
An Iterative Re-start Variable Neighbourhood Search
for the Examination Timetabling Problem

Masri Ayob12, Edmund K. Burke1 and Graham Kendall1

1 ASAP Research Group, School of Computer Science & IT
University of Nottingham, Nottingham NG8 1BB, UK

{ekb, gxk}@cs.nott.ac.uk

2 Faculty of Information Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

masri@ftsm.ukm.my

1 Introduction

Producing good quality examination timetables is a difficult task which is faced by
many academic institutions. Due to the complexity and the large size of the real-
world university examination timetabling problems, it is difficult to obtain an optimal
solution. Indeed, due to the complex nature of the problem, it is questionable if an end
user would recognise a truly optimal solution.

Carter and Laporte [1] defined the exam timetabling as: “the assigning of
examinations to a limited number of available time periods in such a way that there
are no conflicts or clashes.”

In principle, the exam timetabling problem involves, assigning exams to timeslots
subject to a set of hard and soft constraints. Hard constraints are rigidly enforced
whilst soft constraints should be satisfied as far as possible. For example, exams
which have common students have to be assigned to different timeslots (hard
constraint). Wherever possible, examinations should be spread out over timeslots so
that students have large gaps in between exams (soft constraint). Constraints vary
among institutions and further discussion of exam timetabling constraints can be
found in Burke et al. [2] and Carter and Laporte [1]. Timetables that satisfy all the
hard constraints are called feasible solutions. Due to the complexity of the problem, it
is not usually possible to have solutions that do not violate some of the soft
constraints. Indeed, the evaluation of the cost function (how good the solutions are) is
a function of violated soft constraints. A weighted penalty value is associated with
each violation of the soft constraint and the objective is to minimise the total penalty
value.

The exam timetabling problem can be modelled as a graph colouring problem (see
Burke et al. [3, 4]). Usually, graph colouring heuristics, which order the events/exams
based on an estimation of their difficulties, are used to construct the timetable. These
include:

Largest degree first. This first schedules the exam that has the largest number of
conflicts with other exams.

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 336–344. ISBN 80-210-3726-1.

Colour degree. Exams with a greater number of conflicts with the exam that have
already been scheduled have a higher priority of being scheduled next.

Saturation degree. Exams with fewer feasible slots are scheduled as early as
possible.

Largest weighted degree. Exams with the higher number of students in conflict are
scheduled earlier.

Largest enrolment. Exams with larger student enrolments are scheduled earlier.
Many approaches have been developed to solve the exam timetabling problem.

These include graph heuristics (Burke et al. [5]), tabu search (Di Gaspero and
Schaerf, [6]), evolutionary algorithms (Burke et al. [7]; Erben [8]; Côté et el. [9]),
simulated annealing (Dowsland [10]), hyper-heuristics (Burke et al.[4]) etc. Extensive
surveys and overviews on various approaches in solving timetabling problem can be
found in Carter [11], Carter and Laporte [1], Schaerf [12], Burke and Petrovic [13]
and Petrovic and Burke [14].

A survey by Carter [11] covers the exam timetabling research from 1964 until
1984, with Carter and Laporte [1] extending that survey. The later survey classifed the
methods used in solving the exam timetabling problem into four groups: cluster,
sequential, meta-heuristic and constraint-based approaches. Cluster methods group
the exams and then assign a timeslot to each group. Sequential approaches assign
exams to timeslots consecutively. Constraint-based methods represent exams as a set
of variables that have to be assigned to which values that represent resources such as
rooms and timeslots, which satisfy some constraints (White [14]). Meta-heuristic
approaches start with initial solution(s) and then apply search strategies to improve
the solutions. Carter and Laporte [1] argued that most approaches only use simple
constraints in solving the exam timetabling problems.

The exam timetabling problem is considered as an un-capacitated problem when
room capacity is ignored. Whereas, a capacitated problem limits the number of
students sitting exams in a slot but does not directly assign exams to specific rooms.
The benchmark datasets (available at ftp://ftp.mie.utoronto.ca/pub/carter/testprob),
which are used in this work, are an un-capacitated problem. These benchmark
datasets were presented by Carter et al. [15].
This paper describes a computational approach to examination timetabling. A
constructive heuristic based on saturation degree is used, followed by a local
improvement heuristic based on a variant of variable neighbourhood search.

