
An Iterative Re-start Variable Neighbourhood Search 
for the Examination Timetabling Problem 

Masri Ayob12, Edmund K. Burke1 and Graham Kendall1  

 

1 ASAP Research Group, School of Computer Science & IT 
University of Nottingham, Nottingham NG8 1BB, UK 

{ekb, gxk}@cs.nott.ac.uk 
 

2 Faculty of Information Science and Technology 
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia 

masri@ftsm.ukm.my 

1   Introduction 

Producing good quality examination timetables is a difficult task which is faced by 
many academic institutions.  Due to the complexity and the large size of the real-
world university examination timetabling problems, it is difficult to obtain an optimal 
solution. Indeed, due to the complex nature of the problem, it is questionable if an end 
user would recognise a truly optimal solution.  

Carter and Laporte [1] defined the exam timetabling as: “the assigning of 
examinations to a limited number of available time periods in such a way that there 
are no conflicts or clashes.”  

In principle, the exam timetabling problem involves, assigning exams to timeslots 
subject to a set of hard and soft constraints. Hard constraints are rigidly enforced 
whilst soft constraints should be satisfied as far as possible. For example, exams 
which have common students have to be assigned to different timeslots (hard 
constraint). Wherever possible, examinations should be spread out over timeslots so 
that students have large gaps in between exams (soft constraint). Constraints vary 
among institutions and further discussion of exam timetabling constraints can be 
found in Burke et al. [2] and Carter and Laporte [1]. Timetables that satisfy all the 
hard constraints are called feasible solutions. Due to the complexity of the problem, it 
is not usually possible to have solutions that do not violate some of the soft 
constraints. Indeed, the evaluation of the cost function (how good the solutions are) is 
a function of violated soft constraints. A weighted penalty value is associated with 
each violation of the soft constraint and the objective is to minimise the total penalty 
value.  

The exam timetabling problem can be modelled as a graph colouring problem (see 
Burke et al. [3, 4]). Usually, graph colouring heuristics, which order the events/exams 
based on an estimation of their difficulties, are used to construct the timetable. These 
include: 

Largest degree first. This first schedules the exam that has the largest number of 
conflicts with other exams. 
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Colour degree. Exams with a greater number of conflicts with the exam that have 
already been scheduled have a higher priority of being scheduled next.    

Saturation degree. Exams with fewer feasible slots are scheduled as early as 
possible. 

Largest weighted degree. Exams with the higher number of students in conflict are 
scheduled earlier. 

Largest enrolment. Exams with larger student enrolments are scheduled earlier. 
Many approaches have been developed to solve the exam timetabling problem. 

These include graph heuristics (Burke et al. [5]), tabu search (Di Gaspero and 
Schaerf, [6]), evolutionary algorithms (Burke et al. [7]; Erben [8]; Côté et el. [9]), 
simulated annealing (Dowsland [10]), hyper-heuristics (Burke et al.[4]) etc. Extensive 
surveys and overviews on various approaches in solving timetabling problem can be 
found in Carter [11], Carter and Laporte [1], Schaerf [12], Burke and Petrovic [13] 
and Petrovic and Burke [14]. 

A survey by Carter [11] covers the exam timetabling research from 1964 until 
1984, with Carter and Laporte [1] extending that survey. The later survey classifed the 
methods used in solving the exam timetabling problem into four groups: cluster, 
sequential, meta-heuristic and constraint-based approaches. Cluster methods group 
the exams and then assign a timeslot to each group. Sequential approaches assign 
exams to timeslots consecutively. Constraint-based methods represent exams as a set 
of variables that have to be assigned to which values that represent resources such as 
rooms and timeslots, which satisfy some constraints (White [14]). Meta-heuristic 
approaches start with initial solution(s) and then apply search strategies to improve 
the solutions. Carter and Laporte [1] argued that most approaches only use simple 
constraints in solving the exam timetabling problems.  

