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Abstract. Linear Linkage Encoding (LLE) is a recently proposed representation
scheme for evolutionary algorithms. This representation has been used only in
data clustering. However, it is also suitable for grouping problems. In this pa-
per, we investigate LLE on two grouping problems; graph coloring and exam
timetabling. Two crossover operators suitable for LLE are proposed and com-
pared to the existing ones. Initial results show that Linear Linkage Encoding is a
viable candidate for grouping problems whenever appropriate genetic operators
are used.

1 Introduction

In spite of the satisfactory performance of Evolutionary Algorithms (EA) on many
NP Optimization problems, the same achievement is not usually observed on group-
ing problems where the task is to partition a set of objects into disjoint sets. This is
because the commonly used representations usually suffer from redundancies due to
the ordering of groups. Moreover the genetic material might easily be disrupted by the
genetic operators and/or by the rectification process after the operators are applied.

Timetabling problems are real world NP Hard [7] problems. Discarding the rest
of the constraints, attempting to minimize the timetabling slots while satisfying the
clashing constraints turns out to be graph coloring problem [19]. For this reason, new
representation schemes and operators used in graph coloring are also of interest to the
researchers in the timetabling community.

In the paper, we are investigating a recently proposed encoding scheme for group-
ing problems, Linear Linkage Encoding (LLE) [6]. LLE has only been tested on small
clustering problem instances, and authors claim that the LLE performance is superior
to Number Encoding (NE), the most common encoding scheme used in grouping prob-
lems. Unlike NE, LLE does not require an explicit bound on the number of groups that
can be represented in a fixed-length chromosome. The greatest strength of LLE is that
the search space is reduced considerably. There is a one to one correspondence between
the chromosomes and the solutions when LLE is used. Consequently the aim of this
paper is to present the potential of the LLE representation on grouping problems. Previ-
ous studies denote that traditional crossover operators do not perform well. Therefore,
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a set of new crossover operators suitable for LLE are also tested on a set of problem
instances including Carter’s Benchmark [5] and DIMACS Challenge Suite [18].

This paper is organized as follows: We first define the grouping problems and com-
mon representations for them. The fundamentals of Linear Linkage Encoding is fol-
lowed by the definition of the graph coloring problem. Then the operators of the al-
gorithm with special crossovers are presented. Computational experiments and conclu-
sions are given at the end of the paper.

2 Grouping Problems

Grouping problems [8] are generally concerned with partitioning a set V of items into
a collection of mutually disjoint subsets Vi of V such that

V = V1 ∪ V2 ∪ V3..... ∪ VN and Vi ∩ Vj = Ø where i 6= j.

Obviously, the aim of these problems is to partition the members of set V into N
different groups where (1 ≤ N ≤ |V |) each item is in exactly one group. In most of the
grouping problems, not all possible groupings are permitted; a valid solution usually has
to comply a set of constraints. For example in graph coloring, the vertices in the same
group must not be adjacent in the graph. In bin packing problem, sum of the sizes of
items of any group should not exceed the capacity of the bin, etc. Hence, the objective
of grouping is to optimize a cost function defined over a set of valid groupings. In
both graph coloring and bin packing the objective is to minimize the number of groups
(independent sets and bins respectively) subjected to the mentioned constraints.

Grouping problems are characterized by the cost function based on the composition
of the groups. An item in isolation has little or no meaning during the search process.
Therefore, the building blocks that should be preserved in an evolutionary search should
be the groups or the group segments.

2.1 Representations in Grouping Problems

The most predominant representation in grouping problems in both evolutionary and
local search methods is Number Encoding (NE). In NE, each object is encoded with
a group id indicating which group it belongs to. For example the individual 2342123
encodes the solution where first object is in group 2, second in 3, third in 4, and so
on. However, it is easy to see that the encoding 1231412 represents exactly the same
solution, since the naming or the ordering of the partition sets is irrelevant. The draw-
backs of this representation are presented in [8] and it is pointed out that this encoding
is against the minimal redundancy principles for encoding scheme [24].