2 Variable Neighbourhood Search

Variable neighbourhood search (VNS) was introduced by Mladenović and Hansen
[16]. VNS is a heuristic that is capable of exploring multi-neighborhood structures,
hence it can explore distant neighbourhoods of the current solution (Mladenović and
Hansen [16]). The shaking procedure in the basic VNS approach is a diversification
factor whilst the local search will intensify the search to lead it converge to a local
optimum. A local search (see Reeves and Beasley [17]; Aarts and Lenstra [18]) is
applied repeatedly to obtain the local optima from the selected neighbouring solution.

An Iterative Re-start Variable Neighbourhood Search [...] 337

There has recently been increasing interest in the VNS approach. For example,
Avanthay et al. [19], developed an adaptation of VNS to solve the graph colouring
problem with a Tabucol (a variant of tabu search) algorithm (Hertz and de Werra
[20]) as a local search. They used three neighbourhood structures; these being vertex,
class, and non-increasing neighbourhoods. Their VNS algorithm, however is not
superior to the hybrid algorithm proposed by Galinier and Hao [21] that integrates a
tabu search and a genetic algorithm. Some other works on VNS include Caporossi
and Hansen [22], Morena Pérez et al. [23] and Fleszar and Hindi [24], which
demonstrate that it is suitable across a number of different problem types.

3 Iterative Re-start Variable Neighbourhood Search

The basic VNS algorithm is a descent heuristic (Hansen and Mladenović, [25]), whilst
our iterative re-start VNS (IR-VNS) is a descent-ascent heuristic. Let nw, w=1,2…,W,
be a set of predefined neighbourhood structures, and nw(x) is the set of solutions in the
wth neighbourhood of x, f(x) is the quality of solution x. W is the total number of
neighbourhood structures to be used in the search. Our VNS algorithm is presented in
fig. 1.

In our approach, we do not apply a shaking procedure before starting the local
search since this might prolong the search time. Since exam timetabling problems
have to deal with many constraints, finding good quality feasible solutions can be
difficult and time consuming. The shaking mechanism within basic VNS (Mladenović
and Hansen [16]) may cause the search to jump to a poor solution which may be
difficult to escape from. Therefore, in our approach, we replace the shaking procedure
by accepting the best neighbour (which might be worse) of the incumbent solution.

Since the initialisation strategy could influence the performance of the search
algorithm (see Burke et al., [26]), especially when the search space is disconnected
(which is a common case in exam timetabling problem), we use the saturation degree
heuristic to iteratively construct incumbent solutions when the search becomes
trapped in a local optimum.

At the improvement stage, we employ four neighbourhood structures as follows:
1. Steepest descent (N1). A neighbour solution of x is generated by swapping all

exams in the jth slot with all exams in the (j+k) th slot. This local search returns the
best neighbour after visiting all neighbours of x.

2. Free slot (N2). A neighbour solution of x is generated by changing the slot of each
exam to the best available slot. The local search returns the best neighbour (not
necessarily an improved solution) after assigning the best new slot for each exam.

3. Swap two exams (N3). A neighbour solution of x is generated by swapping one
exam in the jth slot with one exam in the (j+k) th slot. Again, this local search
returns the best neighbour after visiting all neighbours of x.

338 M. Ayob et al.

Exponential Monte Carlo, EMCQ (N4). This local search is adapted from Ayob and
Kendall [27]. The EMCQ accepts an improved solution but probabilistically accepts a
worse solution depending on the solution quality, search time and the time it is
trapped in a local optimum. As in N1, a neighbour solution of x is generated by
swapping all exams in the jth slot with all exams in the (j+k) th slot. However, a trial
solution will be accepted based on the EMCQ acceptance criterion. If it is accepted,

we move to a new solution and the search continues by exploring a new
neighbourhood (by continuing with the subsequent slot). Some moves might be
performed before returning the best obtained solution to the VNS level. This is
different from the N1 neighbourhood, which only returns the best neighbour of one
neighbourhood.

Currently, we use the following permutation: {N1, N2, N1, N3, N1, N4}. We repeatedly
apply N1 after exploring each neighbourhood structure because N1 explores all
neighbours of one neighbourhood. Since each local search explores different

Step A: (Initialisation)
(1) Select the set of neighbourhood structures nw, w=1,2…,W that will be used in

the search; choose a stopping condition and value of MAX;
(2) Sorts the exams in decreasing number of exams in conflicts; Let N as the

number of exams and Ei as the ith exam where iЄ{1,2,...,N}. Set i=1;

