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Abstract. We describe the use of very large-scale neighborhood search
(VLSN) techniques in examination timetabling problems. We detail three
applications of VLSN algorithms that illustrate the versatility and po-
tential of such algorithms in timetabling. The first of these uses cyclic
exchange neighborhoods, in which an ordered subset of exams in dis-
joint time slots are swapped cyclically such that each exam moves to the
time slot of the exam following it in the order. The neighborhood of all
such cyclic exchanges may be searched effectively for an improving set
of moves, making this technique computationally reasonable in practice.
We next describe the idea of optimized crossover in genetic algorithms,
where the parent solutions used in the genetic algorithm perform an op-
timization routine to produce the ‘most fit’ of their children under the
crossover operation. This technique can be viewed as a form of multivari-
ate large-scale neighborhood search, and it has been applied successfully
in several areas outside timetabling. The final topic we discuss is func-
tional annealing, which gives a method of incorporating neighborhood
search techniques into simulated annealing algorithms. Under this tech-
nique, the objective function is perturbed slightly to avoid stopping at
local optima. We conclude by encouraging the timetabling community to
further examine the promising potential of these techniques in practice.

1 Introduction

1.1 Timetabling Problems

The scheduling of classes and examinations is a key practical problem that is
faced by nearly all schools and universities. Substantial effort has been devoted
to developing effective timetabling procedures over the last thirty to forty years.
The problems tackled by such procedures include examination timetabling, in
which a set of exams is to be scheduled over a set of time periods, and course
timetabling, where a set of courses must be scheduled over the length of an entire
semester.
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Timetabling problems are often complicated by numerous constraints; for
instance, in the examination timetabling problem, students should not be sched-
uled to take two exams at the same time. These constraints are typically divided
into hard constraints, which must not be violated (in the course timetabling
problem, a hard constraint might be that no teacher is scheduled to teach two
classes at once), and soft constraints, which possess a penalty for being violated
(in the examination timetabling problem, a soft constraint might be to minimize
the number of students who take two exams back-to-back). Because of the num-
ber and variety of constraints, such timetabling problems typically constitute
NP-hard problems that are quite difficult to solve manually. This in turn has led
to an increased emphasis on finding effective automated timetabling algorithms.

Recent surveys on automated timetabling (see [21, 23, 24, 43]) illustrate the
wide array of methods that have been applied to timetabling problems. Tradi-
tional techniques tested in timetabling include direct heuristics [34], which fill up
the timetable one event at a time and resolve conflicts by swapping exams, and
a reduction to the graph coloring problem [38], where events are associated with
vertices of a graph and edges with potential conflicts. More modern heuristics
include memetic [20] and genetic algorithms [19, 27, 30], which use techniques
inspired by evolutionary biology; simulated annealing algorithms [18, 46], where
nonimproving solutions are permitted with progressively decreasing probability;
tabu search heuristics [26, 42], where a list of recently visited timetables are for-
bidden to be visited; and constraint logic programming approaches [25], which
are based on applying declarative logic programming systems to constraint sat-
isfaction problems.

In this paper, we address the application of very large-scale neighborhood
search techniques (see Section 1.2) to timetable scheduling problems, includ-
ing one approach based on genetic algorithms (Section 3) and one that resem-
bles simulated annealing (Section 4). Neighborhood search has long been used
in timetable scheduling, from the swap (2-opt) techniques used in the direct
approaches to the variety of forms of neighborhood search used in genetic al-
gorithms. However, the area of very large-scale neighborhood search has only
recently been investigated with respect to timetable scheduling [1, 13, 33] (see
Section 2). We believe there are many untapped possibilities for useful algo-
rithms in this context.

1.2 Very Large-Scale Neighborhood Search

Neighborhood search algorithms (also known as local search algorithms) are a
class of algorithms that start with a feasible solution and attempt to find an
improving solution in the neighborhood of the current solution. The neighborhood
structure may be defined in a variety of ways, typically so that all solutions in
the neighborhood of the current solution satisfy a set of prescribed criteria. In
very large neighborhoods, the size of the neighborhood under consideration is
extremely large (typically, exponential) in the size of the problem data, making
it impractical to search such neighborhoods explicitly.
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A very large-scale neighborhood search (VLSN) algorithm is one that searches
over a very large neighborhood, giving an improving solution in a relatively
efficient amount of time. Such algorithms tend to search implicitly over the
neighborhood rather than explicitly, since the quantity of solutions precludes
performing an exhaustive search.