The exam timetabling problem is considered as an un-capacitated problem when 
room capacity is ignored. Whereas, a capacitated problem limits the number of 
students sitting exams in a slot but does not directly assign exams to specific rooms. 
The benchmark datasets (available at ftp://ftp.mie.utoronto.ca/pub/carter/testprob), 
which are used in this work, are an un-capacitated problem. These benchmark 
datasets were presented by Carter et al. [15].  
This paper describes a computational approach to examination timetabling. A 
constructive heuristic based on saturation degree is used, followed by a local 
improvement heuristic based on a variant of variable neighbourhood search.  

2   Variable Neighbourhood Search 

Variable neighbourhood search (VNS) was introduced by Mladenović and Hansen 
[16]. VNS is a heuristic that is capable of exploring multi-neighborhood structures, 
hence it can explore distant neighbourhoods of the current solution (Mladenović and 
Hansen [16]). The shaking procedure in the basic VNS approach is a diversification 
factor whilst the local search will intensify the search to lead it converge to a local 
optimum. A local search (see Reeves and Beasley [17]; Aarts and Lenstra [18]) is 
applied repeatedly to obtain the local optima from the selected neighbouring solution.  
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There has recently been increasing interest in the VNS approach. For example, 
Avanthay et al. [19], developed an adaptation of VNS to solve the graph colouring 
problem with a Tabucol (a variant of tabu search) algorithm (Hertz and de Werra 
[20]) as a local search. They used three neighbourhood structures; these being vertex, 
class, and non-increasing neighbourhoods. Their VNS algorithm, however is not 
superior to the hybrid algorithm proposed by Galinier and Hao [21] that integrates a 
tabu search and a genetic algorithm. Some other works on VNS include Caporossi 
and Hansen [22], Morena Pérez et al. [23] and Fleszar and Hindi [24], which 
demonstrate that it is suitable across a number of different problem types. 

3 Iterative Re-start Variable Neighbourhood Search 

The basic VNS algorithm is a descent heuristic (Hansen and Mladenović, [25]), whilst 
our iterative re-start VNS (IR-VNS) is a descent-ascent heuristic. Let nw, w=1,2…,W, 
be a set of predefined neighbourhood structures, and nw(x) is the set of solutions in the 
wth neighbourhood of x, f(x) is the quality of solution x. W is the total number of 
neighbourhood structures to be used in the search. Our VNS algorithm is presented in 
fig. 1. 

In our approach, we do not apply a shaking procedure before starting the local 
search since this might prolong the search time. Since exam timetabling problems 
have to deal with many constraints, finding good quality feasible solutions can be 
difficult and time consuming. The shaking mechanism within basic VNS (Mladenović 
and Hansen [16]) may cause the search to jump to a poor solution which may be 
difficult to escape from. Therefore, in our approach, we replace the shaking procedure 
by accepting the best neighbour (which might be worse) of the incumbent solution.  

Since the initialisation strategy could influence the performance of the search 
algorithm (see Burke et al., [26]), especially when the search space is disconnected 
(which is a common case in exam timetabling problem), we use the saturation degree 
heuristic to iteratively construct incumbent solutions when the search becomes 
trapped in a local optimum.   

At the improvement stage, we employ four neighbourhood structures as follows: 
1. Steepest descent (N1). A neighbour solution of x is generated by swapping all 

exams in the jth slot with all exams in the (j+k) th slot. This local search returns the 
best neighbour after visiting all neighbours of x.     

2. Free slot (N2). A neighbour solution of x is generated by changing the slot of each 
exam to the best available slot. The local search returns the best neighbour (not 
necessarily an improved solution) after assigning the best new slot for each exam. 