Step B: (Construction Stage)
(1) Use Ei as a starting exam and construct an incumbent solution x using

saturation degree heuristic with back-tracking and random slot assignment;
(2) If this is the first iteration, then record the best obtained solution, xbest←x

and f(xbest) ← f(x);
(3) Set Unimproved=0;

Step C: (Improvement Stage)
(1) Set w←1;
(2) Do

a). Exploration of neighbourhood. Find the best neighbour, x’ from
the wth neighbourhood of x(x’Єnw(x)).

b). Accept the solution, x← x’;
c). If f(x’)<f(xbest) then xbest←x’, f(xbest) ← f(x’) and Unimproved=0;
d) Else, Unimproved= Unimproved+1;
e) w←(w mod W)+1;

Until Unimproved =MAX or the stopping condition is met.
(3) If Unimproved =MAX but the stopping condition is not met, then i=(i mod

N)+1 and goto step B.
(4) Otherwise, return the best obtained solution.

Note: MAX is the upper bound for Unimproved counter.

Fig. 1. The Proposed VNS algorithm for exam timetabling problem

An Iterative Re-start Variable Neighbourhood Search [...] 339

neighbourhood structures, it might be worth visiting all neighbours in N1 after
applying other local searchers. We are still investigating the effectiveness of
repeatedly applying N1, the order in which neighbourhood are explored and the upper
bound value, MAX for an Unimproved counter. At this stage, we use MAX=20 and the
above permutation.

4 Objective Function

We use a proximity cost as an objective function, which has been presented in Carter
et al. [15], as follows:

(1)

Subject to:

 (2)

 (3)

Where,

N: is a number of exams;

M: is a number of students;

T: is a given number of available timeslot;

C = (cij)NxN : is a conflict matrix where each element denoted by cij, where i,j
Є{1,2,...,N}, is the number of students taking exam i and j;

ti : is a timeslot for exam i where ti Є{0,1,…,T-1}

 (4)

if 1≤|ti-tj|≤5;

otherwise;














−
=

ji tt

ttproximity ji

2

2

0
),(

5

0),(.
1

1 1
=∑ ∑

−

= +=

N

i

N

ij
jiij ttxc

if ti = t j ;
otherwise;
 




=
1

0
),(ji ttx

Minimise

M

ttproximityc

F

N

i

N

ij
jiij∑ ∑

−

= +==

1

1 1

),(.

340 M. Ayob et al.

Equation 4 presents a weighted value (suggested by Carter et al. [15]) that reflect
the cost of assigning exam i and j to timeslots. These being 0, 1, 2, 4, 8 and 16, where
the cost is ‘0’ if the gap of slot for exam i and j is greater than 5. Equation (2) and (3)
ensure a clash free timetable where each student will be sitting one exam at each
timeslot.

5 Experiments and Results

In this work, we use the benchmark exam timetabling datasets presented in Carter et
al. [15]. These datasets have been used by many researchers. However, due to some
changes made by Carter et al. [15], there are two sets of benchmark dataset. Table 1
shows the latest version (updated on June 7, 2005) of Carter et al. [15].

Table 1. Characteristics of benchmark exam timetabling problems.

 Exams Students Slots

car-f-92 543 18,419 32

car-s-91 682 16,925 35

ear-f-83 190 1,125 24

hec-s-92 81 2,823 18

kfu-s-93 461 5349 20

lse-f-91 381 2,726 18

pur-s-93 2419 30,032 43

rye-f-92 486 11,483 23

sta-f-83 139 611 13

tre-s-92 261 4,360 23

uta-s-92 622 21,266 35

ute-s-92 184 2,750 10

yor-f-83 181 941 21

As discussed in section 3, this is ongoing research. Our preliminary experiment
shows the following results (see table 2), which are comparable to the state-of-the-art
approaches reported in the literature (Abdullah et al. [28]; Asmuni et al., 2005; Burke
et al., [5, 4]; Burke and Newall [29]; Caramia et al.[30]; Carter et al. [15]; Di Gaspero
and Schaerf, [6]).

Based on our preliminary result in table 2, we can see that our IR-VNS is capable of
producing good quality solutions across all datasets. This shows that exploring
various neighbourhood structures with iterative re-start is an effective search, which
can avoid local optima and can jump to distant neighbourhood that might be more
promising region.

An Iterative Re-start Variable Neighbourhood Search [...] 341

Table 2. Results from our IR-VNS and the state-of-art approaches on benchmark exam
timetabling problems based on the proximity cost..