There are three main categories of very large-scale neighborhood search al-
gorithms that are outlined in [5]. The first of these is variable depth methods,
which partially search an exponentially large neighborhood by using heuristics.
The second kind are network flow-based methods, which use network flow tech-
niques to search over the neighborhood and identify improving neighbors. The
third main category consists of neighborhoods based on restrictions of NP-hard
problems that are solvable in polynomial time. Ahuja, Ergun, Orlin, and Punnen
[5, 6] provide a thorough exposition of the algorithms in these categories in their
surveys on the topic.

Very large-scale neighborhood search techniques have been applied to a wide
range of problems in combinatorial optimization. These include the traveling
salesman problem [28, 35, 39], the quadratic assignment problem [7], vehicle rout-
ing problems [2, 29], the capacitated minimum spanning tree problem [10], the
generalized assignment problem [50, 51], and parallel machine scheduling prob-
lems [3]. In several of these problems, the VLSN search algorithms give the
strongest known computational results, making the development of such algo-
rithms desirable in practice.

The design of a successful VLSN search algorithm depends on the choice of an
appropriate neighborhood function and the development of an effective heuristic
method to search the neighborhood for improving solutions. VLSN search tech-
niques may also be combined within the framework of other heuristic methods,
such as tabu search [32, 33] and scatter search [41], to provide further computa-
tional improvements. See [5, 6] for a comprehensive discussion of techniques for
developing strong VLSN search algorithms.

1.3 Contributions of this Paper

We describe three applications of very large-scale neighborhood search tech-
niques to timetabling problems. For simplicity, we consider the examination
timetabling problem in each of these instances, but our approaches can be mod-
ified to apply to classroom timetabling problems as well.

In Section 2, we describe the cyclic exchange neighborhood and how it may
be applied to timetabling problems. In this neighborhood, an ordered subset of
exams in disjoint time slots are swapped in a cyclic fashion such that each exam
moves to the time slot of the exam following it the order. We consider recent
applications of the cyclic exchange neighborhood in the timetabling literature,
and relations to other neighborhood search techniques in timetabling.

We discuss the idea of optimized crossover in genetic algorithms in Section
3. In an optimized crossover, the parent solutions used in the genetic algorithm
perform an optimization routine to produce the ‘most fit’ of their children un-
der the crossover operation. This can be viewed as a form of very large-scale
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neighborhood search, where the neighborhood is defined over both of the par-
ent solutions. We discuss problems for which the optimized crossover has been
applied, and how a heuristic for optimized crossover could be incorporated into
genetic algorithms for timetabling problems.

In Section 4, we review a new metaheuristic algorithm known as functional
annealing that combines neighborhood search techniques with a type of simu-
lated annealing algorithm. This algorithm allows the application of very large-
scale neighborhood search techniques within an annealing framework, which was
not previously practical due to the random selection of solutions in simulated
annealing. We discuss how this algorithm has the potential to be very useful in
timetable scheduling problems, on which simulated annealing algorithms have
performed well in the past.

2 Cyclic Exchange Neighborhood

2.1 Definition

The cyclic exchange neighborhood is defined for partitioning problems. We pre-
sent the problem here in terms of scheduling a set of exams over a collection of
time periods, where potential conflicts between the exams are implicitly encoded
in the objective function. However, it should be noted that this neighborhood
extends to any problem that can be expressed in terms of partitioning the mem-
bers of one set, so long as the cost of a partition is the sum of the cost of its
parts.

Let E = {e1, e2, . . . , en} be a set of n exams, and let P = {p1, p2, . . . , pm} be a
set of m time periods in which we wish to schedule the exams. Suppose that S =
{S1, S2, . . . Sm} is a partitioning of the exams in E into m sets, such that each
exam belongs to exactly one set in S, and each set Si corresponds to the collection
of exams scheduled in period pi. Let c(S) denote the cost of solution S. We
assume that any conflicts between students and exams are implicitly encoded in
the objective function c(S), so that any valid partitioning of the exams represents
a feasible solution to the problem. This is similar to the approach taken by
Abdullah, Ahmadi, Burke, and Dror [1].