Another representation for grouping problems is Group Encoding (GE). The objects
which are in the same group are placed into the same partition set. For instance, the
above sequence can be represented as (1, 4, 6)(2, 7)(3)(5). The ordering within each
partition set is unimportant, since search operators work on groups rather than objects
unlike in NE. However the ordering redundancy among groups still holds. For instance,
(2, 7)(3)(5)(1, 4, 6) would again represent the same solution.

304 Ülker et al.



2.2 Linear Linkage Encoding

LLE can be implemented using an array. Let the entries in the chromosome be indexed
with values from 1 to n. Each entry in the array then holds one integer value which is
a link from one object to another object of the same partition set. With n objects, any
partition set on them can be represented as an array of length n. Two objects are in the
same partition set if either one can be reached from another through the links. If an entry
is equal to its own index, then it is considered as an ending node. The links in LLE are
unidirectional, thus; backward links are not allowed. In short, in order to be considered
as a valid LLE array, the chromosome should follow the following two rules:

– The integer value in each entry is greater than or equal to its index but less than or
equal to n.

– No two entries in the array can have the same value; the index of an ending node is
the only exception to this rule.

In LLE, the items in a group construct a linear path ending with a self referencing
last item. It can be represented by the labeled oriented pseudo (LOP) graph. A LOP
Graph is a labeled directed graph G(V,E), where V is the vertex set and E is the edge
set. A composition of G is a grouping of V (G) into disjointed oriented pseudo path
graphs G1, G2, ....Gm with the following properties:

Fig. 1. LLE Array and LOP Graphs

– Disjoint paths:
⋃m
i=1 V (Gi) = V (G) and for i 6= j, V (Gi)

⋂
V (Gj) = Ø

– Non-backward oriented edges: If there is an edge e directed from vertex vi to vk
then i ≤ k.

– Balanced Connectivity
– a. |E(G)| = |V (G)|
– b. each Gi has only one ending node with an in-degree of 2 and out-degree of 1.
– c. each Gi has only one starting node whose in-degree = 0 and out degree = 1

– All other |V (Gi)| − 2 vertices in Gi have in-degree = out-degree = 1.

There are three clear observations regarding LOP Graphs:

1. Given a set of items S, there is one and only one composition of LOP Graphs
G(V,E) for each grouping of S, where |V | = |S|.

2. The number of LOP Graphs is given by the nth Bell Number [6].
3. LLE in array form is a unique implementation of the LOP graph.
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2.3 Exam Timetabling as a Grouping Problem

Exam timetabling requires satisfactory assignment of timetable slots (periods) to a set
of exams. Each exam is taken by a number of students, based on a set of constraints.
In most of the studies, NE like representations are used. In [3], a randomly selected
light or a heavy mutation followed by a hill climbing method was applied. Various
combinations of constraint satisfaction techniques with genetic algorithms can be found
in [20]. Paquete et. al. [23] applied a multi-objective evolutionary algorithm based on
pareto ranking with two objectives: minimize the number of conflicts within the same
group and between groups. Wong et. al [26] applied a GA with a non-elitist replacement
strategy. After genetic operators are applied, violations are repaired with a hill climbing
fixing process. In their experiments a single problem instance was used. Ozcan et. al.
[22] proposed a memetic algorithm (MA) for solving exam timetabling at Yeditepe
University. MA utilizes a violation directed adaptive hill climber.

Considering the task of minimizing the number of exam periods and removing the
clashes, exam timetabling reduces to the graph coloring problem [19].

2.4 Graph Coloring Problem as a Grouping Problem

Graph Coloring (GCP) is a well known combinatorial optimization problem which is
proved to be NP Complete [11]. Informally stated, graph coloring is assigning colors
to each vertex of an undirected graph such that no adjacent vertices should receive the
same color. The minimal number of colors that can be used for a valid coloring is called
the chromatic number. A more formal definition is as follows:

Given a graph G = (V,E) with vertex set V and edge set E, and given an integer
k, a k-coloring of G is a function c : V → 1, ..., k. The value c(x) of a vertex x is called
the color of x. The vertices with color r (1 ≤ r ≤ k) define a color class, denoted Vr.
If two adjacent vertices x and y have the same color r, x and y are conflicting vertices,
and the edge (x, y) is called a conflicting edge. If there is no conflicting edge, then the
color classes are all independent sets and the k-coloring is valid. The Graph Coloring
Problem is to determine the minimum integer k (the chromatic number of G - χ(G) )
such that there exists a legal k-coloring of G [1].

