3 s6

t2 s2 s5 t2 s5 s2 t2 s1 s4

t3 s3 s6 t3 s3 s6 t3 s2 s5

C1 C2 C3

Fig. 2. Schedules C1, C2 and C3

It seems hard to attack this problem directly, and hence, we will consider two
restricted problems, denoted Room and Order. Room takes an initial feasible
solution as an input, as well as an assignment of referees to students. We are
allowed only to exchange the presentation rooms of a pair of students assigned
to the same timeslot; so it is prohibited to change the assigned timeslots. For
example, C2 in Fig. 2 is one possible output of Room when C1 in Fig. 2 is an
input schedule. C2 is the result of exchanging rooms of s2 and s5, by which we
can improve the cost of schedule to 3. The second problem, called Order, takes
the same inputs as Room. It allows to exchange the timeslots of two pairs, but
does not allow to change the assigned rooms. For example, C3 in Fig. 2 is one
possible output of Order when C1 is an input. Recall that a feasible solution
can be found in polynomial time as mentioned above, and hence, allowing to
give an initial schedule as an input is reasonable.

Our Contribution. In this paper, we investigate the time complexity of
Room and Order. It is reasonable to assume that the number of students each
professor evaluates, and the number of professors assigned to each student are
bounded by, say, s and t, respectively. Problem Room(s, t) is Room whose input
is restricted as above, and problem Order(s, t) is defined similarly. By defini-
tion, Room(1, t) is trivially in P for any t. This paper shows that (i) Room(2, 1)
is also polynomial-time solvable, but (ii) Room(s, t) is generally NP-hard and
furthermore it remains intractable even if s = 2 and t = 2. As for the complex-

Computational Complexity Issues in University Interview Timetabling 449



ity of Order, it is easy to see that Order(s, t) is polynomial-time solvable for
s ≤ 2. We show that (iii) Order(3, 1) is in P.

Related Work. In educational timetabling, a set of resources such as teach-
ers, students, rooms, and lectures must be assigned to a set of timeslots subject
to certain hard and soft constraints. There are three main categories in educa-
tional timetabling, namely, school (or class-teacher), university course, and exam
timetabling (e.g., see [7]). There are a large number of researchers investigating
in detail the complexity of university timetabling [2–6, 8].

The interview timetabling problem treated in this paper can be regarded as
the classical examination timetabling problem by considering students and ref-
erees in the former problem as exams and students in the latter problem, respec-
tively. However, interesting parameter setting where we can derive a boundary
between Pand NP-hard is the case when s and t are small. For such settings,
it is natural to interpret the problem as the interview timetabling rather than
examination timetabling.

2 Complexity of Room

It would be trivial that Room(1, t) is in P for any t because no professor needs to
move and hence the cost is 0 for any schedule. However, the precise complexity
of Room(s, t) for s ≥ 2 is not evident. First, we consider Room(2, 1) and give a
polynomial-time algorithm that solves it.

Let us call two students who are assigned to the same timeslot by an in-
put schedule a student-pair (or simply, a pair). In the following, if we write a
student-pair as (si, sj), it means that si and sj are assigned to rooms r1 and
r2, respectively, by the current schedule. By “flip a student-pair (si, sj)”, we
mean to exchange the rooms of si and sj , namely, we change (si, sj) to (sj , si).
Without loss of generality, we assume that each student is evaluated by exactly
one professor (namely, there is no student to whom no referee is assigned). So,
if professor p is assigned to student s, we write A(s) = p for convenience.

Starting from an initial schedule C, our algorithm decides, for each student-
pair, whether to flip it or not, in a sequential manner. We first select an arbitrary
pair, say (u, v), and fix the rooms of this pair as it is, and focus on the student
u. We select a pair (x, y) (if any) such that either x or y is evaluated by A(u).
If it is x, namely A(u) = A(x), we keep the rooms of x and y as it is, so that
the professor A(u) does not have to move. If it is y, then we flip the pair (x, y),
again, so that A(u) need not move. In this way, we continue determining the
rooms of pairs, so that a professor in question does not have to move. When
there is no pair to select, then we focus on the other student v of the initial pair,
and do the same operation starting from v. If there is no pair to select, we close
this “chain”, and start the next phase by selecting an initial pair again. The
algorithm stops when all pairs are processed.

Theorem 1. Room(2, 1) is in P.

450 Y. Kiyonari et al.



Proof (Sketch). Clearly, the time complexity is polynomial. It is not hard to see
that each phase gives rise to the cost of at most one, and if it is one, then the
set of pairs selected in that phase causes the cost of one in any schedule. Hence
the schedule the above algorithm outputs is optimal. ut

Next, we show an intractable case of Room(s, t).

Theorem 2. Room(s, t) for s ≥ 2, t ≥ 2 is NP-hard.

Proof (Sketch). Consider the following problem MAX E2LIN2(3): We are given
n variables x1, x2, · · ·, xn and m equations each with exactly two variables,
xi1 ⊕ xi2 = ai (1 ≤ i ≤ m, ai ∈ {0, 1}) such that each variable appears at
most three times in the equations. We are asked to assign 0 or 1 to variables
so that the number of satisfied equations is maximized. It is known that MAX
E2LIN2(3) is NP-hard [1].