Consider a sequence ei1 , ei2 , . . . , eik
of exams in E such that exam eij is

contained in set Sj , for each j. Suppose we switch exam eij from set Sj to set
Sj+1, for all j = 1, . . . , k−1, and we switch exam eik

into set S1. We call such an
operation a cyclic exchange. We can also think of the exams as forming a cycle
ei1 − ei2 − ei3 − . . .− eik

− ei1 , such that each exam switches to having the time
slot of the exam following it in the cycle. An illustration of a cyclic exchange is
given in Figure 1. In the figure, the sequence e1 − e4 − e10 − e13 of exams forms
a cycle; exam e1 switches from S1 to S2, exam e4 switches from S2 to S4, exam
e10 switches from S4 to S5, and exam e13 switches from S5 to S1. The set S3 is
not included in the cyclic exchange, so its exams are not changed.

In the case where k = 2, this operation is equivalent to the 2-opt operation,
where a single pair of exams switch time slots. Neighborhoods defined over the
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Fig. 1. The cyclic exchange neighborhood.

2-opt operation have been studied previously in the timetabling community by
Alvarez-Valdez, Martin, and Tamarit [12], Colorni, Dorigo, and Maniezzo [26],
and Schaerf [42], among others. If instead we do not require exam eik

to move
into set S1, then we call the operation a path exchange, which can be described
by the path of exams ei1 − ei2 − ei3 − . . . − eik

. We can show mathematically
that path exchanges may be modeled as a special case of cyclic exchanges, by
adding dummy nodes as appropriate [10].

We define the cyclic exchange neighborhood of solution S as all partitions
T = {T1, T2, . . . , Tm} that can be obtained from the sets {S1, S2, . . . Sm} via a
cyclic exchange operation. The size of this neighborhood is exponential in m, the
number of periods; for a fixed value of m, the total number of cyclic neighbors
of a given solution is O(nm). Since the size of this neighborhood is enormously
large, the neighborhood structure will only be useful in practice if we have an
effective search method for finding improving solutions. Fortunately, Thompson
and Psaraftis [49] and Ahuja, Orlin, and Sharma [9, 10] have identified several
methods of finding such solutions.

2.2 Searching the Cyclic Exchange Neighborhood

We use the concept of an improvement graph, introduced in Thompson and Orlin
[48] and further examined by Thompson and Psaraftis [49]. Rather than explic-
itly searching over each possible solution in the neighborhood, the improvement
graph allows us to implicitly search the neighborhood for improving solutions.
This helps dramatically reduce the amount of required computations.

For a feasible partition S = {S1, S2, . . . Sm} of the exams, the improvement
graph G(S) is a directed graph with n nodes, each corresponding to one of the
exams in e1, e2, . . . , en. The arc (ei, ej) represents the transferring of exam ei
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from the subset S[i] ∈ S that contains it to the subset S[j] ∈ S containing exam
ej , with exam ej becoming unassigned. More formally, if we let S[i] denote the
subset in S containing exam ei, we can define the edge set as {(ei, ej) | S[i] �=
S[j]}, with the interpretation of each arc as previously described. The cost of
arc (ei, ej) is set to cij = c({ei} ∪ S[j]\{ej})− c(S[j]). This is exactly equal to
the cost of adding exam ei to set S[j] and unassigning exam ej from S[j].

We say a cycle W in G(S) is subset-disjoint if the exams in E that correspond
to the nodes in W are all scheduled in different time slots in S. (In other words,
for every pair of nodes ei and ej in W , we have S[i] �= S[j].) Thompson and
Orlin [48] showed that there exists a one-to-one correspondence between cyclic
exchanges in S and subset-disjoint directed cycles in G(S); most importantly,
they both have the same cost.