In the literature there are many heuristics devised for finding chromatic number and
solving k-coloring problems. Early applications of GCP solvers are simple constructive
methods [2], [19] which color each vertex of the graph one after another based on dy-
namic ordering of the vertices according to its saturation degree as in DSATUR. Local
search methods such as tabu search [14] and simulated annealing [16] have been fol-
lowed with hybridizations of these techniques with genetic algorithms [9], [10] which
resulted the state of the art graph coloring algorithms.

Graph coloring is generally considered as a difficult problem for pure Genetic Algo-
rithms [13]. Currently, the most successful algorithms are memetic algorithms [9], [10]
which hybridize the evolutionary techniques with a local search method. In this ap-
proach, the role of genetic operators is limited to finding promising points in the search
landscape from which the local search can initiate. Hence, the exploration of the search
space is carried out by the local search operator. For instance in Galinier and Hao’s
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hybrid algorithm [10], a crossover operation is proceeded by a tabu search procedure
which may last thousands of tabu iterations.

There are mainly two reasons for the unsuccessful attempts of using pure genetic
implementations on graph coloring: The redundancies inherent in the representations
used for the encoding of the chromosome, and lack of a suitable crossover operator
which would transmit the building blocks efficiently, preferably with some domain
knowledge. In this paper, we are mainly interested in the representational issues, but
we also present suitable crossover operators for the proposed multi-objective genetic
algorithm.

3 A Multi-Objective Genetic Algorithm for Graph Coloring and
Timetabling

Note that our main intention in this study is to propose a multi objective solution founda-
tion to multi-constraint timetabling problems. To our knowledge, none of the efficient
graph coloring algorithms in the literature empowers genetic operators as their main
search mechanism. These methods usually rely on local search operators. We are more
interested in the applicability of linear linkage encoding on grouping problems by using
suitable crossover and mutation operators. We present a multi-objective genetic algo-
rithm employing weak elitism and the main search operator of this approach is mutation
aided by crossover.

3.1 Initialization

Since we are dealing with a minimal coloring problem (where the objectives are to min-
imize the number of colors and number of conflicting edges), it is desirable to initialize
the population with individuals having different number of colors. Setting the range of
number of colors too wide will unnecessarily increase the search space and thus the
execution time. It is also undesirable to set the range too narrow either. Such a scheme
will prevent promising individuals with different number of colors from cooperating
through crossover and mutation. Tight lower and upper bounds can be found based on
the maximal clique and maximal degree of the graph. Since exact or approximate chro-
matic numbers in the test instances are already known, these bounds are set manually
in this study.

In our experiments, we have used a population with individuals having different
number of colors and an external population which holds the best individuals with the
minimal conflicts for a specific number of colors within a search range (lowerBound ≤
k ≤ upperBound). In order to create an individual, first k is determined, then a k-
colored individual is randomly created. An external smart initialization method was not
used to reduce the edge conflicts in order not to give any bias to our crossover operators
and let the multi-objective evolutionary method do the search.

3.2 Selection

A k-coloring problem is solved when the number of conflicting edges is zero. If a k col-
oring solution is obtained, k+1 colorings can also be generated by dividing independent
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sets into two. It might be possible to unite two sets in a k+1 coloring to obtain a k color-
ing. The pareto front will almost be a straight line along the color axis with zero conflict
if the lower bound is set close to the chromatic number. A restricted multi-objective
method might work efficiently on a search range within specified bounds around the
chromatic number.

