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1 Introduction

Producing good quality examination timetables difficult task which is faced by
many academic institutions. Due to the complexzityl the large size of the real
world university examination timetabling probleritss difficult to obtain an optimal
solution. Indeed, due to the complex nature ofpttdolem, it is questionable if an enc
user would recognise a truly optimal solution.

Carter and Laporte [1] defined the exam timetablemy “the assigning of
examinations to a limited number of available tipgriods in such a way that there
are no conflicts or clashes.”

In principle, the exam timetabling problem involyvassigning exams to timeslots
subject to a set of hard and soft constraints. Hanustraints are rigidly enforced
whilst soft constraints should be satisfied as darpossible. For example, exam
which have common students have to be assignedifferedit timeslots (hard
constraint). Wherever possible, examinations shbeldpread out over timeslots s
that students have large gaps in between exams dsp$traint). Constraints vary
among institutions and further discussion of exammetabling constraints can be
found in Burke et al. [2] and Carter and Laporte [limetables that satisfy all the
hard constraints are called feasible solutions. @ube complexity of the problem, it
is not usually possible to have solutions that da wiolate some of the soft
constraints. Indeed, the evaluation of the costtfan (how good the solutions are) it
a function of violated soft constraints. A weighteenalty value is associated witt
each violation of the soft constraint and the ofdjecis to minimise the total penalty
value.

The exam timetabling problem can be modelled asphgcolouring problem (see
Burke et al. [3, 4]). Usually, graph colouring histics, which order the events/exam
based on an estimation of their difficulties, asedito construct the timetable. Thes
include:

Largest degree first. This first schedules the exaa has the largest number o
conflicts with other exams.
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Colour degree. Exams with a greater number of atsflivith the exam that have
already been scheduled have a higher priority ofghecheduled next.

Saturation degree. Exams with fewer feasible skts scheduled as early a
possible.

Largest weighted degree. Exams with the higher numbstudents in conflict are
scheduled earlier.

Largest enrolment. Exams with larger student enrotenare scheduled earlier.

Many approaches have been developed to solve thm ¢xnetabling problem.
These include graph heuristics (Burke et al. [53but search (Di Gaspero anc
Schaerf, [6]), evolutionary algorithms (Burke et [@l]; Erben [8]; Coté et el. [9]),
simulated annealing (Dowsland [10]), hyper-hewsstBurke et al.[4]) etc. Extensive
surveys and overviews on various approaches inmngptimetabling problem can be
found in Carter [11], Carter and Laporte [1], Sch§&P], Burke and Petrovic [13]
and Petrovic and Burke [14].

A survey by Carter [11] covers the exam timetabliegearch from 1964 until
1984, with Carter and Laporte [1] extending thaveyr The later survey classifed the
methods used in solving the exam timetabling problato four groups: cluster,
sequential, meta-heuristic and constraint-basedoappes. Cluster methods grou,
the exams and then assign a timeslot to each gi®eguential approaches assig
exams to timeslots consecutively. Constraint-basethods represent exams as a s
of variables that have to be assigned to whichesthat represent resources such
rooms and timeslots, which satisfy some constrafiibite [14]). Meta-heuristic
approaches start with initial solution(s) and tlaaply search strategies to improw
the solutions. Carter and Laporte [1] argued thastnagpproaches only use simple
constraints in solving the exam timetabling protdem

The exam timetabling problem is considered as anapacitated problem when
room capacity is ignored. Whereas, a capacitatedlgm limits the number of
students sitting exams in a slot but does not thiressign exams to specific rooms
The benchmark datasets (available at ftp://ftp.noeanto.ca/pub/carter/testprob),
which are used in this work, are an un-capacitgieasblem. These benchmark
datasets were presented by Carter et al. [15].

This paper describes a computational approach tenieation timetabling. A
constructive heuristic based on saturation degeeeaused, followed by a local
improvement heuristic based on a variant of vagiaigighbourhood search.

2 Variable Neighbourhood Search

Variable neighbourhood search (VNS) was introdubgdViladenové and Hansen
[16]. VNS is a heuristic that is capable of expigrimulti-neighborhood structures,
hence it can explore distant neighbourhoods ofctiveent solution (Mladenogiand

Hansen [16]). The shaking procedure in the basic \dN@oach is a diversification
factor whilst the local search will intensify theasch to lead it converge to a loca
optimum. A local search (see Reeves and Beaslely fafts and Lenstra [18]) is
applied repeatedly to obtain the local optima ftbwn selected neighbouring solution.
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There has recently been increasing interest inMN& approach. For example,
Avanthay et al. [19], developed an adaptatiorVdISto solve the graph colouring
problem with a Tabucol (a variant of tabu searclgp@dthm (Hertz and de Werra
[20]) as a local search. They used three neighlomatistructures; these being verte)
class, and non-increasing neighbourhoods. Their \A\f®rithm, however is not
superior to the hybrid algorithm proposed by Galirand Hao [21] that integrates ¢
tabu search and a genetic algorithm. Some otheksmon VNS include Caporossi
and Hansen [22], Morena Pérez et al. [23] and Bfesnd Hindi [24], which
demonstrate that it is suitable across a numbdiffefent problem types.