3. Swap two exams (N3). A neighbour solution of x is generated by swapping one 
exam in the jth slot with one exam in the (j+k) th slot. Again, this local search 
returns the best neighbour after visiting all neighbours of x.   
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Exponential Monte Carlo, EMCQ (N4). This local search is adapted from Ayob and 
Kendall [27]. The EMCQ accepts an improved solution but probabilistically accepts a 
worse solution depending on the solution quality, search time and the time it is 
trapped in a local optimum. As in N1, a neighbour solution of x is generated by 
swapping all exams in the jth slot with all exams in the (j+k) th slot. However, a trial 
solution will be accepted based on the EMCQ acceptance criterion. If it is accepted, 

we move to a new solution and the search continues by exploring a new 
neighbourhood (by continuing with the subsequent slot). Some moves might be 
performed before returning the best obtained solution to the VNS level. This is 
different from the N1 neighbourhood, which only returns the best neighbour of one 
neighbourhood.   
 
Currently, we use the following permutation: {N1, N2, N1, N3, N1, N4}. We repeatedly 
apply N1 after exploring each neighbourhood structure because N1 explores all 
neighbours of one neighbourhood. Since each local search explores different 

 

Step A: (Initialisation) 
(1) Select the set of neighbourhood structures nw, w=1,2…,W that will be used in 

the search; choose a stopping condition and value of MAX;  
(2) Sorts the exams in decreasing number of exams in conflicts; Let N as the 

number of exams and Ei as the ith exam where iЄ{1,2,...,N}. Set i=1; 

Step B: (Construction Stage) 
(1) Use Ei as a starting exam and construct an incumbent solution x using 

saturation degree heuristic with back-tracking and random slot assignment; 
(2) If this is the first iteration, then record the best obtained solution, xbest←x 

and f(xbest) ← f(x);  
(3) Set Unimproved=0; 

Step C: (Improvement Stage) 
(1) Set w←1; 
(2) Do  

a). Exploration of neighbourhood. Find the best neighbour, x’ from 
the wth neighbourhood of x(x’Єnw(x)).  

b). Accept the solution, x← x’; 
c). If f(x’)<f(xbest) then xbest←x’,  f(xbest) ← f(x’) and Unimproved=0; 
d) Else, Unimproved= Unimproved+1; 
e) w←(w mod W)+1; 

Until Unimproved =MAX or the stopping condition is met.  
(3) If Unimproved =MAX but the stopping condition is not met, then i=(i mod 

N)+1 and goto step B.  
(4)  Otherwise, return the best obtained solution.     

 
Note: MAX is the upper bound for Unimproved counter. 

Fig. 1. The Proposed VNS algorithm for exam timetabling problem 
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neighbourhood structures, it might be worth visiting all neighbours in N1 after 
applying other local searchers. We are still investigating the effectiveness of 
repeatedly applying N1, the order in which neighbourhood are explored and the upper 
bound value, MAX for an Unimproved counter. At this stage, we use MAX=20 and the 
above permutation. 

4 Objective Function 

We use a proximity cost as an objective function, which has been presented in Carter 
et al. [15], as follows: 
 

 
(1) 

 

 

Subject to: 

 (2) 

 

 

 (3) 

 

Where, 

N: is a number of exams; 

M: is a number of students; 

T: is a given number of available timeslot; 

C = (cij)NxN : is a conflict matrix where each element denoted by cij, where i,j 
Є{1,2,...,N}, is the number of students taking exam i and j;   

ti : is a timeslot for exam i where ti Є{0,1,…,T-1} 
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Equation 4 presents a weighted value (suggested by Carter et al. [15]) that reflect 
the cost of assigning exam i and j to timeslots. These being 0, 1, 2, 4, 8 and 16, where 
the cost is ‘0’ if the gap of slot for exam i and j is greater than 5. Equation (2) and (3) 
ensure a clash free timetable where each student will be sitting one exam at each 
timeslot.    

5 Experiments and Results 

In this work, we use the benchmark exam timetabling datasets presented in Carter et 
al. [15]. These datasets have been used by many researchers. However, due to some 
changes made by Carter et al. [15], there are two sets of benchmark dataset. Table 1 
shows the latest version (updated on June 7, 2005) of Carter et al. [15]. 