As a multi-objective genetic algorithm a modified version of Niched Pareto Genetic
Algorithm (NPGA) described in [15] was used. In NPGA, two candidate individuals
are selected at random from the population to be one of the mates. A comparison set
is formed from randomly selected individuals within the population. Each candidate
is then compared against each individual in the comparison set. If one candidate is
dominated by the comparison set (which means it is worse for every part of the objective
function than any individual in the comparison set) and the other is not, then the latter
is selected for reproduction. If neither or both are dominated by the comparison set,
then niching is used to select a winner mate. The size of comparison set (tdom) allows
a control over the selection pressure. The comparison set size was preset to around ten
percent of the population size as suggested by [15].

When neither or both candidates are dominated by the comparison set, the candidate
with a smaller niche count is selected for reproduction. We calculate the niche valuemi

of the ith individual by:
mi =

∑

j∈pop
sh(d[i, j]) (1)

where d[i,j] is the distance between two individuals according to objective function
values and sh(d) is the sharing function which is:

sh(d) =





1 if d = 0
1− d/µshare if d < µshare

0 if d ≥ µshare.
(2)

and the distance measure is Manhattan distance in terms of color and conflict values in
the individuals. The objective functions cix and cjx represents the number of colors and
edge conflicts respectively for parents i, j where x = {1, 2}.

d[i, j] = |ci1 − cj1|+ |ci2 − cj2| (3)

3.3 Redundancy and Genetic Operators

Although LLE in theory is a non-redundant representation for grouping problems, prac-
tically this advantage disappears if the search operators do not adhere to this principle.
Therefore a more desirable option is to make the search non-redundant additional to
the representation. For example consider a basic hill climbing mutation which sends
one vertex from one set to another. This is analogous of changing a gene value in the
number encoding. If majority of the group ids of the items can be maintained for a long
period of time, then it is quite possible to make a low-redundant search even on a highly
redundant encoding such as NE. This is one of the reasons local search based methods
are quite successful on grouping problems. Because of the small perturbations on the
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search space, these methods not only preserve the building blocks on the candidate so-
lution but also are able to operate on a low-redundant small region of the large search
landscape.

The same advantage, unfortunately does not hold for crossover which makes huge
jumps on the search space. It is possible to keep the majority of the group ids of the
items fixed by using traditional crossovers like one-point or uniform crossover. Such
methods, however do not preserve the groups which are the building blocks themselves.
Therefore, a crossover operator should preserve the order of the colors as long as possi-
ble. Two ordering mechanism which assigns group ids to the groups after crossover and
mutation are investigated within the context of LLE. These two redundancy elimination
mechanisms are based on the cardinality of the groups and the lowest index number at
each group. In [25], the authors investigated the effect of these two methods on Graph
Coloring by using 0/1 ILP SAT solvers.

Cardinality Based Ordering In Cardinality Based Ordering, each group receives a
group id according to its cardinality (set size). Groups are sorted according to their car-
dinality and the group with the highest cardinality will be assigned group id 1, the sec-
ond highest will be identified as group 2, and so on. For example groups (1, 3)(5)(2, 4, 6)
are indexed as V1 = (2, 4, 6), V2 = (1, 3), and V3 = (5). Since more than one group
can have the same cardinality, the ordering might not be unique.

Lowest Index Ordering In Lowest Index Ordering, the smallest index in each group
is found first, then the group with the smallest index number is assigned group id 1,
the group with the second smallest index number is assigned group id 2, and so on.
For example, groups (1, 3)(5)(2, 4, 6) are indexed as V1 = (1, 3), V2 = (2, 4, 6), and
V3 = (5). Since each group has one unique lowest index, the ordering is always unique.

3.4 Crossover

Linear linkage encoding can be implemented using one dimensional arrays, allow-
ing applicability of the traditional crossover methods such as, one point or uniform
crossover. However, it is observed that these crossovers can be too destructive espe-
cially for graph coloring due to the danger of introducing new links in the LOP graph
absent in both parents. Also since the building blocks [12] in graph coloring are strictly
large independent sets (not even independent set segments), there is a risk of destruct-
ing these building blocks. However, for small problem instances, one-point crossover in
LLE is reported to generate satisfactory results for clustering problem [6]. (This might
be due to the fact that building blocks may be a segment of clusters rather than the
whole cluster.)