3 Iterative Re-start Variable Neighbourhood Sear ch

The basid/NSalgorithm is a descent heuristic (Hansen and Miadig, [25]), whilst
our iterative re-stait/NS (IR-VNS)s a descent-ascent heuristic. bgf w=1,2...,W
be a set of predefined neighbourhood structurebng) is the set of solutions in the
w" neighbourhood ok, f(x)is the quality of solutiorx. W is the total number of
neighbourhood structures to be used in the se@rghVNSalgorithm is presented in
fig. 1.

In our approach, we do not apply a shaking proaedhafore starting the local
search since this might prolong the search timeceSiexam timetabling problems
have to deal with many constraints, finding goodliy feasible solutions can be
difficult and time consuming. The shaking mechanigithin basicVNS(Mladenové
and Hansen [16]) may cause the search to jump gooa solution which may be
difficult to escape from. Therefore, in our apprgask replace the shaking procedur
by accepting the best neighbour (which might besepof the incumbent solution.

Since the initialisation strategy could influende tperformance of the searct
algorithm (see Burke et al., [26]), especially whba search space is disconnecte
(which is a common case in exam timetabling probleme use the saturation degre
heuristic to iteratively construct incumbent saus when the search become
trapped in a local optimum.

At the improvement stage, we employ four neighboacthstructures as follows:

1. Steepest descenN{). A neighbour solution ok is generated by swapping al
exams in thg" slot with all exams in th§+k)™ slot. This local search returns the
best neighbour after visiting all neighboursxof

2. Free slot ). A neighbour solution of is generated by changing the slot of eac
exam to the best available slot. The local seaettrms the best neighbour (no
necessarily an improved solution) after assignimegktest new slot for each exam.

3. Swap two examsNz). A neighbour solution ok is generated by swapping ont
exam in thej™ slot with one exam in th§+k)" slot. Again, this local search
returns the best neighbour after visiting all néigirs of x.
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Exponential Monte Carlo, EMCQNg). This local search is adapted from Ayob an
Kendall [27]. The EMCQ accepts an improved solutiohgrobabilistically accepts a
worse solution depending on the solution qualigarsh time and the time it is
trapped in a local optimum. As iN;, a neighbour solution of is generated by
swapping all exams in tH& slot with all exams in th§+k)" slot. However, a trial
solution will be accepted based on the EMCQ acceptaniterion. If it is accepted,

Step A:  (Initialisation)
(1) Select the set of neighbourhood structurgsael,2...,W that will be used in
the search; choose a stopping condition and vafudAX;
(2) Sorts the exams in decreasing number of examsrifiiate; Let N as the
number of exams and &s the ' exam where€{1,2,...,N}. Set i=1;

Step B: (Construction Stage)
(1) Use E as a starting exam and construct an incumbenttigolux using
saturation degree heuristic with back-tracking aadidom slot assignment;
(2) If this is the first iteration, then record thmest obtained solution,eg¢—X
and f(es) < f(x);
(3) Set Unimproved=0;

Step C: (Improvement Stage)
(1) Set w—1;
(2) Do
a). Exploration of neighbourhood. Find the bestghéiour, x’ from
the W neighbourhood of x(€n,/(x)).
b). Accept the solutiongx x’;
). If f(X")<f(Xpes) then Xest—X', f(Xpes) < f(X’) and Unimproved=0;
d) Else, Unimproved= Unimproved+1;
e) w—(w mod W)+1;
Until Unimproved =MAX or the stopping conditionneet.
(3) If Unimproved =MAX but the stopping conditianriot met, then i=(i mod
N)+1 and goto step B.
(4) Otherwise, return the best obtained solution.

Note: MAX is the upper bound for Unimproved counter

Fig. 1. The Proposed VNS algorithm for exam timetablingbbem

we move to a new solution and the search continogsexploring a new
neighbourhood (by continuing with the subsequent).slSome moves might be
performed before returning the best obtained smiuto the VNS level. This is
different from theN; neighbourhood, which only returns the best neightmduone

neighbourhood.

Currently, we use the following permutatiomM{ N,, Ni, Ns, N;, Ng}. We repeatedly
apply N; after exploring each neighbourhood structure beedl explores all
neighbours of one neighbourhood. Since each loealrch explores different
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neighbourhood structures, it might be worth vigjtinll neighbours inN; after
applying other local searchers. We are still ingaging the effectiveness of
repeatedly applyindy;, the order in which neighbourhood are explored thedupper
bound valueMAX for anUnimprovedcounter. At this stage, we ustAX=20 and the
above permutation.