This result suggests that to effectively search the cyclic exchange neighbor-
hood, we need only to identify negative cost subset-disjoint cycles in the improve-
ment graph. Unfortunately, although the problem of finding a general negative
cost cycle is solvable in polynomial time [8], the problem of finding a negative
cost subset-disjoint cycle is NP-hard [47, 48]. However, Thompson and Psaraftis
[49] and Ahuja, Orlin, and Sharma [10] have identified effective heuristic al-
gorithms that produce negative cost subject-disjoint cycles quickly in practice.
Thompson and Psaraftis’s heuristic begins by initially searching for only small
negative cost subset-disjoint cycles (i.e., 2-cycles or 3-cycles), and uses a variable
depth approach to increase cycle length and cost improvement. Although their
algorithm generates and searches only a portion of the graph G(S), it was found
to be effective in practice. Ahuja, Orlin, and Sharma’s heuristic is a modification
of the label-correcting algorithm for the shortest path problem, which restricts
every path found by the label-correcting algorithm to being a subset-disjoint
path. They found that on test instances, the time to identify a negative cost
cycle was less than the time needed to construct the improvement graph.

Hence, the idea of an improvement graph can be efficiently exploited to allow
searching of the cyclic exchange neighborhood. Using the algorithms of Thomp-
son and Psaraftis and Ahuja, Orlin, and Sharma, improving solutions in the
neighborhood can be found successfully in practice. This suggests that the cyclic
exchange neighborhood is a valuable network structure to consider in solving
timetabling problems.

2.3 Cyclic Exchange in the Timetabling Literature

Cyclic exchange neighborhoods have been investigated only recently in the time-
tabling literature. For this reason, we believe this is a potentially fruitful area
for research in timetabling. We now outline a couple of the studies in which the
cyclic exchange neighborhood has been incorporated.

Abdullah, Ahmadi, Burke, and Dror [1] initiated the first study of the cyclic
exchange neighborhood in examination timetabling problems. To identify neg-
ative cost subset-disjoint cycles, they used the heuristic of Ahuja, Orlin, and
Sharma [10]. They additionally introduced an exponential Monte Carlo accep-
tance criterion (see [14]) for accepting nonimproving moves. In this way, their
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algorithm is less likely to become stuck at a local optimum. Tests of the algo-
rithm against other timetabling algorithms on common benchmarks showed that
the performance of their algorithm is comparable to that of the best currently
known timetabling algorithms.

Jha [33] has also recently studied the usefulness of cyclic exchange neigh-
borhoods in timetabling problems. His algorithm uses a dynamic programming
aproach to identify negative cost subset-disjoint cycles. He also combines the
cyclic exchange heuristics with a tabu search framework, to avoid the problem
of halting at local optima. In terms of implementation, he found that the VLSN-
tabu search combination produced robust solutions in a reasonable amount
of time. Compared to approaches using integer programming or neighborhood
search alone, he found that the VLSN-tabu search algorithm performed better
on larger test instances.

Together, these two studies suggest that the combination of cyclic exchange
techniques with other suitable timetabling heuristics can make for especially
strong algorithms. Whether the methods used are Monte Carlo acceptance tech-
niques or tabu search, the combination of the VLSN methodology with the ex-
isting algorithms can be used to produce a more effective algorithm overall.

2.4 Relation to Other Techniques in the Literature

As mentioned in Section 2.1, the 2-opt operation is a special case of the cyclic
exchange operation, where each cycle has length equal to 2. This is occasionally
referred to as the swap operation, since it consists of swapping the time slots
of a pair of exams. The 2-opt neighborhood is defined as the set of all possible
solutions that can be reached from a given solution by performing a single 2-opt
move.

Many papers in the timetabling literature have used neighborhood search
over the 2-opt neighborhood to refine timetabling solutions, though not neces-
sarily using that name and most often in conjunction with other techniques.
Alvarez-Valdes, Martin, and Tamarit [12] used 2-opt moves combined with tabu
search in finding solutions for timetabling problems in the Spanish school system.
Schaerf [42] combined tabu search and the randomized nonascendent method
with 2-opt neighborhood search techniques in solving high school timetabling
problems. Colorni, Dorigo, and Maniezzo [26] used 2-opt techniques along with
simulated annealing, tabu search, and genetic algorithms for problems from Ital-
ian high schools; they found the combination of genetic algorithms with tabu
search to be especially powerful. Carter [22] addresses the scheduling of classes
at the University of Waterloo by decomposing the problem into several subprob-
lems, which are then solved using a greedy procedure including 2-opt moves.