Table 1. Characteristics of  benchmark  exam timetabling problems. 

 Exams Students Slots 

car-f-92 543 18,419 32 

car-s-91 682 16,925 35 

ear-f-83 190 1,125 24 

hec-s-92 81 2,823 18 

kfu-s-93 461 5349 20 

lse-f-91 381 2,726 18 

pur-s-93 2419 30,032 43 

rye-f-92 486 11,483 23 

sta-f-83 139 611 13 

tre-s-92 261 4,360 23 

uta-s-92 622 21,266 35 

ute-s-92 184 2,750 10 

yor-f-83 181 941 21 

   

As discussed in section 3, this is ongoing research. Our preliminary experiment 
shows the following results (see table 2), which are comparable to the state-of-the-art 
approaches reported in the literature (Abdullah et al. [28]; Asmuni et al., 2005; Burke 
et al., [5, 4]; Burke and Newall [29]; Caramia et al.[30]; Carter et al. [15]; Di Gaspero 
and Schaerf, [6]). 

Based on our preliminary result in table 2, we can see that our IR-VNS is capable of 
producing good quality solutions across all datasets. This shows that exploring 
various neighbourhood structures with iterative re-start is an effective search, which 
can avoid local optima and can jump to distant neighbourhood that might be more 
promising region. 
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Table 2. Results from our IR-VNS and the state-of-art approaches on benchmark exam 
timetabling problems based on the proximity cost..   

 IR-
VNS 

Abdullah 
et al. [28] 

Asmuni 
et al. 
[31] 

Burke 
et al. 
[5] 

Burke 
et al. 
[4] 

Burke 
and 
Newall 
[29] 

Caramia 
et al. 
[30] 

Carter  
et al. 
[15] 

Di Gaspero 
and 
Schaerf [6] 

car-f-92 4.51 4.36 4.56 4.2 4.84 4.0 6.0 6.2 5.2 
car-s-91 4.90 5.21 5.29 4.8 5.41 4.6 6.6 7.1 6.2 
ear-f-83 36.28 34.87 37.02 35.4 38.19 37.05 29.3 36.4 45.7 
hec-s-92 11.06 10.28 11.78 10.8 12.72 11.54 9.2 10.8 12.4 
kfu-s-93 14.74 13.46 15.81 13.7 15.76 13.9 13.8 14.0 18.0 
lse-f-91 12.08 10.24 12.09 10.4 13.15 10.82 9.6 10.5 15.5 
pur-s-93 4.66 - - 4.8 - - - 3.9 - 
rye-f-92 10.67 8.74 10.35 8.9 - - - 7.3 - 
sta-f-83 157.32 159.20 160.42 159.1 141.08 168.73 158.2 161.5 160.8 
tre-s-92 8.92 8.13 8.67 8.3 8.85 8.35 9.4 9.6 10.1 
uta-s-92 3.58 3.63 3.57 3.4 3.54 3.2 3.5 3.5 4.2 
ute-s-92 26.36 24.21 27.78 25.7 32.01 25.83 24.4 25.8 29.0 
yor-f-83 38.97 36.11 40.66 36.7 40.13 36.8 36.2 41.7 41.0 

6 Conclusions 

We have presented an iterative re-start variable neighbourhood search that has two 
stages; construction and improvement. In the construction stage, we employ a 
saturation degree graph colouring heuristic with back-tracking to construct an 
incumbent solution. We apply a variant of variable neighbourhood search to improve 
the incumbent solution. In our approach, we do not apply a shaking procedure before 
starting the local search. However, we diversify the search by accepting the best 
neighbour returned by the local search (which is not necessarily an improved 
solution). When the search becomes trapped in a local optimum, we jump to a distant 
solution space by reconstructing the incumbent solution using the saturation degree 
heuristic.  Our preliminary results shows that our strategy is very promising, which 
can produce good quality solutions that are comparable to other published result.        
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