Unfortunately we have observed a very poor performance from one point crossover
in our experiments. It was not even able to generate solutions in the color search range
we specified.

Three types of crossover operators are compared using LLE representation.
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Greedy Partition Crossover Graph Coloring Problem can be considered as partition-
ing the graph into independent sets. Therefore by preserving the large independent sets,
the vertices in non-independent sets can be forced to form independent sets as well.

Greedy Partition Crossover (GPX) was proposed by Galinier and Hao [10] in their
Hybrid Graph Coloring Algorithm. The idea is to transmit the largest set (group) from
one parent, then to delete the vertices in this largest set from the other parent. This
transmission and deletion process is repeated on both parents successively until all of
the vertices are assigned to the child.

Two forms of Greedy Partition Crossover by following the rules of Cardinality and
Lowest Index Ordering are implemented. The difference is just assigning the color ids
to the groups after the crossover. In GPX Lowest Index Crossover (GPX-LI), the groups
with lower index numbers are given lower color ids, whereas in GPX Cardinality Based
Crossover (GPX-CB), the lower color ids are assigned to the groups with higher cardi-
nality. A general pseudocode of GPX is presented in Algorithm 1.

Consider two parents in Figure 2. We can obtain the child as follows: Largest
Set in parent 1 is (3, 4, 5, 6). This set is transmitted to the child and 3, 4, 5 and 6
are deleted from parent 2. After this deletion largest set in parent 2 (1) is transmit-
ted to the child. Finally (2) is assigned as the last group. After sorting according to
lowest index ordering (GPX-LI), the coloring then becomes C1 = (1), C2 = (2),
C3 = (3, 4, 5, 6). If the groups are sorted according to their cardinality (GPX-CB), the
coloring is C1 = (3, 4, 5, 6), C2 = (1), C3 = (2).

Both GPX-LI and GPX-CB are applicable to other representations such as num-
ber or group encodings. Our intention of using these crossovers is to create crossover
operators applicable only to LLE. The following two crossovers are inspired from GPX.

Algorithm 1 Greedy Partition Crossover
Require: Two Parents - parent1 and parent2 in LLE form.
Ensure: One offspring in LLE form.
1: currentParent = Random(parent1, parent2).
2: repeat
3: largestSet = Find largest set in currentParent.
4: transmit unassigned the vertices (links) in the largestSet to offspring.
5: mark transmitted vertices as assigned.
6: if currentParent = parent1 then
7: currentParent = parent2.
8: else
9: currentParent = parent1.

10: end if
11: until all vertices are assigned
12: if Lowest Index Ordering is Used then
13: sort group ids according to lowest index number (GPX-LI).
14: else
15: sort group ids according to cardinality (GPX-CB).
16: end if
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Fig. 2. a) Two Parents in LLE Array and LOP Graph form. b) Resulting offspring from
Greedy Partition Crossover - Lowest Index Ordering c) Resulting offspring from Greedy Par-
tition Crossover - Cardinality Based Ordering. d) Resulting offspring from Lowest Index First
Crossover. e) Resulting offspring from Lowest Index Max Crossover.
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Lowest Index First Crossover In Lowest Index First Crossover (LIFX), the goal is to
transmit the groups beginning with lowest index numbers. LIFX works as follows:

A parent is randomly selected. Beginning with the lowest index (vertex) which has
not been assigned yet, the vertices are transmitted to the child by following the links.
If the vertices along the path are assigned before, they are skipped. The process is
repeated by successively changing the parents for transmission until all of the vertices
are assigned to the child. A general pseudocode of LIFX is presented in Algorithm 2.

The application of LIFX on the parents in Figure 2 would be as follows: Assum-
ing we begin with first parent, current lowest index number is 1. Therefore, (1, 2) is
transmitted to the child. The current lowest index number is now 3. Switching to parent
2, we copy (3, 6) as the next group. Switching back to parent 1, current lowest index
is 4, therefore (4, 5) is copied to the child. Final coloring then becomes: C1 = (1, 2),
C2 = (3, 6), C3 = (4, 5).