Given an instance I of MAX E2LIN2(3) with n variables and m equations, we
construct an instance I ′ of Room(2,2). For each variable xi (1 ≤ i ≤ n), we create
a student-pair (si,1, si,2), and for each equation ej : xj1 ⊕ xj2 = aj (1 ≤ j ≤ m),
we create a professor pj . Referee-assignment is constructed as follows. Consider
the j-th equation ej (1 ≤ j ≤ m). If it is of the form xj1 ⊕ xj2 = 0, then either
(a1) assign pj to sj1,1 and sj2,1, or (a2) assign pj to sj1,2 and sj2,2. If xj1⊕xj2 =
1, then either (b1) assign pj to sj1,1 and sj2,2, or (b2) assign pj to sj1,2 and sj2,1.
Observe that each professor appears twice in I ′ since each equation contains two
variables, but three referees may be assigned to one student since a variable
can appear three times. Hence, at this moment, a constructed instance is of
Room(2, 3). However, we can create an instance of Room(2, 2) by appropriately
choosing (a1) or (a2) ((b1) or (b2)), although we omit describing how to do
it.

An assignment C for I naturally corresponds to a schedule C ′ of I ′: If xi = 0,
then the rooms of (si,1, si,2) is the same as in the initial schedule. If xi = 1, the
rooms of (si,1, si,2) is flipped to (si,2, si,1). It is not hard to see that the number
of unsatisfied equations under C is equal to the total number of movements of
professors under C ′. ut

3 Complexity of Order

Recall that the operation we are allowed in this problem is only to decide the
timeslot of student-pairs. Hence, as the simplest example, if each professor judges
at most two students, any exchange operation of timeslots of two student-pairs
does not change the cost of the schedule. It follows that Order(s, t) is in P for
s ≤ 2 and any t since any solution is optimal.

In this section we present a polynomial-time algorithm to find an optimal
solution for Order(3, 1). Let cost(C, p) be the number of movements of professor
p under a schedule C. Note that if a professor p appears at most twice in an
input referee-assignment, cost(C, p) is the same for any schedule C as mentioned
above. Even if p appears three times, cost(C, p) = 0 for any C if all three students

Computational Complexity Issues in University Interview Timetabling 451



are assigned to the same room by the input schedule. These professors are called
non-potential professors. If p appears three times, and if two of his/her students
are assigned to the same room, and the other one is assigned to the other room,
his/her cost can be one or two depending on the schedule. We call these professors
potential professors. As in the case of Room(2, 1), let A(s) denote the referee
assigned to student s.

As before, we sequentially determine the schedule of each pair. We construct
several blocks of student-pairs. Starting from an arbitrary initial student-pair
(u, v), we select a student-pair (x, y) where A(u) = A(x) and A(u) is a potential
professor, if any. We schedule (x, y) to the timeslot next to (u, v), so that two
students professor A(u) evaluates are assigned to continuous timeslots and to the
same room. Next, we select a pair (w, z) such that A(y) = A(z) and A(y) is a
potential professor, if any, and schedule (w, z) to the timeslot next to (x, y), and
so on. When there is no pair to select, we then go back to (u, v), and perform the
same operation starting from A(v). This time, we schedule new pairs to previous
timeslots of (u, v). When there is no pair to select, the work on the current block
is finished, and we start to construct a new block by selecting an arbitrary initial
student-pair. Finally, blocks are scheduled in an arbitrary order.

Theorem 3. Order(3, 1) is in P. (Proof is omitted.)

4 Concluding Remarks

In this paper, we considered the time complexity of Room(s, t) and Order(s, t)
for several values of s and t. The apparent next step in this research is to in-
vestigate the complexity of Room(3, 1) and Order(4, 1). An interesting gener-
alization is to allow both operations of Room and Order simultaneously. The
goal in this line is to consider the most general problem, namely, the problem
without an initial schedule in an input.

References

1. P. Berman and M. Karpinski, “Improved approximation lower bounds on small
occurrence optimization,” ECCC Report, TR03-008, 2003.

2. M. W. Carter and C. A. Tovey, “When is the classroom assignment problem hard?”
Operations Research, Vol.40, No.1, pp.28–39, 1992.

3. E. Cheng, S. Kruk, and M. J. Lipman, “Flow formulations for the student schedul-
ing problem,” in Proc. 4th PATAT 2002, LNCS 2740, pp.299–309, 2003.

4. T. B. Cooper, J. H. Kingston, “The complexity of timetable construction prob-
lems,” Proc. 1st PATAT 1995, LNCS 1153, pp. 283–295, 1996.

5. H. M. M. ten Eikelder, and R.J. Willemen, “Some complexity aspects of secondary
school timetabling problems,” in Proc. 3rd PATAT 2000, LNCS 2079, pp.18–27,
2001.

6. S. Even, A. Itai, and A. Shamir, “ On the complexity of timetabling and multi-
commodity flow problems,” SIAM J. Computing, Vol.5, No.4, pp.691–703, 1976.

452 Y. Kiyonari et al.



7. A. Schaerf, “A survey of automated timetabling,” Artificial Intelligence Review,
Vol.13, No.2, pp.87–127, 1999.

8. D. de Werra, “Some Combinatorial Models for Course Scheduling,” Proc. 1st
PATAT 1995, LNCS 1153, pp.296–308, 1996.

Computational Complexity Issues in University Interview Timetabling 453