It should be noted that while 2-opt moves can be done efficiently in the
improvement graph (since there are only O(n2) possible such moves), they are
inherently a lot weaker than cyclic exchange moves. For this reason, it would
be interesting to apply the cyclic exchange neighborhood to the same classes
of problems. This presents a fruitful, and largely unexamined, avenue for new
research.
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3 Optimized Crossover in Genetic Algorithms

3.1 Overview of Genetic Algorithms

Genetic algorithms are an optimization technique based on the mechanisms of
evolution and natural selection [37]. In applying genetic algorithms to time-
tabling problems, we assume (as in Section 2) that any valid partitioning of
exams into a timetable T represents a feasible solution, and that potential con-
flicts between the exams are implicitly encoded in the objective function. (It
should be noted that it is also possible to extend the following definitions to the
constrained version of the problem.) There are a wide range of ways to implement
genetic algorithms. We describe a classic approach.

In each iteration of a genetic algorithm, a population of solutions is main-
tained, which represent the current set of candidate solutions. At time t = 0, a
population of timetables {T 0

1 , T 0
2 , . . . , T 0

K} is generated randomly from the set of
all possible solutions. In further iterations, the population {T t+1

1 , T t+1
2 , . . . , T t+1

K }
is generated from the population at time t according to the fitness of each of the
candidate solutions T t

i , along with crossover and mutation operations.
The fitness function is a problem-specific measure of how good a timetable is.

One obvious candidate for the fitness of a solution is its objective function value.
(However, in problems for which calculating the objective is time-consuming,
alternative methods of fitness can be formulated.) In selecting a set of candidate
solutions at time t to produce the next generation at time t + 1, the algorithm
begins by assessing the fitness of all timetables at time t. Next, K individuals
of the population are randomly selected, based on a weighted randomization
scheme; the ‘fitter’ a solution is, the more likely it is to be selected.

The crossover operation functions by taking two of the selected timetables
Ti and Tj and combining them to form a new timetable. The selected timetables
are referred to as the parent timetables, and the new timetable is called the child
timetable. In what follows, we assume that the parent timetables are represented
in the form (pk

1 , pk
2 , . . . , p

k
n), where pk

� represents the time period in which exam
e� is scheduled in timetable Tk.

The crossover operation can take several forms, of which the fixed point
crossover is very common. In this situation, a given position � ∈ {1, . . . , n−1} is
selected; the child solution is created by concatenating the first � periods in the
timetable of the first parent with the last n − � periods in the timetable of the
second parent. Hence, if Ti and Tj are the first and second parents, their child
solution will have the form (pi

1, . . . , p
i
�, p

j
�+1, . . . , p

j
n).

Another frequently used crossover scheme is the two-point crossover, where
two random positions �1 and �2 (�1 < �2) are selected; in this case, the child
is formed by taking the periods of the first parent in the intervals (1, �1) and
(�2 +1, n) and the periods of the second parent in the interval (�1 +1, �2), giving
a solution of the form (pi

1, . . . , p
i
�1

, pj
�1+1, . . . , p

j
�2

, pi
�2+1, . . . , p

i
n). Similarly, we can

define multi-point crossovers by first generating a random number N , arbitrarily
determining N crossover positions, and then creating the child by taking each
odd interval from the first parent and each even interval from the second parent.
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The mutation operation is used to ensure diversity of the timetables gener-
ated. In this operation, a given position � in timetable Tk is selected with some
(small) probability Pm, and exam e� is reassigned from period pk

� in which it
is currently scheduled to another randomly selected time period. This has the
effect of ‘mutating’ the �th exam period from its original value. In this way, time
periods that are not a part of the set of parent timetables can be present in the
successive generation, which occasionally leads to better solutions.

3.2 Optimized Crossover

In the previous section we discussed the crossover operation in genetic algo-
rithms. One striking feature of this method is that the crossover points are
determined randomly, and the resulting child is created without regard to the
objective function. Hence occasionally the fitness of a child can deviate quite
widely from the fitness of its parents. Aggarwal, Orlin, and Tai [4] suggested
instead choosing the best child from all possible children, building on an idea of
Balas and Niehaus [15] in the area of graph theory.