Note that this crossover prioritizes groups beginning with the lowest index number,
therefore it reduces the sizes of the groups beginning with higher index numbers. This
is in concordance with the nature of LLE, because the number of possible values for the
higher index locations is lower.

Algorithm 2 Lowest Index First Crossover
Require: Two Parents - parent1 and parent2 in LLE form.
Ensure: One offspring in LLE form.
1: i = 1
2: currentParent = Random(parent1, parent2).
3: repeat
4: lengthOfParent = Calculate the path length of currentParent starting from i.
5: transmit unassigned vertices (links) in the parentToSelect to offspring.
6: mark transmitted vertices as assigned.
7: i = next unassigned vertex.
8: if currentParent = parent1 then
9: currentParent = parent2.

10: else
11: currentParent = parent1.
12: end if
13: until all vertices are assigned

Lowest Index Max Crossover In Lowest Index Max Crossover (LIMX), the child is
generated with two objectives: Transmit large groups to preserve Cardinality Based Or-
dering, and to transmit groups beginning with lowest index number (to preserve Lowest
Index Ordering). Therefore this method can be considered as an amalgamate of LIFX
and GPX. LIMX works as follows:

Beginning with the lowest index number (vertex) which has not been assigned first
we calculate the length of the links (path length) in both parents. Already assigned
vertices are not counted in this link length calculation. This allows finding the largest
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set in parents beginning with the lowest index number. Then the links (and thus vertices)
are transmitted to the child from the parent with the greater link-length. After that next
unassigned lowest index number is found and the process is repeated until all vertices
are assigned. A general pseudocode of LIMX is presented in Algorithm 3.

Application of LIMX to parents in Figure 2 is as follows: Current lowest index is 1.
(1, 3, 6) is longer than (1, 2) so (1, 3, 6) is copied to the child. Current lowest index is
now 2. (2, 4) is larger than (2) so it is transmitted to the child. Finally (5) is copied to the
child as the last group. At the end of LIMX the coloring then becomes: C1 = (1, 3, 6),
C2 = (2, 4), C3 = (5)

Algorithm 3 Lowest Index Max Crossover
Require: Two Parents - parent1 and parent2 in LLE form.
Ensure: One offspring in LLE form.
1: i = 1
2: repeat
3: lengthOfParent1 = Calculate the path length of parent1 starting from i.
4: lengthOfParent2 = Calculate the path length of Parent1 starting from i.
5: if LengthOfParent1 < LengthOfParent2 then
6: parentToSelect = parent1.
7: else
8: parentToSelect = parent2.
9: end if

10: transmit unassigned vertices (links) in the parentToSelect to offspring.
11: mark transmitted vertices as assigned.
12: i = next unassigned vertex.
13: until all vertices are assigned

3.5 Mutation

We have used a mutation scheme that sends a selected conflicting vertex x from its color
set to the best possible other one. A tournament method is used to select a vertex for
transfer. A percentage of conflicting vertices are taken into a tournament and the vertex
with the highest conflict in this set is transferred to a best color available.

As aforementioned, assigning group ids after crossover is essential for low redun-
dancy and the success of the mutation. In GPX-LI, LIMX and LIFX, the ids are assigned
according to Lowest Index Ordering whereas in GPX-CB the ids are assigned according
to Cardinality Based Ordering.

3.6 Replacement

In our simulations we have employed a trans-generational replacement with weak elitism.
At each generation, λ (non elitist) + µ (elitist individuals, one for each number of colors
within the searching range) individuals produce λ children. If new best individuals for
each color are found in the new children, they are moved to the population with elitist
individuals. The remaining children forms the next generation.
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4 Experiments

In our tests, we use several graphs from the DIMACS Challenge Suite [18]. The general
test setup is summarized in Table 1.