4  Objective Function

We use a proximity cost as an objective functiohiclv has been presented in Carte
et al. [15], as follows:

N-1 N
C; . proximity (t,,t.)
Minimise 3 .21 j:Zil . ] @
F =
M
Subject to:
N-1 N 5
Z Cjj .X(ti,tj):O @
i=1 j=i+1
1 if ti:tj;
X(ti,tj) = otherwise; ©)
0
Where,

N: is a number of exams;
M: is a number of students;
T: is a given number of available timeslot;

C = (cj)nxn ' is a conflict matrix where each element denotgd;b where i,
€{1,2,...,N}, is the number of students taking examd j;

t: is atimeslot for exam i where€{0,1,...,T-1}
5
2 it 1<t <5;
St =t

proximity (t;,t;) = 4
0 otherwise;
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Equation 4 presents a weighted value (suggestedabtgrCet al. [15]) that reflect
the cost of assigning exanandj to timeslots. These being 0, 1, 2, 4, 8 and 1&revh
the cost is ‘0’ if the gap of slot for exainandj is greater than 5. Equation (2) and (¢
ensure a clash free timetable where each studéhbevisitting one exam at each
timeslot.

5 Experimentsand Results

In this work, we use the benchmark exam timetabfiatasets presented in Carter ¢
al. [15]. These datasets have been used by mangrceses. However, due to some
changes made by Carter et al. [15], there are &t® of benchmark dataset. Table
shows the latest version (updated on June 7, 26f0Sarter et al. [15].

Table 1. Characteristics of benchmark exam timetablindglems.

Exams Students Sots
car-f-92 543 18,419 32
car-s-91 682 16,925 35
ear-f-83 190 1,125 24
hec-s-92 81 2,823 18
kfu-s-93 461 5349 20
Ise-f-91 381 2,726 18
pur-s-93 2419 30,032 43
rye-f-92 486 11,483 23
sta-f-83 139 611 13
tre-s-92 261 4,360 23
uta-s-92 622 21,266 35
ute-s-92 184 2,750 10
yor-f-83 181 941 21

As discussed in section 3, this is ongoing resedtelr preliminary experiment
shows the following results (see table 2), whiah @mparable to the state-of-the-al
approaches reported in the literature (Abdullahlef28]; Asmuni et al., 2005; Burke
et al., [5, 4]; Burke and Newall [29]; Caramia ef3D]; Carter et al. [15]; Di Gaspero
and Schaerf, [6]).

Based on our preliminary result in table 2, we saa that oulR-VNSis capable of
producing good quality solutions across all datasé@his shows that exploring
various neighbourhood structures with iterativestart is an effective search, whict
can avoid local optima and can jump to distant meigirhood that might be more
promising region.
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Table 2. Results from our IR-VNS and the state-of-art apphea on benchmark exam
timetabling problems based on the proximity cost..

IR- Abdullah Asmuni  Burke  Burke Burke Caramia Carter Di Gaspero

VNS etal.[28] etal. etal. etal. and etal. etal. and
31 [5] [4] Newall [30] [15] Schaerf [6]
[29]

car-f-92 4.51 4.36 4.56 4.2 484 40 6.0 6.2 5.2
car-s91 4.90 5.21 5.29 4.8 541 46 6.6 7.1 6.2
ear-f-83 36.28 34.87 37.02 354 38.19 37.05 29.3 36.4 45.7
hec-s92 11.06 10.28 11.78 10.8 12.72 1154 9.2 10.8 12.4
kfu-s-93 14.74 13.46 15.81 13.7 15.76 13.9 13.8 14.0 18.0
lsef-91 12.08 10.24 12.09 10.4 13.15 10.82 96 10.5 155
pur-s-93 4.66 - - 4.8 - - - 3.9 -
ryef-92 10.67 8.74 10.35 8.9 - - - 7.3 -
sta-f-83 157.32 159.20 160.42 159.1 141.08 168.73 158.2 161.5 160.8
tres92 8.92 813 8.67 8.3 8.85 8.35 9.4 9.6 10.1
uta-s-92 3.58 3.63 3.57 3.4 3.54 32 35 3.5 4.2
utes92 26.36 24.21 27.78 25.7 32.01 25.83 24.4 25.8 29.0
yor-f-83 38.97 36.11 40.66 36.7 40.13 36.8 36.2 417 410

6 Conclusions

We have presented an iterative re-start variabighbeurhood search that has tw
stages; construction and improvement. In the coostm stage, we employ a
saturation degree graph colouring heuristic wittckbimacking to construct an
incumbent solution. We apply a variant of variabégghbourhood search to improve
the incumbent solution. In our approach, we doapgly a shaking procedure befor:
starting the local search. However, we diversifg gearch by accepting the bes
neighbour returned by the local search (which i$ necessarily an improved
solution). When the search becomes trapped ina égtimum, we jump to a distant
solution space by reconstructing the incumbentteriuwising the saturation degree
heuristic. Our preliminary results shows that etrategy is very promising, which
can produce good quality solutions that are conipar@ other published result.
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