The set of all possible children Tij from two timetables Ti and Tj can be
written as {Tij | p�

ij = p�
i or p�

ij = p�
j , for all � = 1, . . . , n}. Thus, the period in

which any exam is scheduled in Tij will either be the same as the period in which
it is scheduled in Ti, or else the same as the period in which it is scheduled in
Tj . The problem of finding the best child is then the problem of choosing from
among the O(2n) possible children the one with the best objective function.

We can think of solving the optimized crossover problem as a type of very
large-scale neighborhood search. In this case, the neighborhood is defined over a
pair of parent solutions, instead of a single solution. This is a somewhat unusual
use of the term ‘neighborhood,’ but we claim the concept is plausible since the
neighborhood is well-defined. For each pair of solutions Ti and Tj , the crossover
neighborhood is defined as the set of all possible children Tij that can be pro-
duced from Ti and Tj. The problem of finding the best child can be viewed as that
of finding the child with the best objective value in the crossover neighborhood.

The idea of optimized crossover has not been previously used in genetic
algorithms for timetabling problems, and we believe it is an excellent candidate
for study. In the next two sections, we detail a few of the areas in which optimized
crossover has proven to be useful, followed by comments on the feasibility of the
method on timetabling problems in particular.

3.3 Previous Applications of Optimized Crossover

Aggarwal, Orlin, and Tai [4] were the first to apply the concept of optimized
crossover to genetic algorithms. They studied the independent set problem, for
which they gave an effective method of combining two independent sets to obtain
the largest independent set in their union. This was based on a related technique
of Balas and Niehaus [15]. Their resulting genetic algorithm incorporated this
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optimized crossover scheme, and was shown to be superior to other genetic algo-
rithms for the independent set problem. This approach was further verified by
Balas and Niehaus [16].

Ahuja, Orlin, and Tiwari [11] later extended the idea of optimized crossover
to genetic algorithms for the quadratic assignment problem. They presented
a matching-based optimized crossover heuristic that finds an optimized child
quickly in practice. This technique can also be applied to other assignment-type
problems, as it relies on the structure of the problem rather than the objective
function.

Most recently, Ribeiro and Vianna [40] have applied the idea of optimized
crossover to genetic algorithms for building phylogenetic trees, which are trees
showing evolutionary relationships among species with a common ancestor. Their
algorithm outperforms the best algorithms currently available. Lourenço, Paixão,
and Portugal [36] have also used a type of optimized crossover heuristic in their
study of bus driver scheduling. They solve a set-covering subproblem to de-
termine the best child solution; their algorithm outperforms other algorithms
tested, albeit at a higher computational cost.

3.4 Optimized Crossover in Timetabling Problems

As mentioned in Section 3.2, for an optimized crossover to be effective in practice,
it requires a method of quickly obtaining a best (or very good) child solution
from two parents. The problem of finding the optimized crossover explicitly in
timetable scheduling problems is unfortunately NP-hard, via a transformation
from the Minimum Set Cover problem (see [31]). Hence, the best we can hope
for is to find a strong heuristic for obtaining a good crossover. We now describe
how this can be accomplished in timetabling problems.

The algorithm we consider here is a greedy algorithm, which starts with the
two parent solutions Ti and Tj . First it randomly selects an order to consider the
exams in. The algorithm proceeds through the exams in order, where for each
exam ek it places the exam in either slot T k

i or T k
j according to which one gives

the smallest increase in the objective function. The result will be a scheduling
of exams that (hopefully) gives a low objective value. (Many other variations in
the greedy algorithm are possible.)

This algorithm will perform quickly in practice, as once the ordering is de-
cided upon there are only two choices for each of the exams. The quality of the
solutions produced by the algorithm may vary depending on the quality of the
ordering.