 IR-
VNS

Abdullah
et al. [28]

Asmuni
et al.
[31]

Burke
et al.
[5]

Burke
et al.
[4]

Burke
and
Newall
[29]

Caramia
et al.
[30]

Carter
et al.
[15]

Di Gaspero
and
Schaerf [6]

car-f-92 4.51 4.36 4.56 4.2 4.84 4.0 6.0 6.2 5.2
car-s-91 4.90 5.21 5.29 4.8 5.41 4.6 6.6 7.1 6.2
ear-f-83 36.28 34.87 37.02 35.4 38.19 37.05 29.3 36.4 45.7
hec-s-92 11.06 10.28 11.78 10.8 12.72 11.54 9.2 10.8 12.4
kfu-s-93 14.74 13.46 15.81 13.7 15.76 13.9 13.8 14.0 18.0
lse-f-91 12.08 10.24 12.09 10.4 13.15 10.82 9.6 10.5 15.5
pur-s-93 4.66 - - 4.8 - - - 3.9 -
rye-f-92 10.67 8.74 10.35 8.9 - - - 7.3 -
sta-f-83 157.32 159.20 160.42 159.1 141.08 168.73 158.2 161.5 160.8
tre-s-92 8.92 8.13 8.67 8.3 8.85 8.35 9.4 9.6 10.1
uta-s-92 3.58 3.63 3.57 3.4 3.54 3.2 3.5 3.5 4.2
ute-s-92 26.36 24.21 27.78 25.7 32.01 25.83 24.4 25.8 29.0
yor-f-83 38.97 36.11 40.66 36.7 40.13 36.8 36.2 41.7 41.0

6 Conclusions

We have presented an iterative re-start variable neighbourhood search that has two
stages; construction and improvement. In the construction stage, we employ a
saturation degree graph colouring heuristic with back-tracking to construct an
incumbent solution. We apply a variant of variable neighbourhood search to improve
the incumbent solution. In our approach, we do not apply a shaking procedure before
starting the local search. However, we diversify the search by accepting the best
neighbour returned by the local search (which is not necessarily an improved
solution). When the search becomes trapped in a local optimum, we jump to a distant
solution space by reconstructing the incumbent solution using the saturation degree
heuristic. Our preliminary results shows that our strategy is very promising, which
can produce good quality solutions that are comparable to other published result.

References

1. Carter, M.W. and Laporte, G., (1996). Recent developments in practical examination

timetabling. In: Burke and Ross (1996), 3-21.
2. Burke, E.K., Elliman, D.G., Ford, P. and Weare, R. F. (1996). Examination timetabling in

British Universities – A survey. In: Burke and Ross, 76-92.
3. Burke, E.K., Elliman, D.G. and Weare, R.F., (1994). A university timetabling system

based on graph colouring and constraint manipulation. Journal of Research on Computing
in Education, 27(1), 1-18.

342 M. Ayob et al.

4. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S. and Qu, R. (2006). A graph-based

hyper-heuristic for educational timetabling problems. European Journal of Operational
Research, in press.

5. Burke, E.K., Kingston, J. and de Werra, D. (2004a). Applications to timetabling. In:
Gross, J. and Yellen, J. (eds.), Handbook of graph theory. Chapman Hall/CRC Press,
445-474.

6. Di Gaspero, L. and Schaerf, A., (2001). Tabu search techniques for examination
timetabling. In: Burke, E.K. and Erben, W. (eds.), Selected papers from the 3rd
International Conference on the Practice and Theory of Automated Timetabling, Lecture
Notes in Computer Science, 2079, 104-117.

7. Burke, E.K., Newall, J. and Weare, R. (1998). Initialization strategies and diversity in
evolutionary timetabling. Evolutionary Computation, 6(1), 81-103.

8. Erben, W., (2001). A grouping genetic algorithm for graph coloring and exam
timetabling. In: Burke, E.K. and Erben, W. (eds.), Selected papers from the 3rd
International Conference on the Practice and Theory of Automated Timetabling, Lecture
Notes in Computer Science, 2079, 132-158.

9. Côté, P., Wong, T. and Sabourin, R., (2005) A hybrid multi-objective evolutionary
algorithm for the uncapacitated exam proximity problem. In: Burke, E.K. and Trick, M.
(eds.), Selected papers from the 5rth International Conference on the Practice and Theory
of Automated Timetabling, Lecture Notes in Computer Science, 3616, Springer-Verlag,
294-312.

10. Dowsland, K., (1998). Off the peg or made to measure. In: Burke, E.K. and Carter, M.
(eds.), Selected papers from the 2nd International Conference on the Practice and Theory
of Automated Timetabling, Lecture Notes in Computer Science, 1408, 37-52.