Table 1. Test Setup

Test Machine: Pentium 4 2Ghz with 256MB Ram
Compiler: GCC C++ 3.2 with -O2 flags
No of Generations: 10000
Population Size: %25 percent of the number of vertices in graph
Comparison Set Size: %10 percent of the population size
Niche Size: 5.0
Crossover Rate: 0.25
Mutation Rate: a single mutation is enforced
Number of Runs: 50 for each instance

Table 2. Data Characteristics about the problem instances from the DIMACS Suite

Instance |V | |E| % χ(G)

DSJC125.5 125 3891 0,50 ?
DSJC125.9 125 6961 0,90 ?
zeroin.1.col 211 4100 0,19 49
zeroin.2.col 211 3541 0,16 30
zeroin.3.col 206 3540 0,17 30
DSJC250.1 250 3218 0,10 ?
DSJC250.5 250 15668 0,50 ?
DSJC250.9 250 27897 0,90 ?
flat300 20 300 21375 0,48 20
flat300 26 300 21633 0,48 26
flat300 28 300 21695 0,48 28
school1 nsh 352 14612 0,24 14
le450 15a 450 8168 0,08 15
le450 15b 450 8169 0,08 15
le450 15c 450 16680 0,17 15
le450 15d 450 16750 0,17 15
le450 25a 450 8260 0,08 25
le450 25b 450 8263 0,08 25
le450 25c 450 16680 0,17 25
le450 25d 450 16750 0,17 25
DSJC500.1 500 12458 0,10 ?
DSJC500.5 500 62624 0,50 ?
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In Table 2, we present the characteristics of the test instances sampled from the
DIMACS test suite. Table shows the name, number of vertices( |V |), number of edges
(|E|), edge density (%) and chromatic number (χ(G)) of the instances.

In all our tests, the mutation count is set to 1, and crossover rate is fixed at 0.25. In
this setup, the algorithm is more like a genetic hill climbing method. Since the chromatic
number of these graphs are already known, we have set the range by hand according to
the chromatic number χ(G).

Note that our primary intention is to compare the crossover operators in the context
of LLE. As a result, we did not run our experiments for a long time. (The longest time
required for one run is around 5 minutes for cars91 graph instance). This might have
resulted in performance hit for large problem instances which may need an exponential
increase rather than a linear increase in the maximum number of generation.

Table 3. Best colorings obtained for the instances in the DIMACS Benchmark Suite

Instance χ(G) LIMX LIFX GPX-LI GPX-CB Kirovski-B Kirovski-C
DSJC125.5 ? 18 18 18 18 19 18
DSJC125.9 ? 44 44 44 44 45 45
zeroin.1.col 49 49 50 49 49 49 49
zeroin.2.col 30 31 35 31 31 30 30
zeroin.3.col 30 31 35 30 31 30 30
DSJC250.1 ? 9 9 9 9 9 9
DSJC250.5 ? 31 31 31 31 30 30
DSJC250.9 ? 75 75 75 74 77 77
flat300 20 20 20 31 27 32 20 20
flat300 26 26 34 34 34 34 32 28
flat300 28 28 34 34 34 34 33 32

school1 nsh 14 14 14 14 14 16 14
le450 15a 15 16 16 16 16 17 17
le450 15b 15 16 16 16 16 17 17
le450 15c 15 23 23 23 23 22 21
le450 15d 15 23 23 23 23 22 21
le450 25a 25 25 25 25 25 25 25
le450 25b 25 25 25 25 25 25 25
le450 25c 25 28 29 28 28 28 28
le450 25d 25 28 28 28 28 ? ?

DSJC500.1 ? 14 14 14 14 14 14
DSJC500.5 ? 55 55 55 55 51 50

In Table 3, we present the best solutions obtained after 50 runs by using the four
crossover operators mentioned. Figure 3 represents the average color number of 50 runs
for some of the instances in DIMACS suite. The results show no significant statistical
differences between crossover operators except for a few instances. For example for
flat300 20 graph, LIMX was able to find a best 20 coloring while the other crossovers
were very far from the optimal. However, for this graph, average colorings found with
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all crossovers and standard deviation are quite high. This is possibly due to the natural
difficulty of flat graphs. Another slight difference appeared in register allocation graphs
(zeroin.X.col graphs) where LIFX performed worst while GPX crossovers performed
best.