Thus we have given a heuristic for solving the optimized crossover problem in
genetic algorithms for timetabling problems. Though this method has not been
tested in a timetabling context, we believe the strong results obtained for the
crossover method in other problems (see [4, 11]) make it an attractive avenue to
pursue in the area of timetabling.
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4 Functional Annealing

4.1 The Functional Annealing Algorithm

The functional annealing method is a relatively new metaheuristic for combi-
natorial optimization problems. Proposed by Sharma and Sukhapesna [44, 45],
it combines the attractive components of both a neighborhood search method
and a simulated annealing algorithm. As simulated annealing algorithms have
been extensively examined in the timetabling literature (see, for instance, [18]
and [46]), we believe this method should be greatly appealing to the timetabling
community. In this subsection and the next two, we outline the functional anneal-
ing algorithm and its properties, followed by a discussion of applying functional
annealing techniques to timetabling problems in particular.

The main idea of the functional annealing method is to introduce a stochastic
element into the objective function, while employing an efficient neighborhood
search strategy. The stochastic element is given in terms of an annealing function,
which tends to the original objective as the number of iterations increases. The
perturbed objective allows the algorithm to escape efficiently from local optima,
while the neighborhood search heuristic provides for a more effective search of
the feasible space.

We now describe the algorithm more formally, following the structure of
Sukhapesna [45]. Suppose we are given a 0-1 discrete optimization problem
(such as a timetabling problem), with a cost function c(x) and a neighborhood
N(x) for each element x in the set F ⊆ {0, 1}n of feasible solutions. We let
c(x, w) = c(x) + w′x be our annealing function, where w is a random vector
in R

n with independent and identically distributed elements. The volatility of
w is determined by a control paramater U , such that w approaches zero as U
approaches zero. We assume we are given a sequence {Uk} of such control pa-
rameters, such that Uk > 0 for all k ≥ 0 and limk→∞ Uk = 0. Thus, the longer
the algorithm runs, the less stochasticity there is in the objective function. The
functional annealing algorithm is described in Figure 2.

As can be seen from the algorithm, the random vector wk is always chosen
so that the perturbation attempts to make the current solution worse than its
neighbors, which has the effect of forcing the algorithm to move away from
its current solution. Moreover, the magnitude of the perturbation vector wk is
such that the greater the number of iterations, the smaller the influence of the
perturbation. Hence for small values of k, the algorithm behaves similiarly to a
search for a random neighbor, and for large enough values of k, the algorithm
behaves more like a deterministic neighborhood search algorithm.

One of the appealing features of using a neighborhood search strategy in
tandem with the functional annealing approach is that the algorithm will not
spend multiple iterations at a solution that is not a local optimum, in contrast
to the standard simulated annealing algorithm. Another item of note is that in
the case of a linear objective, the algorithm is equivalent to a problem where the
data is perturbed to avoid lingering at local optimal solutions (see [17]).
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algorithm functional annealing
begin

choose an initial solution x0 in F ;
set k = 0;
while stopping criteria are not met, do

generate a vector wk such that wk(i) = ek(i) if xk(i) = 1
and wk(i) = −ek(i) if xk(i) = 0, where ek is distributed
exponentially with mean Uk;
using a neighborhood search algorithm, find a neighboring
solution y ∈ N(x) ∪ {x}, such that c(y, wk) ≤ c(x, wk);
set xk+1 = y;
set k = k + 1;

end;
end;

Fig. 2. The functional annealing algorithm.

4.2 Properties of the Algorithm

A natural question one might have about the functional annealing algorithm is
whether it is guaranteed to reach the set of optimal solutions. Indeed, Sharma
and Sukhapesna [44, 45] have shown that the algorithm is guaranteed to attain
the set of optimal solutions with probability 1, provided that the neighborhood
search algorithm is such that at any given step each improving solution is chosen
with positive probability. Moreover, the expected number of iterations needed
to reach an optimal solution is finite.

With respect to the choice of improving neighbors, the authors consider a ran-
domized first improvement strategy, in which improving solutions in the neigh-
borhood are selected with equal probability. If no improving neighbor is found,
then the current solution is kept for the next iteration. They show that the
chance of exiting from the current solution under such a strategy is not worse
than that of simulated annealing, and for large numbers of iterations the exit-
ing probability is about |N(x)| times greater than that of simulated annealing.
Thus the functional annealing algorithm is better in theory than simulated an-
nealing in terms of becoming stuck at local optima. They also show that a best
improvement strategy is also guaranteed to reach the set of optimal solutions
with probability one, though the time to find a solution takes longer than with
the first improvement strategy.