11. Carter, M.W., (1986). A survey of practical applications of examination timetabling
algorithms. Operations Research Society of America, Volume 34 No 2, 193-202.

12. Schaerf, A., (1999) A survey of automated timetabling. Artificial Intelligence Review,
13, 87-127.

13. Burke, E.K. and Petrovic, S. (2002). Recent research directions in automated timetabling.
European Journal of Operational Research, 140, 266–280.

14. Petrovic, S. and Burke, E.K., (2004), ch. 45- University timetabling. In: The Handbook of
Scheduling: Algorithms, Models, and Performance Analysis. Leung, J. (edd.), CRC
Press.

14. White, G. M., (2000). Constrained satisfaction, not so constrained satisfaction and the
timetabling problem. Proceedings of the 3rd International Conference on the Practice and
Theory of Automated Timetabling, Konstanz, Germany, 32-47.

15. Carter, M. W., Laporte, G. and Lee, S. Y. (1996) Examination timetabling: algorithmic
strategies and applications. Journal of the Operational Research Society Volume 47 Issue
3, 373-383.

16. Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers and
Operations Research, 24(11), 1097-1100.

17. Reeves, C.R. and Beasley, J.E. (1995). Introduction, ch. 1. In: Reeves, C. R.(eds) Modern
heuristic techniques for combinatorial problems, McGraw-Hill, 1-19.

18. Aarts, E. and Lenstra, J.K. (eds). (2003). Local search in combinatorial optimization.
Princeton University Press.

19. Avanthay, C., Hertz, A. and Zufferey, N. (2003). A variable neighborhood search for
graph coloring. European Journal of Operational Research, 151, 379-388.

20. Hertz, A. and de Werra, D. (1987). Using tabu search techniques for graph coloring,
Computing, 39, 345-351.

21. Galinier, P. and Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3, 379-397.

An Iterative Re-start Variable Neighbourhood Search [...] 343

22. Caporossi, G. and Hansen, P. (2004). Variable neighborhood search for extremal graphs

5. Three ways to automate finding conjectures. Discrete Mathematics, 276, 81-94.
23. Morena Pérez, J.A., Marcos Moreno-Vega, J. and Rodríguez Martín, I. (2003). Variable

neighborhood tabu search and its application to the median cycle problem. European
Journal of Operational Research, 151, 365-378.

24. Fleszar, K. and Hindi, K.H., (2004). Solving the resource-constrained project scheduling
problem by a variable neighbourhood search. European Journal of Operational Research,
155(2), 402-413.

25. Hansen, P. and Mladenović, N. (2001). Variable neighborhood search. European Journal
of Operational Research, 130, 449-467.

26. Burke, E.K., Bykov, Y., Newall, J. and Petrovic, S., (2004b). A time-predefined local
search approach to exam timetabling problems. IIE Transactions, 36, 509-528.

27. Ayob, M. and Kendall, G., (2003). A monte carlo hyper-heuristic to optimise component
placement sequencing for multi head placement machine, Proc. of the International
Conference on Intelligent Technologies, InTech’03, Chiang Mai, Thailand, 132-141.

28. Abdullah, S., Ahmadi, S., Burke, E.K. and Dror, M. (2004). Applying Ahuja-Orlin's
Large Neighbourhood for Constructing Examination Timetabling Solution , Proceedings
of the 5th International Conference on the Practice and Theory of Automated Timetabling
(PATAT), 413-419.

29. Burke, E. K. and Newall, J. P. (2003). Enhancing timetable solutions with local search
methods. In: Practice and Theory of Automated Timetabling IV, E. K. Burke and P. De
Causmaecker (Eds.), Lecture Notes in Computer Science Vol. 2740, Springer-Verlag, pp.
195-206.

30. Caramia, M., Dell' Olmo, P. and Italiano, G. F. (2001) New algorithms for examination
timetabling. In: Algorithm Engineering 4th International Workshop, S. Näher and D.
Wagner (Eds), Lecture Notes in Computer Science, Volume 1982, Springer-Verlag, 230-
241.

31. Asmuni, H. and Burke, E.K. and Garibaldi, J.M., Fuzzy Multiple Heuristic Ordering for
Course Timetabling, in Proceedings of the 5th United Kingdom Workshop on
Computational Intelligence (UKCI05), pp. 302-309, London, UK, 5-7 September 2005

344 M. Ayob et al.