Fig. 3. Average number of colors (groups) for some instances in DIMACS and Carter’s Bench-
mark.

We have also presented graph coloring algorithm results of Kirovski et. al. [17] for
two set of parameters (Kirovski B and Kirovski C). Kirovski’s algorithm is based on
divide and conquer paradigms, global search for constrained independent sets, assign-
ment of most-constrained vertices to least constraining colors,reuse and locality explo-
ration of intermediate solutions, post processing lottery-scheduling iterative improve-
ment. With respect to Kirovski’s solutions, our crossovers gave similar and for some
instances better results however when the instance becomes larger and more difficult,
Kirovski’s algorithm performs better. However, our primary intention was not to com-
pare LLE representation with state of the art algorithms but to compare the crossover
operators as stated before.
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Table 4. Data Characteristics of the problem instances from the Carter Benchmark Suite

Instance |V | |E| %

Hecs92 81 1363 0.42
Staf83 139 1381 0.14
Yorf83 181 4691 0.29
Utes92 184 1430 0.08
Earf83 190 4793 0.27
Tres92 261 6131 0.18
Lsef91 381 4531 0.06
Kfus93 461 5893 0.06
Ryes93 486 8872 0.08
Carf92 543 20305 0.14
Utas92 622 24249 0.13
Cars91 682 29814 0.13

Table 4 presents some instances taken from the Carter’s Benchmark [5]. We again
present the number of vertices, edges and edge density of these graphs in this table.
Table 5 represents the best colorings obtained after 50 runs. In Figure 3, the average
colorings of 50 runs for some instances in Carter’s benchmark are presented.

Table 5. Best colorings obtained for the instances in the Carter’s Benchmark Suite

Instance LIMX LIFX GPX-LI GPX-CB Carter Caramia Merlot
Hecs92 17 17 17 17 17 17 18
Staf83 13 14 14 14 13 13 13
Yorf83 20 20 20 20 19 19 23
Utes92 10 10 10 10 10 10 11
Earf83 23 24 24 23 22 22 24
Tres92 21 21 21 21 20 20 21
Lsef91 17 18 18 18 17 17 18
Kfus93 20 20 20 20 19 19 21
Ryes93 23 23 23 23 21 21 22
Carf92 36 36 36 36 28 28 31
Utas92 38 39 38 38 32 30 32
Cars91 36 36 37 35 28 28 30

For instances in the Carter’s timetabling benchmark, again, a significant difference
among crossover operators is not observed. However, LIMX has a slightly better perfor-
mance in terms of best and average color (group) number. LIMX gave the best colorings
in staf83 and lsef91 instances while others were one color behind it. Yet, the difference
between average colorings and standard deviation is not statistically significant for al-
most all instances.
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We have also compared the best colorings after 10000 generations with some of
the results from the literature (Carter et. al [5], Caramia et. al. [4] and Merlot et. al
[21]). Like DIMACS instances, the performance of the graphs with vertices above 500
suffered due to the limit on the maximum number of generations. For instances, our
crossovers gave similar results in terms of best grouping obtained. Generally they ob-
tained colorings equal or one color behind colorings of Carter et. al and Caramia et. al,
and better than of Merlot et. al.

5 Conclusion

In this paper, we have investigated the performance of LLE on well known grouping
problems, exam timetabling and graph coloring. Several crossover operators that can be
used with LLE are presented. The results obtained are promising since LIMX and LIFX
perform approximately similar to the two variants of GPX, which is an integral part of
the most successful graph coloring algorithm [10]. Also our crossover operators gave
satisfactory results for instances in Carter’s and DIMACS benchmark suites. In the fu-
ture, the stochasticity of crossovers which are currently deterministic will be enhanced.
Linear Linkage Encoding will be used on other grouping problems together with the
crossover operators aforementioned and their stochastic versions. The multi-objective
LLE framework will be used for timetabling problems with additional constraints.
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