Sharma and Sukhapesna [44, 45] give a thorough computational study of func-
tional annealing algorithms applied to the quadratic assignment problem. They
show that the functional annealing algorithm performs significantly better than
both simulated annealing and neighborhood search algorithms on instances of
the problem, confirming the earlier theoretical results. This improvement holds
regardless of the size of the instance being considered. They also show that the
best improvement strategy tends to outperform the randomized first improve-
ment strategy on small instances, while on larger instances the difference is less
pronounced. They conclude by showing that incorporating a statistical learn-
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ing technique along with the functional annealing algorithm gives the strongest
computational results overall.

4.3 Functional Annealing and VLSN Search

Functional annealing provides a way to integrate very large-scale neighborhood
search techniques within the framework of annealing methods. Since the only
condition on the neighborhood search algorithm is that it should be able to
produce an improving solution in the neighborhood in a reasonable amount of
time, we can easily apply existing VLSN techniques to the functional annealing
algorithm.

For instance, the cyclic exchange neighborhood (see Section 2) can be incor-
porated into the functional annealing algorithm. This neighborhood is too large
to be of practical interest with the pure simulated annealing algorithm, since
the simulated annealing algorithm functions by comparing the performance of
random solutions in the neighborhood. The cyclic exchange neighborhood is so
large that there is no reason to believe that a random solution will perform well.
This problem is alleviated in the functional annealing approach, because it does
not rely on the generation of purely random solutions in the neighborhood.

Sharma and Sukhapesna [44, 45] incorporated the cyclic exchange neighbor-
hood in their analysis of functional annealing algorithms for the quadratic assign-
ment problem. They found that in small problem instances, algorithms using the
cyclic exchange neighborhood consistently outperformed algorithms based on a
2-opt structure (see Section 2.4). The results for large problem instances were
less dramatic.

4.4 Functional Annealing and Timetabling Problems

Functional annealing techniques can be applied to timetabling problems in much
the same way that simulated annealing algorithms are currently used. (See [18]
and [46] for details on the implementation of simulated annealing algorithms in
timetabling problems.) Typically, the only restriction on the format of the solu-
tions is that they are represented in such a way that the neighborhood search
subroutine can be performed adequately. In the case of the cyclic exchange neigh-
borhood, for instance, we could use the problem structure previously outlined
in Section 2.

A main advantage of the functional annealing algorithm is that it allows
us to use very large-scale neighborhood search techniques along with annealing
algorithms, which have already been used successfully in timetabling problems
(see [43] for a survey). For this reason, we believe that this algorithm has a
potential to be very valuable to the timetabling community.

5 Concluding Remarks

In this paper, we have discussed one application and two potential applica-
tions of very large-scale neighborhood search techniques in examination time-
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tabling problems. The applications range from one that has been used before in
timetabling problems (the cyclic exchange neighborhood), to one that has been
widely used in contexts other than timetabling (optimized crossover in genetic
algorithms), to a relatively new concept that we believe has a great potential for
timetabling problems (functional annealing algorithms).

Although these applications are presented in the context of examination
timetabling, the techniques are general enough to apply to a wide range of
timetabling problems. It is our hope that the timetabling community will make
use of these techniques and incorporate them into further studies in the time-
tabling literature. Based on the existing work, we believe that very large-scale
neighborhood search techniques may be very useful in the design of new time-
tabling algorithms.

References

1. S. Abdullah, S. Ahmadi, E. Burke, and M. Dror. Applying Ahuja-Orlin’s large
neighborhood for constructing examination timetabling solution. In Proceedings
of the Fifth International Conference on the Practice and Theory of Automated
Timetabling, number 3616 in Lecture Notes in Computer Science, pages 413–420,
Pittsburgh, PA, 2004. Springer.

2. R. Agarwal, R. Ahuja, G. Laporte, and Z. Shen. A composite very large-scale
neighborhood search algorithm for the vehicle routing problem. In Handbook of
Scheduling: Algorithms, Models and Performance Analysis, chapter 49. Chapman
& Hall/CRC, Boca Raton, FL, 2003.
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